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We study the complexity of performing Fourier analysis for the
group SLo(F,), where F, is the finite field of ¢ elements. Di-
rect computation of a complete set of Fourier transforms for
a complex-valued function f on SLo(F,) requires q® opera-
tions. A similar bound holds for performing Fourier inversion.
Here we show that for both operations this naive upper bound
may be reduced to O(g* log q), where the implied constant is
universal, depending only on the complexity of the “classical”
fast Fourier transform. The techniques we use depend strongly
on explicit constructions of matrix representations of the group.

Additionally, the ability to construct the matrix representations
permits certain numerical experiments. By quite general meth-
ods, recent work of others has shown that certain families of
Cayley graphs on SLy(F,) are expanders. However, little is
known about their exact spectra. Computation of the relevant
Fourier transform permits extensive numerical investigations of
the spectra of these Cayley graphs. We explain the associated
calculation and include illustrative figures.

1. INTRODUCTION

Fast Fourier Analysis

We begin by recalling some definitions. Let G be
a finite group and L?(G) the algebra of complex-
valued functions on G with respect to convolution.
Fix a complete set R of inequivalent irreducible
representations of G. Then

Y d =G,

pPER

where d, is the degree of the representation p.
If f € L*(G), the Fourier transform of f at p,
denoted f(p), is the matrix

Flo)=>_ £(s)p(s).

sEG

(©Jones and Bartlett Publishers, Inc.
1058-6458/92 $0.50 per page



116 Experimental Mathematics, Vol. 1 (1992), No. 2

The (discrete) Fourier transform, or DFT, of f
(with respect to R) is the set of matrices { f(p)} ex.

The Fourier transform of f determines f via the
Fourier inversion formula

1 n 1
1) =13 > d, tr(f(p)p(s™"))-

pER

Let T(G) denote the minimal number of opera-
tions needed to compute a Fourier transform of f,
with the complete set of representations R and the
function f given as initial data. Similarly, let I(G)
denote the minimal number of operations needed
to recover the function f from a Fourier transform
{f(p)}pegz via Fourier inversion.

By direct computation, a naive upper bound of
|GI” is obtained for both T(G) and I(G). In this
paper we examine this computation for the group
G = SLy(K), with K a finite field, and derive fast
algorithms for Fourier analysis for this situation.
These algorithms depend on certain explicit con-
structions of the matrix representations for this
group. The construction of these representations
also enables us to obtain a wealth of numerical data
for certain interesting Cayley graphs for SLy(K).

A remark concerning complexity results is in or-
der. Our complexity estimates are given in the
linear computational model, which quickly seems
to be becoming standard in the analysis of gener-
alized DFT algorithms [Baum and Clausen 1991;
Baum et al. 1991]. That is, computation of a DFT
over a finite group G may be viewed as the evalu-
ation of a certain |G| x |G| complex matrix at an
arbitrary vector f. If A is any r Xt complex matrix
and b > 2, the b-linear complezity L,(A) of A is de-
fined to be the minimal number of linear operations
(complex additions, subtractions and scalar multi-
plications) needed to compute the product Az for
an arbitrary vector x, where scalar multiplication
is restricted to scalars of absolute value at most b.
In this model the b-linear complexity of a group G
is defined to be the minimum b-linear complexity
over all possible DFTs for G. For comparison and
adaptation of related results, our T'(G) is in fact
the 2-linear complexity of G. Analogously, (G) is
the minimal 2-linear complexity of a Fourier inver-
sion matrix, under the same formulation.

There have been several recent advances in the
development of fast algorithms for performing Fou-
rier analysis on finite groups. Of relevance here

are the techniques developed for treating arbitrary
finite groups [Clausen 1989a; Diaconis and Rock-
more 1990]. In brief, these algorithms rely on de-
riving a recurrence for the computation with re-
spect to a subgroup. It is useful to briefly review
the main idea for speeding the computation of a
Fourier transform.

Let G be a group and H < G a subgroup. Fix
a set of coset representatives {si, ..., s} for G/H.
If p is a matrix representation of G, we can expand

f(p) as

Flo) =D fsit)p(sit)

— Z p(si) Z fit)p(t),

where f; € L*(H) is defined by fi(t) = f(sit).
Thus, if p|/H denotes the restriction of p to H,
we see that the last sum may be rewritten as

k

flp) = Z p(si)f:;(piH).

i=1

In general, p| H need not remain irreducible. As-
sume that

pw?’llea...@n’r’

where each n; is an irreducible representation of H
and ~ denotes equivalence of representations. In
the language of matrices, this direct sum decom-
position means that there exists a basis in which
the restrictions to H of the representations {p, } are
block diagonal, with the matrices for the {n;} on
the diagonal. Such “H-adapted bases” can always
be found. Consequently, the restricted transforms
{ f; (plH)} can be built from the collection of pre-
computed transforms {f,(n])} This allows us to
write the following recurrence for 7'(G) [Clausen
1989a, Theorem 1.1; Diaconis and Rockmore 1990,
Theorem 1]:

@) < ¢

~ |H]

G| o
T(H) + il zp:dp (1.1)

where « is the exponent of the complexity bound
for matrix multiplication.
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Fourier Analysis for SL;(q)
In attempting to apply (1.1) to G = SLy(K) we
find an obstruction to heightened efficiency.

Let K = F, be the finite field of g elements,
where ¢ is a power of the prime p. We will write
SLs(q) for SLy(F,), and denote the associated com-
plexities as T'(q) and I(q).

A natural subgroup for restriction is B = B(q),
the subgroup of upper triangular matrices. This is
a metabelian group; that is, it contains an abelian
normal subgroup U such that the quotient B/U
is abelian. It is known [Clausen 1989b; Rockmore
1990a] that for such a group we have

T(B) < O(|B|log |B]).

As will be explained fully in Section 2, the rep-
resentations of SLy(q) occur essentially as ¢ irre-
ducible representations of degree ¢q. Thus, (1.1)
now specializes to

SL(g SLy(q)] o= .,
T(g) < | |;(| )IT(B)+| |123’( )| Sa
=1
<O((g+1)-¢’logqg+q-qq*)
< O(q*logq +¢**?).

In most applications a@ = 3, so the term O(q®),
coming from matrix multiplication, dominates.

We are able to get around this by finding cer-
tain bases for the representations that allow us to
reduce the number of matrix multiplications. In
particular, we have:

Theorem 1.1. The number T'(q) of operations neces-
sary to compute a Fourier transform of a function

f € L*(SLa(q)) is O(q"logq).

In the proof of this result we will compute an ex-
plicit constant for the bound.

By general considerations, Baum and Clausen
show that complexity bounds for computation of
the DFT of a group G in turn give bounds for the
complexity of Fourier inversion. More precisely, in
the matrix formulation discussed above, computa-
tion of Fourier inverses with respect to a given set
of irreducible representations of GG is “almost” the
same as evaluation of the transpose of the associ-
ated DFT matrix at an arbitrary complex vector

[Baum and Clausen 1991, Theorem 1]. In fact, if
A is a given DFT matrix for G, so that A~! is the
associated Fourier inversion matrix, it follows from
[Baum and Clausen 1991, Theorem 3] that

Ly(A™") < Ly(A) +|G] .

Hence, Theorem 1.1 implies a like upper bound for
I(q):

Theorem 1.2. The number I(q) of operations needed
to recover a function f € L*(SLa(q)) from its Fou-
rier transform is O(q*logq).

It is worth pointing out that the relation between
the transform and inversion bounds is obtained
by recognizing that the algorithm for computing
a Fourier transform is a linear algorithm. Such
an algorithm is realized as a directed acyclic graph
with additions and subtractions labeling the nodes,
and scalars (for multiplication) labeling the edges.
In this setting, the computation of the transposed
matrix product is essentially given by a linear al-
gorithm in which the arrows are reversed [Bshouty
et al. 1988]. In Section 7 we give a more explicit re-
alization of the Fourier inversion algorithm, which
still yields the asserted bound.

Fourier Analysis, Graphs and Eigenvalues

The ability to compute matrix representations can
prove to be a great aid in numerical investigations
of Cayley graphs. Let G be a finite group and
S C G a subset of G such that S = S~!. The
Cayley graph X = X(G,S) of G with respect to
S is the undirected graph with vertex set G and
having an edge between a and b if and only ifas = b
for some (necessarily unique) s € S.

The adjacency matriz of a graph with m vertices
is the m x m matrix (with rows and columns in-
dexed by vertices of the graph) whose entries are
1 or 0, depending on whether or not there is an
edge joining the vertices corresponding to the en-
try’s row and column. The spectrum of a graph
is the spectrum of its adjacency matrix. Various
connectivity and “network” properties of a graph
can be judged by studying its spectrum. One such
property centers on the notion of expansion, which
measures the number of neighbors of a vertex sub-
set of a graph.
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Definition 1.3. A k-regular graph G = (V, E), with
n = |V| vertices and edge set E, is an (n,k,c)-
expander if

|0A| > ¢ (1 - @> | Al
n

for every subset A C V, where 0A = {y e V' \ A:
(y,z) € E for some x € A}.

