
Topics in Machine Learning Theory

Avrim Blum Lecture 4: September 5, 2014

Online Learning contd

* The Perceptron Algorithm

* Bounds in terms of hinge-loss

* Perceptron for Approximately Maximizing the Margins

* Kernel Functions

Plan for today: Last time we looked at the Winnow algorithm, which has a very nice
mistake-bound for learning an OR-function, which we then generalized for learning a linear
separator (technically we only did the extension to “k of r” functions in class, but next week
you will do the full analysis for general linear separators). Today will look at a more classic
algorithm for learning linear separators, with a different kind of guarantee.

1 The Perceptron Algorithm

One of the oldest algorithms used in machine learning (from early 60s) is an online algorithm
for learning a linear threshold function called the Perceptron Algorithm.

For simplicity, we’ll use a threshold of 0, so we’re looking at learning functions like:

w1x1 + w2x2 + ... + wnxn > 0.

We can simulate a nonzero threshold with a “dummy” input x0 that is always 1, so this can
be done without loss of generality. The guarantee we’ll show for the Perceptron Algorithm
is the following:

Theorem 1 Let S be a sequence of labeled examples consistent with a linear threshold func-
tion w∗ · x > 0, where w∗ is a unit-length vector. Then the number of mistakes M on S
made by the online Perceptron algorithm is at most (1/γ)2, where

γ = min
x∈S

|w∗ · x|
||x||

.

(I.e., if we scale examples to have Euclidean length 1, then γ is the minimum distance of
any example to the plane w∗ · x = 0.)

The parameter “γ” is often called the “margin” of w∗ (or more formally, the L2 margin
because we are scaling by the L2 lengths of the target and examples).
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The Perceptron Algorithm:

1. Start with the all-zeroes weight vector w1 = 0, and initialize t to 1. Also let’s auto-
matically scale all examples x to have (Euclidean) length 1, since this doesn’t affect
which side of the plane they are on.

2. Given example x, predict positive iff wt · x > 0.

3. On a mistake, update as follows:

• Mistake on positive: wt+1 ← wt + x.

• Mistake on negative: wt+1 ← wt − x.

t← t + 1.

So, this seems reasonable. If we make a mistake on a positive x we get wt+1 ·x = (wt+x)·x =
wt ·x+1, and similarly if we make a mistake on a negative x we have wt+1 ·x = (wt−x) ·x =
wt · x− 1. So, in both cases we move closer (by 1) to the value we wanted.

Proof of Theorem 1. We’re going to look at the magic quantities wt ·w∗ and ||wt||.
Claim 1: wt+1 ·w∗ ≥ wt ·w∗ + γ. That is, every time we make a mistake, the dot-product
of our weight vector with the target increases by at least γ.

Proof: if x was a positive example, then we get wt+1 · w∗ = (wt + x) · w∗ =
wt ·w∗ + x ·w∗ ≥ wt ·w∗ + γ (by definition of γ). Similarly, if x was a negative
example, we get (wt − x) ·w∗ = wt ·w∗ − x ·w∗ ≥ wt ·w∗ + γ.

Claim 2: ||wt+1||2 ≤ ||wt||2 + 1. That is, every time we make a mistake, the length squared
of our weight vector increases by at most 1.

Proof: if x was a positive example, we get ||wt + x||2 = ||wt||2 + 2wt · x + ||x||2.
This is less than ||wt||2 + 1 because wt · x is negative (remember, we made a
mistake on x). Same thing (flipping signs) if x was negative but we predicted
positive.

Claim 1 implies that after M mistakes, wM+1 · w∗ ≥ γM . On the other hand, Claim 2
implies that after M mistakes, ||wM+1|| ≤

√
M . Now, all we need to do is use the fact that

wt · w∗ ≤ ||wt||, since w∗ is a unit vector. So, this means we must have γM ≤
√

M , and
thus M ≤ 1/γ2.