Since every k-regular graph is an (n, k, ¢)-expan-
der for some ¢ > 0, this definition is intended to be
applied to families of graphs, typically with n — oc
and k and c held fixed. We refer to [Bien 1989;
Lubotzky; Sarnak 1990] for complete descriptions
and references concerning the mathematics of ex-
panders. Here we limit ourselves to a brief sum-
mary of the known relations between the spectrum
of a graph and the expansion coefficient ¢. The
most striking of these connections stems from dis-
crete analogues of inequalities relating the spec-
trum of the Laplacian on a finite-volume Rieman-
nian manifold to its Cheeger constant.

Recall that a combinatorial Laplacian may be
defined on a graph X = (V,E) as follows. The
choice of an orientation for each edge of the graph
gives rise to a natural complex d : L?(V) — L*(E),
which may be thought of as the |E| x |V| matrix

given by
1 if v = (e, f) for some f €V,
(d)ew)y =93 —1 ifv=(f,e) for some f € V,
0 otherwise.
The combinatorial Laplacian A : L2(V) — L*(V)
is then realized as the |V| x |V| matrix d*d, and it
is a simple matter to show that

Af(v) = deg(v)f(v) = Y Apu f(w),

wevVvV

where A is the adjacency matrix. In particular,
when X is k-regular, which is the only case we
shall consider, we have A = kI — A, where [ is the
identity matrix.

The Cheeger constant h(X) of the graph X is
defined in analogy with the Riemannian case by
setting

|E(A, B

h(X)= inf —————,
)= win(al 18]

where E(A,B) ={e = (v,y) € E:z € A,y € B}
is the set of edges connecting A and B. It is easy

to show that every graph X is an (n,k, h(X)/k)-
expander. Conversely, for an (n,k,c)-expander,
the inequality h(X) > ¢/2 holds.

The connection with the spectrum comes from
a discrete version of Cheeger’s inequality for Rie-
mannian manifolds [Alon 1983]:

B (X)
2k '

M(X) >

where \;(X) is the smallest nonzero eigenvalue of
the Laplacian. A partial converse to this discrete
Cheeger inequality has been proved [Alon and Mil-
man 1985]:

h(X) > 1A (X).

For k-regular graphs, k is the largest eigenvalue
of the adjacency matrix. If we order the eigen-
values p; as k = pp > fhn_1 > --- > i1, we have
A =k—p,_1 and py > —k, with equality precisely
when the graph X is bipartite.

An additional graph-theoretic invariant is related
to the low end of the spectrum [Biggs 1974]. The
vertex chromatic number v(X) is bounded below
as a result of the inequality

k
vir)>1— —.
M1

If we set u = max;, |u;|, graphs with small p rel-
ative to k are not only good expanders, but also
have high chromatic number.

Finally, it is worth mentioning that the second
eigenvalue of the adjacency matrix also bounds the
diameter of the graph, as a result of the inequality
[Chung 1989; Sarnak 1990]

dim(x) < | A2

For more references and a proper discussion of all
these results, see [Bien 1989; Lubotzky; Sarnak
1990].

It is known that certain families of Cayley graphs
for SLa(g) are expanders. In particular, it is shown
in [Lubotzky] that the uniform bound A\ (I'\H) >
% of Selberg’s theorem, where I is a discrete con-
gruence subgroup of SLy(R) acting on the hyper-

bolic plane H, implies that the Cayley graphs

Xp = X(SLa(p), G1)
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form a family of expanders, where G, is the gener-
ating set

s={(6 1) )1 0): (0 0}

The proof effectively transfers the spectral bound
on the manifold to a lower bound on the expansion
coefficient of the graphs. In particular, in the ab-
sence of further information on this coefficient, the
validity of Selberg’s conjecture that A\ (I'\H) > i
would make these graphs more attractive.

The significance of Fourier analysis for the nu-
merical study of the spectrum of a Cayley graph
lies in the following link. If dg is the character-
istic function of the subset S defined on G, the
adjacency matrix for X (G, S) is precisely the Fou-
rier transform of d5 at the regular representation of
G. Consequently, the spectrum of X (G, S) is the
collection of eigenvalues that occur in the Fourier
transforms of dg at a complete set of irreducible
representations of GG. Since the dimension of any
given irreducible representation of G cannot ex-
ceed \G|1/ ?_ the corresponding numerical analysis
is much faster.

For example, in the case G = SLy(p), direct nu-
merical analysis would require that the eigenval-
ues of a single matrix of size p* be found. This
would require O(p?) operations. However, by us-
ing the Fourier transforms, we instead determine
the eigenvalues of p matrices of size p, which re-
quires only O(p-p®) = O(p*) operations. So, while
for primes greater than 10 the full adjacency ma-
trices are already too large to consider, by working
with individual Fourier transforms we can consider
primes on the order of 500.

When S is not simply an arbitrary subset, but
instead a union of conjugacy classes, the analysis
simplifies further. Still assuming S = S~!, one
may show [Diaconis 1988] that the eigenvalues p;
of the adjacency matrix are exactly the average
values of the irreducible characters:

Wi = ! Ztr[)i(s)-

dim p;

Using this correspondence, [Lubotzky] uses charac-
ter tables to tabulate the eigenvalues and expand-
ing properties for SLy(¢) and various unions of con-
jugacy classes. In considering S to be a union of
conjugacy classes, however, one obtains a family of

k(q)-regular graphs X, where k(q) increases with
the size of the graph.

In this paper we are interested in Cayley graphs
for SLy(g) with respect to sets of generators, such
as G;, which are of fixed size and not a union of
conjugacy classes. In this situation the full set of
irreducible representations, and not just the char-
acters, is ostensibly required in order to obtain the
spectrum.

In Section 2 we review briefly the representation
theory of SLy(K). Section 3 details the algorithm
for efficient computation of the Fourier transform
over SLo(K). The explicit constructions of Sec-
tion 3 are then followed by their application to the
investigation of Cayley graphs for SLy(K) in the
next two sections. In Section 4 we discuss imple-
mentation aspects of the experiment, while in Sec-
tion bthe numerical results are presented and ex-
plained. Section 6 contains some closing remarks
and open questions. We postpone the discussion of
Fourier inversion and convolution to an appendix
(Section 7), so as to not interrupt the flow from
theory to application in Sections 4 and 5.

2. REPRESENTATION THEORY FOR SL,

In what follows, K = F, will denote the finite field
of ¢ elements, where ¢ = p" for some prime p #
2. Several important subgroups of SLa(g) must be
distinguished. Let U < SLj(g) be the subgroup of
unipotent matrices:

o {( 1) e n)

Let T < SLy(q) denote the subgroup of diagonal

matrices:
_ a 0 . x
r{(7 9 imexr)

Let B < SLj(q) denote the subgroup of upper tri-
angular matrices:

(G

Note that U is isomorphic to K considered as a
group additively (denoted K*), while T is isomor-
phic to the cyclic group K*. Also, U is normal in
B; in fact, B is the semidirect product of U by T

ul) :aEKX,fu,GK}.
«
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Lastly, set w = (7(1) (1]) Note that w is of order 4

and that
w? — -1 0
- 0o —-1)°

The theory of the representations of SLy(q) is
well known. They fall into two classes, the prin-
cipal series and the discrete series. Discrete se-
ries representations are also sometimes called cus-
pidal. Essentially, the main difference between the
two classes is that for a discrete series represen-
tation p : SLa(q) — GL(V,) there is no U-fixed
vector—that is, no nonzero vector v € V, such that
p(u)v = v for all u € U. If p is a principal series
representation, there is such a vector. Another way
to say this is that an irreducible representation p
of SLy(q) is cuspidal if and only if plU does not
contain the trivial representation. (If p is a repre-
sentation of a group G and H < (G is a subgroup,
we denote by plH the representation of H given
by restriction of p to H.)

The character table of SLy(g) has been known
for a long time [Schur 1907; Jordan 1907]. How-
ever, the discovery of actual realizations of these
representations as group actions on vector spaces
is more recent and is generally attributed to Kloo-
sterman [1946] and Tanaka [1967]. Our synopsis
follows [Naimark and Stern 1980, 150-160].

Construction of the Principal Series Representations

The principal series representations of SLy(g) are
constructed as induced representations. We recall
that if G is a group, H < G is a subgroup, and
7 is a representation of H in a vector space V,,
a representation of G may be obtained as follows:
Let Ind(V;) denote the vector space of functions
f G =V, such that

f(st) =n(s)f(#) (2.1)

for all s € H. There is a representation of G on
Ind(V,) by right translation,

(p(9))(t) = f(tg)-

This is called the representation of G induced from
H by n, and is denoted as n1G. Note that the di-
mension of the induced representation is [G:H|d,,
where d,, is the dimension of V,.

The principal series representations are obtained
by inducing characters from B to SLa(g). More
precisely, the irreducible representations of T are

all one-dimensional, given by characters. If « is a
generator for K*, the characters are defined by

2mijk
qg—1)’

where j takes all values between 0 and ¢ — 2. It
is easy to check that any ; extends to a one-
dimensional representation (or character) of B, de-
noted 1/;j, by

151((5 ku1)> = 1;(k).

Recall that, if A is any abelian group, the set of
characters of A is a group isomorphic to A, called
the dual group to A and denoted by A. In the case
of K*, two characters are to be singled out: the
trivial character that maps every element to 1 (1),
in the notation above), and the sgn character, the
unique nontrivial square root of the trivial charac-
ter (sgn = 9(4_1y/2). The trivial character is often
denoted simply as 1.

Let p, denote ot SLs(q), where 1) is any charac-
ter of K*.

Theorem 2.1. Let 11,1 be characters of K*.

(i) Suppose that ¢? # 1, fori = 1,2. Then py, is
irreducible (of dimension q + 1). Furthermore,
Py, and py, are equivalent if and only if 1y = 1)o
or Pt = .

(ii) Let 1 = sgn. Then py, is equivalent to the
direct sum of two inequivalent irreducible repre-
sentations, each of degree %(q +1).

(iii) py is equivalent to the direct sum of the trivial
representation of SLa(q) and an irreducible q-
dimensional representation of SL2(q).

b;(a*) = exp

These are all the principal series representations.

The explicit construction of the matrix repre-
sentations is treated more carefully in Section 3, in
considering the computation of Fourier transforms
at these representations.

Construction of the Discrete Series Representations

The discrete series representations may be realized
in several ways. The method given here is a com-
bination of ideas due to Silberger and Piatetski-
Shapiro.

One way of constructing the discrete series rep-
resentations for SLy(q) is to first construct the dis-
crete-series representations for GLy(g), and then
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take advantage of the fact that the restrictions
of these representations to SL,(q) are mostly ir-
reducible. It is then only necessary to pick out a
subset of these whose restrictions are inequivalent
[Silberger 1969].

The following construction of the discrete series
for GLy(q) follows [Piatetski-Shapiro 1983].

Let L denote the unique quadratic extension of
K. (Being a finite field, K has a unique quadratic
extension, given by adjoining the square root of any
nonsquare in K. For example, one can adjoin the
square root of any generator of the cyclic group
K*.) The Galois group of L/K consists of two
elements, the identity map and the Frobenius map,
in this case given by raising any given element to
the g-th power. Recall that the norm map N : L —
K, given by

N(a) = ™,

is surjective onto K *. The subset C C L* consist-
ing of elements of norm 1 is a cyclic subgroup of L*
of order g+ 1. Call a character of L* decomposable
if its restriction to C' is trivial, that is, if ¢(c) = 1
for all ¢ € C. Otherwise, call it nondecomposable.
To say it another way, consider the group homo-
morphism R : L* = C given by restriction,

for all ¢ € C. Then R is surjective and its kernel
equals the set of decomposable characters. Thus,
the fiber over each character of C' has order ¢ — 1;
in particular, there are ¢ — 1 decomposable char-
acters, and hence ¢ — ¢ nondecomposable charac-
ters. In fact, the decomposable characters may be
constructed directly by composing any character of
K* with the norm map.

There is a natural correspondence between non-
decomposable characters of L* and discrete series
representations of GLy(¢). If v is a nondecompos-
able character of L*, let p, denote the correspond-
ing discrete series representation of GLy(q), which
we now construct.

Using the Bruhat decomposition of GLj(g),

GLy(q) = DUwU 11 DU,

where U is as above and

={(s 8) w1

it is enough to define the representation on U, D
and the matrix w, and then to check certain com-
patibility conditions.

To define the representation, fix some nontrivial
character x of K, as follows: if ¢ = p, set x(j) =
e?™/P; otherwise, set x(j) = €*"()/P where tr
denotes the trace map from K to F,, the finite
field of p elements.

Any discrete series representation of GLy(q) can
be realized as a group action of GLy(g) on the vec-
tor space V,, of complex-valued functions on K*.
Let f : K* — C be any function in V, . Set-
ting t, = ([1) 71') and d,, = (g 2), and recalling that
w = (72(1]), define

(o, (t) f)(z) = x
(pu(dn,h)f)(ﬂf) =V

(po(w) f)(2) =

where

X(t + 7)(t)

| =

N(t)==

and the sum here is over t € L*. Note that t+¢7 is
just the trace of ¢t from L to K, and therefore lies
in K.

Now extend the map to all of GLs(q) by mul-
tiplication; that is, define p,(g), for g € GLy(q),
by expressing g as a product of matrices t,, d,;
and w, which is always possible. It can be shown
[Piatetski-Shapiro 1983, 38—40] that p,(g) does not
depend on the choice of decomposition for g, so the
definition makes sense.

Theorem 2.2. The representation p, of GLy(q) is ir-
reducible. For nondecomposable characters v and
V', the representations p, and p, are equivalent
if and only if either v = V' or v is equal to the
composition of V' with the nontrivial element of
Gal(L/K) (that is, if v(a) = V'(a9) for all « € L).
These are all of the discrete series representations

of GLa(q).

The relation to the discrete series representa-
tions of SLy(q) is as follows.

Theorem 2.3. Let p, be the discrete series repre-
sentation of GLa(q) defined above and let the same
notation denote its restriction to SLy(q).
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(i) v and V' have the same restriction to C if and
only if p, and p, are equivalent.

(i) If v? is not the identity on C, then p, is an
irreducible representation of SLay(K).

(iii) Suppose v is nondecomposable and v* is triv-
tal on C. Then p, is equivalent to the direct
sum of two inequivalent irreducible representa-
tions of degree 1(q — 1).

2

This constructs all the discrete series representa-

tions of SLa(q).

Thus, a complete set of discrete series represen-
tations for SLy(¢) may be given by choosing a set of
coset representatives for E: / C , constructing the as-
sociated discrete series representations for GLy(K)
(except at the identity coset), and then decompos-
ing the discrete series representation corresponding
to the nondecomposable character whose square is
trivial on C.

3. COMPUTATION OF FOURIER ANALYSIS

In this section we give algorithms for performing
Fourier analysis on SLy(¢). The naive upper bound
q° for both T'(q) and I(q) is reduced to O(g*logq),
where the implied constant is universal and de-
pends only on the complexity of the classical FFT
(fast Fourier transform) for abelian groups.

Theorem 3.1. [Baum et al. 1991, Theorem 3] Let A
be any finite abelian group. Then

T(A) = I(A) < 8|A]log|A].

In both cases—Fourier transforms and Fourier
inversion—the computation may be split into two
parts, one taking place at the principal series and
one taking place at the discrete series (compare the
two subsections of Section 3).

The algorithms involve finding computationally
tractable bases for the representations. Along the
way, explicit formulas for matrices representing the
elements ((1) 1) and (7? (1)) are given. This will per-
mit some explicit calculations to be done for inves-
tigation of the spectrum of certain Cayley graphs
on SLy(q) (see Section 4).

Fourier Analysis at the Principal Series

As explained in Section 2, the principal series rep-
resentations are essentially constructed as induced
representations from the subgroup B. They oc-
cur as (i) £(g — 1) representations of degree ¢ + 1;

(ii) two representations of degree 1(¢+1) and (iii)
one representation of degree q. Thus, direct com-
putation of the Fourier transforms at all of these
representations takes

(@°—a)(3(¢-)(a+1)*+2(5(¢+1))*+¢*) = O(¢°)

operations. In this section we show that in fact
this may be reduced to O(q*logq).

The key to the savings is the recognition that
the “standard” basis for an induced representation
proves to be computationally useful in this case.
Essentially, the computation may be reduced to
a computation of Fourier transforms on the sub-
group T (of diagonal matrices) where abelian FFT
methods may be used.

In actuality, what we consider is the computa-
tion of all Fourier transforms f(pw), for ¢ € K*.
These are reducible only when ¢ = 1 or ¢ = sgn.
In both of these cases, p, is in fact multiplicity-
free, and the change of basis to bring f(,o) into the
appropriate block diagonal form requires at most
2(q + 1)* operations (two matrix multiplications).
This does not change the order of the result.

Using the notation of Section 2, recall that the
principal series representations are the induced rep-
resentations

py : SLa(q) — GL(Ind(Vy)),

where Ind(Vy) is the vector space of functions f :
SLs(q) — C satisfying f(bs) = 1(b)f(s) for all
b € B and s € SLy(q). Furthermore, SLy(¢) acts
on this space by right translation,

(pu(s)f) (") = f(s's).

To obtain a matrix realization of this represen-
tation, a choice of basis must be made for Ind(V},).
By (2.1), any function in Ind(V,) is determined
by its values on a set of coset representatives for
B\ SLy(q). Fix the coset representatives

(0 1 (10
<oy Su = ~1 —u 3 ey Soo & 0 1)/°

where u varies over F,. The notation comes from
the natural correspondence between B\ SL,(¢) and
the projective line over F,. Thus, let e,, for u €
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F, U {oo}, denote the corresponding element of
Ind(V}) defined by e, (s,) = d,(v), where

1 fu=w,
bu(v) = { '
() 0 otherwise.

We give the basis the order
€02, €y e Cra=3, €0y €43, ..., €0, Eooy

where « is a fixed generator of K* (in particular,
a is not a square in K*).

Consider first the action of U on the {e,}. In
general, to simplify the notation, we will sometimes
write se, instead of py(s)e,, where s € SLa(q).
A straightforward matrix computation using (2.1)

shows that

1 a o

0 1) %
and

1 a -

0 1 eu eU7a
for u # oo.

At this point it is important to note the following
fact:

Lemma 3.2. With respect to the ordered basis {e,}
for Ind(Vy,), the matrices py(a) for a € U are of
the form

0

where A(u) is a ¢ X g permutation matriz, that is,
a matrix having one 1 in each row and column,
and 0’s everywhere else. Furthermore, as u varies
over K, the entries in A(u) occur in distinct posi-
tions, that is, ) . A(u) is the g X ¢ matriz with
1’s everywhere. Lastly, the matrices py(u) are in-
dependent of 1.

Now consider the action of T" on this basis. Once
more, a straightforward matrix computation shows

that
(5 o) e = vaen

and

Lemma 3.3. With respect to the ordered basis {e,}
for Ind(Vy,), the matrices p,(a?) are of the form

A 0 0
w(a ) 0 c(qgl)j o o |,

0 0 10

0 0 0 p(a¥)

where, for n a positive integer, C(n) is the n x n
cyclic matriz

00 0 0 1
1 00 0 0
Ctn)=10 1 0 0 0
000 -~ 10

Lastly, one can show that we,, = ¥(—1)eq, wey =
e and we, = (u)e_,-1 for u # 0, co.

To summarize, we have obtained explicit realiza-
tions of the principal series representations for the

group elements (1), (; o), wand w'.

Theorem 3.4. For f € L*(SLa(q)), all Fourier trans-
forms f(p) at a complete set of principal series rep-
resentations p of SLa(q) can be computed in at most

8¢*logq +2¢" +¢* — ¢* = O(¢" logq)
operations.

Proof. The Bruhat decomposition for SLy(q) gives
a decomposition of the computation of f(p,) as

> F($)puls)

s€SLa(q)

=D > D fBwu)py(u)py(Buwu)

u€EK BeK X u' €K

=33 N (foul)pu ) py(Buw),

ueK BeK* u'€K

flpy) =

where f5, € L(K) is defined by

fou(u') = f(u'Bwu).

Here we make the identifications

1 wu
uEK(—)(O 1>

x g0
geK <—>(0 Bl).
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By Lemma 3.2 the p,(u) are permutation ma-
trices whose form is independent of . We obtain
the following consequence:

Lemma 3.5. Let all notation be as above. To com-
pute the matrices {fﬁﬁu/(pwiU)} for all B € K*,
v € K and all p € K*, at most ¢* — ¢* additions
and no multiplications are needed.

Proof. Using the notation of Lemma 3.2 we write

0
n / A
FoulpsdU) =Y fau() (W) 0
u'eK
0 0 1
0
_ fo.u(A) :
0 b
0 . 0 Ssa
where Sg., = > cx fou(u'). By Lemma 3.2, the

entries of the upper block fﬁ’u(A) are just the val-
ues fz.,(u'), each value appearing exactly once in
each row and column. Hence the only computa-
tions done are the ¢ additions to form Ss.,. Re-
peated for each 8 € K* and u € K, this gives at
most ¢ - q- (¢ — 1) additions. O

We return to the computation of f(pqp). Since,
by Lemma 3.2, the restricted transforms

A

fa.u(pydU)

(in the basis of choice) are independent of v, we
denote this matrix as ©,,. Then we write

Fps) = 330, ups(a oy (w)ps (u).

ueK j=0

Thus, we now consider the computation of the in-
ner sum

q—1
> 0upu(a)
Jj=0

for all ¢ € K. By Lemma 3.3 we rewrite this as

C(u)j 0O 0 o0

2
g—1 ;
_ qg—1\J
2 V)0 0 C( 2 ) 0
J=0 0 0 1 0
0 0 0 ¥(a?)

No multiplications are needed to compute the
matrix product M - C(n) for any r x n matrix
M. Thus, at most ¢?> multiplications are needed
to rewrite (3.1) as

9— , .
] 085 prc(t)
=0 * * *
* * k k

where the asterisks denote arbitrary complex ma-
trices of the appropriate dimension. Note that the
submatrix

—1\7 —1\J
w13 5c(ty)
- Jo 2 1 2
Uy = g—1\J qg—1\/
CJ‘“C< 2 ) Dj*“0< 2 )
is again independent of ).
If we form the matrix I", (1)) with entries I':* (1),
where I'"* (o) is the (i, k)-entry of I'; ,,, we can now
write

Flow) = <F“iw) :) py(w)py ().

ueK

For each i, k and u, it takes at most 8qlogq op-
erations to compute I':*(¢) for all ¢y € K*, using
the abelian FFT. Thus, a total of at most 8¢*logq
operations are needed.

Finally, since p, has only one nonzero entry in
each row and column, the matrix product IAju(w)
takes at most ¢? operations to compute. Thus, to
do this for all 1 and u, at most another ¢* — ¢3
operations are needed. Finally, since the matrices
py(u) are permutation matrices, no multiplications
are needed in the end. Collecting all terms, we find
that at most

8¢*logg+q* +q¢* —*+¢*+¢* — ¢
=8q¢"logq+2¢" +¢* — ¢’

= O(q*logq)

operations are needed to compute all Fourier trans-
forms at the principal series representations. This
concludes the proof of Theorem 3.4. O

Fourier Analysis at the Discrete Series

We now turn to the computation at the discrete se-
ries representations. As discussed in Section 2, we
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follow [Silberger 1969] in constructing these rep-
resentations as restrictions of discrete series rep-
resentations of GLy(K'), which can be constructed
explicitly [Piatetski-Shapiro 1983].

More precisely (see Section 2), there is a corre-
spondence between discrete series representations
for GLy(K) and nondecomposable characters of
the unique quadratic extension L of K. We recall
that C C L* denotes the set of elements of norm
1 in this extension. If 7 is any nondecomposable
character of L™, we denote by p, the correspond-
ing discrete series representation on V., the vector
space of complex-valued functions on K*. The ac-
tion of SLy(q) by p. is as indicated in (2.2)—(2.4).

There are many “natural” choices of basis for
V.. From a computational point of view, and par-
ticularly from the point of view of investigating
expander properties, an especially simple choice of
basis is that of the delta functions e,, for V., defined
by e.(y) = d,,. We assume some fixed ordering
of the e,, say ..., eqi,..., where o generates K *.
Then, using (2.2), we obtain

p=((£9))(ex) = x(bz)es.

This gives a matrix realization as

p=((51)) =

Xz (D) ;
0 :

where x,(b) = x(zb) for all z € K* and (,7) € U.
In the same way, (2.3) yields

p=((§o20))ew = m(a ey 2,
and (2.4) gives
pr((00))eay) =D m(2) " jnlzy)ea(2)
=7 (z) ' jx(zy)e,.

Thus, p.(w) is a circulant matrix, with (z,y)-
entry equal to j,(xzy) times a diagonal matrix:

pr((V0)) = U@y

Theorem 3.6. For any f € L*(SLy(K)), the Fourier
transforms f(p) at all discrete series representa-
tions p of SLy(K) can be computed in

8logq(q" +4¢°+2¢°) +3¢" +¢°(¢—1)* = O(q" log q)
operations.

Proof. As before, we identify v € K with (é “1’) and

B € K* with (g ﬁol)_ As in the previous subsec-
tion, we fix a generator a of K* and a nontrivial
additive character y of K+, and use the Bruhat
decomposition to write

fior=">_ fla)elg)
9€SL2(q)
= Z Z Z [ (' twu) p(u'twu) + Z F(b)p(b).
weU teT u' €U beB

(3.2)
Thus the sum naturally breaks into two parts, one
over B and one over BwU. Consider first the sum
over BwU.
Forany w € U and t € T, let f,, be the function
in L*(U) defined by f,(u') = f(u'twu). Then the
sum over BwU equals ) ., >, .+ Q(u,t), where

Qu,t) = (Z fu,t<u'>p<u'>)p(t)p(w)p(u)

u'elU
. 0
=S| ) | ) p(w)p(u)
u' el 0
A 0
= fu,t(Xm) p(t)p(w)p(u)
0 .

For any fixed v € U and t € T, the Fourier trans-

forms f,,(x.) for all z € K* can be computed in

at most 8¢log ¢ operations using the abelian FFT.

Thus, at most 8¢®logq operations are needed to

compute all the inner diagonal matrices, which are

independent of the discrete series representation p.
Let F(u,t) denote the diagonal matrix

A 0
fu,t(Xz)
0

Proceeding directly, note that the matrices p(t)
are generalized permutation matrices, that is, each
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row and column contains exactly one nonzero en-
try, so that for any fixed p, the matrix products
F(u,t)p(t) can be computed in g — 1 operations for
any t € T, adding up to ¢(q— 1)? operations for all
t € T and u € U. Thus, the inner sums

M,(p) = F(u,t)p(t)

teT

for all discrete series representations p can be com-
puted in at most ¢*(¢ — 1)* + 8¢*log q operations.

Next we must compute M/ (p) = M,(p)p(w).
Because p(w) is a circulant matrix, any (¢ — 1) X
(¢—1) matrix can be multiplied by p(w) in at most
8¢*log q operations (again by abelian FFT meth-
ods). Letting p vary over all discrete series repre-
sentations and u vary over U, we conclude that all
the products M/ (p) can be computed in at most
8q*log q operations.

Finally, we must sum ) _.. M (p)p(u). Again,
the matrices p(u) are diagonal. Thus, for any fixed
p, the sum requires at most ¢® operations. For all
p, we need at most ¢* operations.

We now turn to the second term in (3.2),

> F(O)pb).

beB

Since B is a metabelian group, all Fourier trans-
forms of any function in L?(B) may be computed
in at most 16¢%log g operations [Baum et al. 1991,
Theorem 4]. Any necessary change of basis re-
quires at most 2¢® operations. Thus, over all p, at
most 2¢* additional operations need be performed.
Collecting terms yields at most

8¢” log g+8¢* log g+¢°(q—1)*+¢*+16¢> log g+ 2¢*

operations, and we obtain the upper bound in the
statement of the theorem. O

Adding together the bounds in Theorems 3.4
and 3.6 and using simple inequalities to eliminate
terms of lower order in ¢, we get the following re-
sult:

Theorem 3.7. If q is a power of an odd prime, the
number T(q) of operations needed to compute a
Fourier transform of a function f € L*(SL(q)) is
at most 25¢*logq.

4. IMPLEMENTING THE COMPUTATION

As explained in Section 1, explicit matrix repre-
sentations can be used to investigate the spectra of
Cayley graphs. In this section we detail two types
of experiments that we carried out. We grate-
fully acknowledge the help and suggestions of A.
Lubotzky and P. Sarnak regarding these investiga-
tions.

Asymptotics of spectra of families of Cayley graphs on
SLa(p). In these experiments we consider Cayley
graphs on fixed sets of generators (whose elements
may vary with p, but whose size does not) and then
consider the spectra as p gets large. We compute
spectra for the following three sets of generators.

1 ={(61): (5 1) ww™'},
G ={( V). (3 ) ww Y,

Ga={w(i)),( 1 Dw Lwwl}

Of interest is the behavior of the second-largest
eigenvalue, multiplicities of the eigenvalues and the
range of eigenvalues.

Expanding properties of randomly chosen pairs of gener-
ators. Here the goal is to gain insight into the “ex-
panding behavior” (that is, the second-largest ei-
genvalue) of a generic pair of generators of SLy(p).
It is known [Kantor and Lubotzky 1990] that al-
most every pair of elements generates SLy(p), but
little is known of the expanding behavior for dif-
ferent pairs of generators. The idea, then, is to
compute Fourier transforms for all pairs of gener-
ators for some small range of primes, and to com-
pare second-largest eigenvalues for the associated
Cayley graphs.

In practice, computing full spectra for all gener-
ating pairs is too large a computational task (see
the discussion following Lemma 4.7). Thus, we
limit ourselves to computing spectra for some siz-
able set of random generating pairs over a larger
range of primes.

Both experiments have associated implementa-
tion issues. We treat general issues first and then
explain the two computations separately. Note
that, while we are only interested in the case of
SLy(K) for K a prime field, it is straightforward to
extend these methods to arbitrary finite fields, us-
ing algorithms such as those described in [Lenstra
and Lenstra 1990].
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In this section, p will denote an odd prime and
K =F, the field with p elements.

Working in the Base Field

Section 2 shows that the representations of SLy(p)
essentially occur as p representations of size p. As
a matter of practicality, then, we must limit our-
selves to primes on the order of 500 if the eigen-
values are to be computed at the complete set of
irreducible representations. For such small primes
efficiency is not of the essence in working with the
underlying fields.

The two basic operations necessary for our pur-
poses are inversion in F* and modular exponentia-
tion in F,,. The former is carried out with the help
of the Fuclidean algorithm, and the latter by the
method of repeated squares. For completeness, we
record here the easily derived complexity of these
well-known algorithms.

Proposition4.1. Let 1 < a,b <p—1andn € Z. The
Euclidean algorithm computes ged(a,b) in time

O(log® max(a, b)).

The method of repeated squares computes a™ € F,,
in time O(lognlog” p).

Given these basic operations, one may efficiently
calculate Legendre symbols and find generators of
the cyclic group F . In particular, since we are
working with relatively small primes, we may af-
ford ourselves the luxury of finding the smallest
generator of the field. Alternatively, a randomized
algorithm may be used.

Working in the Quadratic Extension

As described in Section 2, the discrete series rep-
resentations require calculations in the quadratic
extension L of the base field. To prepare for com-
putations here, the first task is to find a generator
of the cyclic group L*. For concreteness, we con-
struct L = K (y/€), where ¢ is the smallest genera-
tor of K* (as a positive integer). With L realized
as a two-dimensional vector space over K in the
canonical way, exponentiation in L is again carried
out by the method of repeated squares, with the
same complexity estimate as for the base field.
For j € K*, let C(j) be the circle of radius j
in L, that is, the set of elements of L of norm
j- The unit circle C(1) is easily constructed, as
it is parametrized by K U {oo}. The elements

zi = (z,y:) € C(1) are given by z,, =
and

(_170)

z, = (1+et?)(1—et?) !,
y =2t (1 —et®)™!

for t € K. The circle C(e) of radius ¢ is then ob-
tained by simply multiplying by the vector (0, 1),
and a generator of L™ may be obtained by a ran-
domized algorithm on this circle. Furthermore,
since L* is of order p*> — 1 and each z € C(e)
satisfies N(z) = e, checking whether or not z is
a generator requires calculating at most the first
p — 1 powers of z in L*. We thus have the follow-
ing estimate:

Proposition 4.2. A generator for L™ can be found
in randomized time O(p). More precisely, a gen-
erator can be obtained with probability 1 — o™ in
time O(np), where « is the distribution of non-
generators on the circle C(e) C L*.

However, note that since C(¢) is of order p + 1,
the efficiency of this procedure is not at all crucial
for our purposes, and we may in fact allow our-
selves to find the generator of smallest “Euclidean
norm”

‘Zt|2 =| (l‘t;yt)|2 = 5512 +yt2'
In any case, it is desirable to be able to compute a
canonical choice of generator, since the multiplica-

tive characters used in the representations depend
on this choice.

Checking the Computations

In any implementation, it is desirable to use rep-
resentation-theoretic identities to check the cor-
rectness of the representations obtained. Simple
identities that can be used for this purpose are

plw)p(w™) =1, p((51)) = p((; 1)) = I and

P((61))e((o 7)) = 1.

The most important check, however, is a direct
consequence of Schur’s lemma:

Proposition 4.3. The matriz identity
DX pp(wp(w)p(u) +> > p(t)p(u) =0
teT uelU v el teT uelU

holds, where p(t) may be calculated in terms of G,
as

pw)p (57 1))p@)p' (5 71))plw e ((571))
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and in terms of G, as

plw)p? " ((L#=D72))
x p()p” (77 )) pw™)p* ((,)77)).

Furthermore, the complexity of this calculation is
of order O(p3**t®), where a is the exponent of the
complezity bound for matriz multiplication.

Proof. The identity follows directly from the Bruhat
decomposition

SLy(p) = TUwU U TU,

together with Schur’s lemma, which implies that

> plg)=0

g€SLa(p)

whenever p is irreducible and unitary. To compute
the torus 7" in terms of §;, simply observe the ma-
trix identity

(5.2) =G5 D@ e (577 O

Computing Random Generating Pairs

We now present an efficient method for deciding
whether two given elements z,y € SLy(p) form a
generating pair, that is, whether {x,y} generates
SLa(p). The main idea is to use the classification of
subgroups of PSLy(p) = SLa(p)/{£I}, and the fact
that (for p > 3) H < SLy(p) is a proper subgroup if
and only if 7(H) < PSLy(p) is a proper subgroup,
where 7 : SLy(p) — PSLy(p) is the usual projection
map.

Given z,y € SLy(p), then, the strategy is to test
whether their images 7 (z) and 7(y) generate one of
the possible types of proper subgroups; as we will
see, doing this is relatively straightforward. If 7 (z)
and 7(y) do not generate a subgroup, they generate
all of PSLy(p), so z and y comprise a generating
pair.

The following theorem is found in [Suzuki 1982]
and usually attributed to [Dickson 1958].

Theorem 4.4. The following are all possible proper
subgroups of PSLy(p):

(a) Abelian subgroups.

(b) Dihedral groups of order 2n, where n divides
s(p+1) or 3(p—1).

(¢) The alternating group Aj.

(d) Noncommutative subgroups of the image of the
upper triangular subgroup, and its conjugates.

(e) The symmetric group S4, if p> =1 (mod 16).
(f) The alternating group As, if either p =5 in
which case PSLy(5) = A5 or p> =1 (mod 5).

Our algorithm tests for cases (a) (f) in that or-
der. The specific tests are given below. In this
analysis the symbol = means equality in PSLy(p)
(that is, equality between images under 7).

Test for (a). Check if zy = yx.

Test for (b). If z and y generate a dihedral group
of order 2n, there are only two possibilities: either
22 = y" = 1and ayzx = y ' or 22 = y2 = 1
and (zy)" = 1. (Also, the roles of z and y can be
reversed.) Since every element has finite order, the

test can be reduced to checking if

1. 22 =1and zyz =y ', or

2. 2t =y? =1.

Note that inversion in SLy(p) is very quick: the in-
verse of (: ?) is simply (jy 72) Therefore, testing
for the conditions above is very efficient.

Test for (c). Testing whether = and y gener-
ate A, is much like the previous case, in the sense
that it is a question of trying out all possible two-
generator presentations for the group. Here the
presentation must be either z? = y* = (zy)* = 1
or * = y® = (zy)? = 1. The first case corresponds
to the generators (12)(34) and (123), and the sec-
ond to (123) and (234).

Test for (d). A subgroup of the upper triangu-
lar group fixes the point at infinity of the projec-
tive line P'(F,) = F, U {co}, where the action of
PSLs(p) on P*(F,) is by fractional linear transfor-
mations:

a f _aw+
(7 5>(w)_ w3

Any conjugate of the upper triangular group fixes
some other point of P'(F,). Consequently, this
test can be reduced to checking whether xz and y
have any fixed points in common.

Clearly, oo is a fixed point of  and y if and only
if both matrices are upper triangular. Checking
for other points requires a bit more work. A point
w # oo is fixed by ( ?) if and only if

a
0l

Y+ w(§ —a)— B =0.
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Therefore the check amounts to determining if two
quadratic polynomials over F, share any roots over
F,.
Tests for (e) and (f). These tests have to be
performed only when the corresponding divisibility
conditions (see Theorem 4.4) are satisfied. One
way to go about them is to list all possible two-
generator presentations of Sy or As and to check
for each one of them explicitly.

We chose a different approach, since our goal was
to compute (for each prime) the spectrum for each
of 25 pairs of generators chosen at random (Fig-
ure 8). The results of [Kantor and Lubotzky 1990]
imply that the occurrence of S4 or A5 as the sub-
group generated by two random elements of SLy(p)
is rare. For this reason, our implementation alto-
gether ignored cases (e) and (f) of Theorem 4.4,
and relied instead on the fact that, if  and y gener-
ate a proper subgroup, the eigenvalue 1 will appear
in the spectrum with multiplicity equal to the in-
dex of the subgroup in SLy(p), and this index will
be much greater than one. Therefore, it is more
efficient to first compute the spectrum whenever a
pair {z,y} fails tests (a) (d), and then weed out
those pairs that do not generate the whole group,
as detected by the high multiplicity of the eigen-
value 1.

Representations at a Random Generating Pair

Using the Bruhat decomposition
SLy(p) =TUwU U TU,

we may distinguish the upper-triangular compo-
nent, parametrized as g,, € TU, for a € F;
and v € F,,, and its complement, parametrized as
Joauw € TUWU, for a € F), u € F) and v € F,.

Thus, to generate a random element of SLy(p),
we may first determine which component of the
group it should belong to, by generating a random
integer 1 < r < p(p? — 1) and checking whether
r < p(p — 1) (in which case the element will be
upper triangular) or not. In either case, we need
a random « € F and a random v € F,. In the
more probable event that we are constructing an
element of TUwU, we also need a random v € F,,.
We then form

gou = (5a2) (o1) € TU

or

Jouw = (5001) (61) (L10) (57) € TUW,

as appropriate.

Rather than multiply the matrices for the rep-
resentations evaluated at each of the factors in the
above expressions, it is more efficient to calculate
the representations directly.

For the principal series representations, we find

P (Goru)€oc = (@) €cc,
Po(Ga)es = (@) eaz(o ),
Po(Gou)es = P(a e,
Po(Ga) e = Y(Q)ea—204u,
and
o (Gorsun) e = Y(—a e a2,
Y(a)eq ife —v=0,
Pv(Gouv)ea = { Y™z = v))e—az((o—v)-14u)
ite —wv#0,
6 (Ga)oc = P(a ey,
h(—a)en if a2z +u=0,
Py (G s = { P(—a(a 2z +u))e (0 200u) 1
if a %z +u #0.

Similarly, we find for the discrete series
(o )x(uz)eq =,
(a)x(—ua’z)eqsz,,
and

(az) 'x(vr + uay)jr (azy),
(—az) tx(—vy — ua’z)j(oPry).

pr(Jaupw)ea(y) =

-1

’/T
p‘ﬂ'(g(y,um)em(y) T

5. DISCUSSION OF NUMERICAL RESULTS

In this section we present the results of several
numerical investigations of the spectra of Cayley
graphs for SLy(p). In particular, we present data
on the spectra of Cayley graphs associated with
generator sets §; and G, exhibiting the behavior
of the second-largest eigenvalue of the principal se-
ries representations, and of the largest eigenvalue
of the discrete series representations. As discussed
in Section 1, these eigenvalues are related to the ex-
pansion coefficient of the graph. We also present
figures exhibiting the full spectrum of these and
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other Cayley graphs. Finally, we discuss the ex-
panding properties of randomly chosen generating
pairs.

Second-Largest Eigenvalues

As mentioned in Section 4, we work with the gen-
erating sets

G ={(51): (5 1)sw w™},
Gy = { (L D/2) (1 =D/2) yy p1),
5 = {w (1), (1w w w1},

To obtain a sense of the structure of the associated
Cayley graphs, notice that w has order 4, while
(é }) has order p and w(é }) has order 3. Thus,
the Cayley graph of SL,(Fj5) with respect to G;
has cycles of order 4, 5 and 6. A fragment of this

graph is shown in Figure 1.

FIGURE1. Fragment of Cayley graph for SLy(F'5)
with generators G .

If we project the 4-cycles onto lines, we obtain
precisely the Cayley graph for PSL,(F5) with re-
spect to the projected set of generators, since w is
its own inverse in this quotient group. Unlike its
covering graph, the convex hull of this graph, em-
bedded in Euclidean three-space, can be seen as a
regular polytope, as shown in Figure 2.

A fragment of the universal covering graph of
PSL,(F,) with generators G; is shown in Figure 3.

Applying the theory presented in Sections 1, 2
and 3, we computed the spectra of these Cayley
graphs by constructing the principal and discrete
series representations and by computing the eigen-
values of the resulting matrices. More specifically,
for a generating set G = {g1,92,9; ', 95 '}, we com-
puted the eigenvalues of the matrices

~

d5(p) = plg1) + plg2) + plg1) " + p(g2) "

FIGURE 2. Cayley graph of PSLy(F5) with re-
spect to the generator set Gj.

FIGURE 3. Fragment of covering Cayley graph for
PSLs with generators Gs.

as p varied over the complete set of discrete and
principal series representations.

In Figure 4 we plot, as a function of the prime p,
the second-largest eigenvalue among the principal
series representations (recall that the largest eigen-
value is 4, coming from the identity character). We
also plot the largest discrete series eigenvalue. The
computations were carried out for all 93 primes
between 5 and 500. It is notable that for primes
larger than 100 the eigenvalues stabilize quickly to
a value around 0.982, where the eigenvalues have
been normalized by the degree of the graph.

Figure 5 shows the corresponding eigenvalues for
the generating set G,. Here the eigenvalues give
the appearance of stabilizing slightly more slowly,
around a somewhat smaller value of approximately
0.972.

Finally, Figure 6 shows the second-largest eigen-
value overall for each of the generating sets G, and
G,. It is this eigenvalue that is related to the expan-
sion coefficient through the isoperimetric inequali-
ties referred to in the Introduction.
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FIGURE 4. Principal and discrete series eigenval-

ues for generators Gj.

1
0.98
0.96
0.94 | ||
C‘ — principal series
| — discrete series
0.92 “‘J
0 100 200 300 400 500
FIGURE 5. Principal and discrete series eigenval-

ues for generators Gs.

1
0.98
0.96
0.94
— generator set G
—— generator set Ga
0.92 + |
0 100 200 300 400 500
FIGURE 6. Second-highest eigenvalue for genera-

tors G; and G,.

The Full Spectrum

The next series of figures displays the full spectrum
for the generator sets G;, §o and G3. The top left
panel in Figure 7 shows the principal series spec-
trum for G; for each of the 28 primes between 5
and 113. In fact, the computations were carried
out for primes up to 251; however, at the resolu-
tion of these graphs, the spectrum becomes “con-
tinuous” outside of the exceptional neighborhood
of zero that contains the isolated eigenvalues. In
short, the spectra all resemble that for prime 113,
the largest shown on this graph. Again the eigen-
values are normalized by the degree of the Cay-
ley graph. The “exceptional eigenvalues” that fall,
approximately, into the interval (—0.30, 0.30) are
associated with the principal series representations
induced from characters 1) satisfying ¢(—1) = —1.
The Fourier transforms of the characteristic func-
tion of the generating set evaluated at these repre-
sentations do not depend on the group element w,
since here we have

(o)) +o((o 1)) +o((50)) +2(( 7))
=2((51)) +2((5 1))

Since p(w) depends on 1 but p(é }) does not, the
eigenvalues in this interval appear with multiplic-
ity order p. Since the total mass of the spectrum
is of order O(p?), taken with respect to the count-
ing measure, there is no asymptotic contribution
from these eigenvalues. In other words, the spec-
tral measure of the universal covering graph will
contain a spectral gap in the approximate interval
(—0.30, 0.30).

The top right panel in Figure 7 shows the spec-
tra for the discrete series representations associ-
ated with the generating set G;. Here the iso-
lated eigenvalues appearing in a neighborhood of 0
are associated with discrete series representations
built from nondecomposable characters v such that
v(—1) = —1. It is notable that the spectra resem-
ble their principal series counterparts very closely,
excepting the isolated eigenvalue at 1.

The middle row in Figure 7 shows the corre-
sponding spectra for the generating set §,. Here
again the exceptional eigenvalues in the approxi-
mate interval (—0.10,0.10) are due to representa-
tions associated with characters that take the value
—1 at —1.
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Principal series (left) and discrete series (right) spectra for the Cayley graph of SLy(F,), with

respect to the generator sets G1 (top), G2 (middle) and G3 (bottom).
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The bottom row displays the spectra for the gen-
erating set G3. Note that these spectra, unlike the
ones shown in the top and middle rows, have only
two isolated eigenvalues, at 1 and —3 (unnormal-
ized), excepting the common eigenvalue of 4, which
results from the principal series representation in-
duced from the identity.

Random Generators

Figure 8 is a scatter-plot of the second-highest ei-
genvalue of Cayley graphs associated with random
generating pairs, as described in the previous sec-
tion. The data is shown here for the 36 primes
between 30 and 200, with 25 random pairs gener-
ated for each prime.

200 ot c- kS

150

100

50

086 088 0.9 0.92

FIGURE 8. Second-highest eigenvalue for random
generating pairs.

0.94 0.96

There is a clear accumulation of eigenvalues in
the approximate interval from 0.868 to 0.888. This
indicates that a random Cayley graph for SLy(p)
is a significantly better expander than those Cay-
ley graphs associated with the “natural” genera-
tors considered before. It also suggests that a ran-
dom 4-regular Cayley graph for SLy(p), when p is
sufficiently large, is not a Ramanujan graph. A
graph has the Ramanujan property [Bien 1989] if
the inequality

M <2Vk—-1

is satisfied, where A; is the second-largest eigen-
value and k is the degree of the graph. Since
our graphs are 4-regular, the inequality becomes
A1 < 3.46410, that is (taking into account our nor-
malizations), the second-largest eigenvalue must be
no larger than 0.86602. Figure 8 suggests that,

asymptotically as p — oo, a random 4-regular Cay-
ley graph over SL,(p) fails to meet this criterion.

Comparison with Work of Buck

In [Buck 1986], certain computations are carried
out that are closely related to ours. In particular,
Buck considers the generating pair

{(70) (51)}

over PSL,, giving a Cayley graph of degree 3 com-
prised of triangles bridged together by a single edge
at each vertex. This is the same graph as we have
considered for generators Gz, when taken over the
projective group PSL,, as shown in Figure 3. Over
the cover SL,, we obtain a graph where the trian-
gles become hexagons, and where the lines bridging
the triangles become squares. However, by a theo-
rem of Kesten [1959], if G is a countably generated
group with normal subgroup IV, we have

M (X(G,S)) =M (X(G/N,S))

for any generating set S, so long as the diffusion co-
efficient of the symmetric random walk on N with
respect to any set of generators is 1. ([Buck 1986]
discusses an extension of this theorem to amenable
groups.) In particular, this situation applies to the
quotient of SL, by its center, and Buck’s analysis
of the generating function for the symmetric ran-
dom walk on the graph of Figure 3 thus determines
the second-largest eigenvalue for our set of gener-
ators G;. Intuitively, what this result implies for
the generating set Gs is that the amount by which
the expansion coefficient increases when we pass
from triangles to hexagons is exactly cancelled by
the decrease effected by the addition of more cycles
(the squares that result from w having order 4 over
SL,). For primes larger than 43, our computations
agree closely with the asymptotic limit of

1+8V2+13

~ 0.988482
6

established by the random-walk analysis.

In contrast, an exact asymptotic analysis of the
endpoints of the spectra for the generator sets §;
and Go seems more difficult to obtain. Over the
projective group PSL,, the covering Cayley graph
for the generator set G; is made up of adjacent
hexagons, as shown in Figure 9.
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FIGURE 9. Covering Cayley graph for PSLy(Z)
with generators G .

For this graph, the generating function analy-
sis is more complicated, and while we can write
down a set of six equations in six unknowns that
the generating function must satisfy, we are unable
to solve this system or obtain the radius of conver-
gence of the return function. Similarly, the graph
for generators G, is made up of 9-gons, which pro-
vides us with the intuition that the spectral gap
must be larger than for generators G;. This intu-
ition is borne out in Figure 6. However, here again
the probabilistic analysis appears difficult, though
we can write down a system of equations charac-
terizing the generating function.

200

150

100

50

FIGURE 10. Action of G5 on P'(F,).

[Buck 1986] also gives a numerical analysis of the
action of certain generating sets of SLy(Z) on the
projective line P'(F,), together with a conjecture
that the action on this finite set “approximates”
the action on the infinite group SLy(Z). Our com-
putations may be seen as providing further evi-
dence for this phenomenon. In particular, we have

observed that the spectrum obtained by evaluat-
ing the Fourier transform at a single representation
closely approximates the full spectrum as p gets
large. Figure 10 plots the spectrum of the Cayley
graph for generators Gs evaluated at the principal
series representation induced from the identity, and
should be compared to the graphs in the bottom
row of Figure 7. This is precisely the graph corre-
sponding to the action of G3 on the projective line
P'(F,) that was considered in [Buck 1986].

6. SPECULATIONS AND OPEN PROBLEMS

We conclude this paper by presenting several spec-
ulations suggested by the data explained in Sec-
tion 5.

Figures 4 and 5 suggest that for the generating
sets §; and Gy, the second-largest eigenvalues are
approximately 0.9821 and 0.9716, respectively.

The same figures indicate that from the point of
view of the second-largest eigenvalue, the discrete
and principal series are very similar. It would be
interesting to obtain an analytic proof of a close
upper bound or limit. Some recent work of Brooks
[1991], building on [Buck 1986], gives techniques
for obtaining this. The data also suggest that the
convergence of the second-largest eigenvalue may
very well be uniform in the following sense. Let
a,b be generators of SLy(Z), and let a,, b, be their
images in SLs(p). If {a,,b,} generates SLy(p) for
all but a finite number of primes p, let X,(a,b) be
the associated family of Cayley graphs. The data
suggests that for p sufficiently large there is an ¢,
independent of {a,b}, such that all fluctuations in
the second-largest eigenvalue are within €, of the
limiting value.

Open Question 6.1. For the generating sets §; and
Gs, do the second-largest eigenvalue occurring over
all principal series representations and the second-
largest eigenvalue occurring over all discrete se-
ries representations converge to the same limit as
p— o0?

More generally, the pairs of graphs in Figure 7 sug-
gest that the spectra of the principal series and
discrete series are effectively “the same”. Again, it
might be of some interest to quantify this similar-
ity in the form of a theorem. Such similarity could
perhaps be quantified by comparing the associated
spectral measures for operators corresponding to
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the direct sum of the discrete series representations
and the principal-series representations. So, gen-
eralizing Open Question 6.1, we ask:

Open Question 6.2. For any generating pair, do the
spectral measure associated with the direct sum
of principal series representations and the spectral
measure of the direct sum of the discrete series rep-
resentations converge to the same limit as p — oco?

This would certainly be of interest from a computa-
tional point of view. As the discussion of Section 3
shows, spectral computations for the discrete series
are computationally more intensive by a factor of
p. A positive answer to Open Question 6.2 would
permit any further numerical investigations to be
carried out exclusively in the principal series, and
consequently for a wider range of primes.

In this direction we would also like to remark on
some numerical data not included here. Compari-
son of Figure 10 with the bottom row of Figure 7
seems to indicate that it may be the case that to
understand the spectrum it is sufficient to study
the Fourier transform evaluated at a single rep-
resentation. Preliminary investigation appears to
show that the spectra of f (p) for p # py, where
P(=1) = —1, and p # p,, where v(—1) = —1,
in the notation of Theorems 2.1 and 2.3, are “the
same”, so that in fact perhaps only a single, ar-
bitrary principal series Fourier transform need be
computed.

As remarked in Section 5, Figure 7 reflects the
convergence of the spectra to the spectrum of the
infinite cover for these Cayley graphs by the natu-
ral Cayley graph on SL,(Z). Again, the methods
of [Brooks 1991] could possibly be used to com-
pute precisely the support of the spectral measure
for the infinite cover, so as to give the limiting dis-
tribution. This would also give the endpoints for
the “intervals” seen in these graphs.

Figure 8 suggests many possible questions. The
most striking property of this figure is that the
majority of second-largest eigenvalues seems to be
clustered in a small interval, roughly between .868
and .888. Note that the “Ramanujan number” for
these graphs is v/3/2 ~ .86602, so that none of
the graphs generated for p > 127 were found to
be Ramanujan. On the other hand, eigenvalues
in the interval (0.868, 0.888) are significantly lower
than those for either of the generating sets G; or
G,. This suggests that a random Cayley graph of

degree 4 on SLy(p) has better expanding properties
than those with “naturally” chosen generators.

Open Question 6.3. Is there a bound for the second-
largest eigenvalue that holds for most generating
pairs of SLy(p), where “most” is to be interpreted
in a sense similar to that of [Kantor and Lubotsky
1990]?

Open Question 6.4. Can one find a family of 4-regu-
lar Cayley graphs (indexed by p) whose second-
largest eigenvalue is within these bounds? This
would provide a family of Cayley graphs with bet-
ter expanding properties.

Lastly, we would like to comment on the complex-
ity results of Section 3. Recent work in the area
of DFTs for finite groups [Baum 1991; Clausen
1989a,b; Diaconis and Rockmore 1990; Rockmore
1990a,b] has shown that the DFT can be computed
in O(|G|log|G|) operations for several classes of
groups. It would be of great interest if for G =
SLs(g) the results of Section 3 could be improved.

Open Question 6.5. Can one prove that

T(q) = O(q*logq)?

7. APPENDIX: FOURIER INVERSION AND CONVOLU-
TION FOR SL,

We now turn to the problem of efficient Fourier in-
version and convolution for SLy(K). As we noted
in the Introduction, the existence of a fast Fou-
rier inversion algorithm follows from general re-
sults [Baum and Clausen 1991] and from the upper
bounds of Theorems 3.4 and 3.6. Here we provide
a constructive and “implementable” proof of a fast
inversion algorithm.

Theorem 7.1. Let all notation be as in Section 1.
Then I(q) < O(q*logq).

Efficient algorithms for Fourier inversion and cal-
culation of the Fourier transform for a given group
together yield an efficient algorithm for computing
group convolutions [Clausen 1989b, Corollary 1.8;
Rockmore 1990b, Theorem 2]. In particular, by
combining Theorems 7.1 and 3.7, we obtain

Theorem 7.2. Let f,g € L*(SLy(K)). Assuming
the additional initial data of the representations of
SL2(K), the convolution f * g may be computed in
at most O(q*logq) operations.
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Given Theorems 7.1 and 3.7, Theorem 7.2 is easy
to prove. To compute f * g, simply compute the
Fourier transforms {f(p), §(p)}, then the products
{f(palp) = m(p)} and then perform Fourier
inversion on this last Fourier transform. As the
additional matrix multiplications will take at most
(¢ + 1)¢* operations when done directly, the as-
serted bound is achieved.

To prove Theorem 7.1, the main idea is to try to
apply the methods of [Rockmore 1990b] directly to
the problem of Fourier inversion on SLy(K). Close
investigation of the computation involved will yield
the asserted bound.

We summarize quickly the algorithm in [Rock-
more 1990b]. Let G be a group and H < G a
subgroup, with sq,...,s; a complete set of coset
representatives for H\G. Let G and H be complete
sets of irreducible representations of G and H, re-
spectively. Given the initial data of the Fourier
transform of a function f € L*(G) as a collection
of matrices {f(p)}peé, we wish to recover the val-
ues {f(s)}seq- As in the efficient computation of
the Fourier transform, the idea is to reduce this to a
problem on H—in particular, to efficiently recover
the restricted transforms {fi(n)}neﬁ for1<i<k
(where the notation is as in Section 3), and then
to perform Fourier inversion for the k functions
fi € L*(H).

To do this, let n € fI, and suppose that

G ~pr & - @ p,,

where ~ denotes equivalence of representations.
Then, in one basis,

A

A flpy 0 0
fmG) = + o0,
0 0 f(pr)
which can be built directly. However, by [Rock-
more 1990b, Theorem 3], there exists a change of
basis, and thus an invertible matrix A4, (depending

on only the representations p; and n), such that

N

fpr) 0 -~ 0
Ayl Az
0 0 fpv)
A1(77) * *

= '3 o o, (7)

where the asterisks denote block matrices of the
appropriate dimensions.

We wish to apply this idea for G = SL,(K) and
H = B. If we can recover the restricted transforms
on B in O(q*logq) operations, we will have proved
Theorem 7.1, since we have [Baum et al. 1991]

I(B) < 16(|B|log|B]) < 32(¢*logq).

To proceed, we must first briefly explain the rep-
resentation theory of B. This is a straightforward
use of “Mackey theory”, which takes advantage of
the fact that B = T x U (for details of such con-
structions see [Serre 1977, 62 63]). Thus, U is a
normal subgroup of B, so the irreducible represen-
tations of B are built by first considering the ac-
tion of T on U: we fix once and for all a nontrivial
character y of U. Every character in U can then
be written as xg, for some unique 3 € K given by

xs(u) = x(Bu)

for u € K (where we identify U with K under the
natural isomorphism). The action of T" on U is by
conjugation,

(5200 () =x(("0 DEDE L))

=x((6"1 ")) =xa—=((37))-
Thus, under the action of T, U splits into three
orbits

U={xo=1}1{xa:a€ K} {x,:a ¢ KX}

where K denotes the set of nonzero squares in K.

It is clear that the stabilizer of xq in T is T itself,
and that the stabilizers of y; and x. both equal
{£I}, where I is the identity in SLy(K) and € is
any nonsquare in K* (for example, a generator of
K*). Let —1 denote the character of the subgroup
{£TI} equal to —1 on —I. Then x; may be extended
to the subgroup {+I} x U in two ways, as 1 ® x;
and —1 ® x,, and similarly for x.. Set

i =(1®x1)1B,
= (-1®x1)1B,
Ty = (1@ x:)TB,
™ = (-1®x:)1B.
Each 7! is then of degree 1(¢—1), and the above

four representations of B are inequivalent. Finally,
the remaining irreducible representations of B are
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all one-dimensional, and are obtained by extending
the trivial character on U by any character of 7.

The following lemma will eventually give a quick
and simple construction of the intertwining matri-
ces Ap:.

Lemma 7.3. With notation as above, each represen-
tation TG, for s,t € {4+, =}, is multiplicity-free.

Proof. By the preceding discussion,

’/TLZ\LU ~ @ Xa-

a€c K, sﬁ

In particular, the restriction is a representation
equivalent to the direct sum of distinct characters.
Consequently, suppose that p is an irreducible rep-
resentation of SLy(K') such that

(p, w1 SLy(K)) > 1.

(As usual, (p;, p2) represents the intertwining num-
ber of two representations p; and p, of a group G.)
By Frobenius reciprocity, (plB,7!t) > 1. But this
implies that plU is equivalent to the direct sum of
a set of characters of U (of size greater than 1) with
multiplicity greater than 1. However, this contra-
dicts the constructions of Section 3, where we see
that plU contains at most one character with mul-
tiplicity greater than 1 if dim(p) > q. O

To apply the constructions of [Rockmore 1990b],
we require a basis for the representations of SLy (K)
that is “B-adapted”. More precisely, let p be a
matrix representation of SLy(K') such that p|B ~
Mm@ - -®n,.. Then we demand that

771([3) o --- 0
pb)=|{ =+ o (7.2)
0 0 - n(0)

for all b € B. (Note that the irreducible represen-
tations 7n; are fixed independently of the particu-
lar representation of SL,(K) that is being decom-
posed.) In general, such B-adapted representa-
tions can always be constructed, and in fact we now
discuss the necessary explicit construction. The
discrete series representations are already B-adap-
ted. For the principal series we require a new basis:
in Section 3 we used the basis of §-functions on the
set K+ U {oo}, and here instead we take e, U K+
as a basis, which has the required property. The

change-of-basis matrix is circulant, so multiplica-
tion by it requires at most 8¢*logq operations to
perform, using standard abelian FFT techniques.

Thus, we now assume that we have a B-adapted
set of irreducible representations and we now wish
to construct A,:. Let

WzTSLQ(K) ~p1 DDy,

with dim(p;) = d;. Fix coset representatives for
SLy(K)/B with s; = 1 and

G

for 2 < 7 < g+1. Using Lemma 7.3, we see that we
are in a situation in which [Rockmore 1990b, The-
orem 3] may be applied. We state the construction
in the form of a lemma.

Lemma 7.4. Let all notation be as above, the basis
for the representations of SLy(K) having been cho-
sen in such a way that (7.2) holds. Then Ay is
a block matriz with blocks B, ;, where 1 < ¢ < r
and 1 < j<qg+1 and each B;; is a d; X %(q— 1)
matriz. In particular, if ™% comprises the first or
second (q — 1) x (¢ — 1) diagonal block of p;|B
(we may assume that one of these two instances oc-
curs), B; j will comprise exactly the first or second
%(q — 1) columns of p;(s;), respectively.

Thus, consider now the computation of the matrix
multiplication

AL
7TS

f(or)

We are only interested in the first £(¢—1) columns.
So we first compute these columns for the right-
most pair of factors,

flpr) 0 - 0
: Co : AL

0 0 f(pr)

Using the block diagonal structure of the right fac-

tor, it is easy to see that there are at most ¢ blocks

of size ¢ + 1, so that by direct multiplication we
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get at most g(q + 1)* operations. We are thus left
with the problem of computing

Bi1 Bip Big+1 My Jfl(ﬁi)

Bz Bap Bag+1 My fa(m)

B'r,l B'r,2 BT;Q‘FI Mq+1 fl (ﬂ'f)
(7.3)

where each M; is a (¢ — 1) x 3(¢ — 1) matrix.
We wish to show that in fact computation of
(7.3) may be viewed again as the computation of
a Fourier transform of a suitably defined function
on SLy(K).
Consider the function g € L?*(G) defined by

gi(my) = M;

and g;(n) = 0 for all other irreducible representa-
tions n of B (thus, we have defined g by describ-
ing the Fourier transforms of the derived functions
g: € L*(B)). If 7t makes up the first block of p;| B,
say, we see that

q+1

A _ .Ak(ﬂ-é) 0
= (BuxM, 0),

where 0 denotes the (d; — (¢ — 1)) x d; matrix of
ZEroS.

The results of Section 3 show that these compu-
tations may all be performed in at most 25¢*log g
operations. Doing this for each of the four 7!, we
see that the matrices {fk (%) }r.s.0 can be recovered
in at most

4(25¢* log g + q(q + 1)*) +8¢*log g < 108¢* log q

operations.

Finally, we need to obtain the restricted trans-
forms at the one-dimensional representations 1 (in
the notation of Section 2). Writing down the ap-
propriate matrices for (7.1), we see that in this
case we need only recover the first column of a
(¢ +1) x (¢ + 1) matrix. This requires at most
(¢ + 1)? operations. Repeating for each character
gives at most (¢ — 1)(q + 1)? operations. Thus, in
total we require at most

108¢*logq+(q—1)(q+1)*+164¢°logq < 110¢*logq
=0(g"logq)

operations for Fourier inversion. This completes
the proof of Theorem 7.1.
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