Theorem 2 The perceptron mistake bound is optimal in terms of γ: no deterministic algo-
rithm can have a mistake-bound < 1/γ2.
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Proof: Consider the examples e1, . . . , e1/γ2 where ei is the unit coordinate vector in di-
mension i. These clearly have unit length. Now consider target functions that look like
w∗ = ±γx1 ± γx2 ± . . . ± γx1/γ2 . Any such w∗ has length γ2 + γ2 + . . . + γ2 = 1 and has
margin γ with respect to each of the ei. Therefore, any labeling of the ei is consistent with
a linear separator of margin γ and so an adversary can force any deterministic algorithm to
make 1/γ2 mistakes while maintaining the existence of a perfect separator of margin γ.

Discussion: In the worst case, γ can be exponentially small in n. On the other hand, if we’re
lucky and the data is well-separated, γ might even be large compared to 1/n. This is called
the “large margin” case. (In fact, the latter is the more modern spin on things: namely, that
in many natural cases, we would hope that there exists a large-margin separator.) In fact,
one nice thing here is that the mistake-bound depends on just a purely geometric quantity:
the amount of “wiggle-room” available for a solution and doesn’t depend in any direct way
on the number of features in the space.

So, if data is separable by a large margin, then Perceptron is a good algorithm to use.

What if there is no perfect separator? What if only most of the data is separable by
a large margin, or what if w∗ is not perfect? We can see that the thing we need to look at
is Claim 1. Claim 1 said that we make “γ amount of progress” on every mistake. Now it’s
possible there will be mistakes where we make very little progress, or even negative progress.
One thing we can do is bound the total number of mistakes we make in terms of the total
distance we would have to move the points to make them actually separable by margin γ.
Let’s call that TDγ. Then, we get that after M mistakes, wM+1 · w∗ ≥ γM − TDγ. So,
combining with Claim 2, we get that

√
M ≥ γM −TDγ. We could solve the quadratic, but

this implies, for instance, that M ≤ 1/γ2 +(2/γ)TDγ. The quantity 1
γ
TDγ is called the total

hinge-loss of w∗. In other words,

# mistakes ≤ min
w∗,γ

[
1/γ2 + 2(hinge loss of w∗ at margin γ)

]
.

To slightly rewrite this, instead of scaling w∗ to have unit length, let’s scale so that we want
w∗ · x ≥ 1 on positive examples and w∗ · x ≤ −1 on negative examples (i.e., we are just
dividing by γ, or equivalently the margin is now 1/|w∗|). If w∗ is not a perfect separator, we
can think of hinge-loss as representing non-negative slack-variables: if `(x)(w∗ · xi) ≥ 1− ξi

for each example xi (formally, ξi = max[0, 1−`(x)(w∗ ·xi)]), then
∑

i ξi is the total hinge-loss
of w∗. Then our bound becomes:

# mistakes ≤ min
w∗

[
||w∗||2 + 2(hinge loss of w∗)

]
.

So, this is not too bad: we can’t necessarily say that we’re making only a small multiple of
the number of mistakes that w∗ is (in fact, the problem of finding an approximately-optimal
separator is NP-hard), but we can say we’re doing well in terms of the “total distance” or
hinge-loss parameter.

Perceptron for approximately maximizing margins. We saw that the perceptron
algorithm makes at most 1/γ2 mistakes on any sequence of examples that is linearly-separable
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by margin γ (i.e., any sequence for which there exists a unit-length vector w∗ such that all
examples x satisfy `(x)(w∗ · x)/||x|| ≥ γ, where `(x) ∈ {−1, 1} is the label of x).

Suppose we are handed a set of examples S and we want to actually find a large-margin
separator for them. One approach is to directly solve for the maximum-margin separator
using convex programming (which is what is done in the SVM algorithm — actually, SVM
minimizes a weighted combination of 1/γ2 and the hinge-loss). However, if we only need
to approximately maximize the margin, then another approach is to use Perceptron. In
particular, suppose we cycle through the data using the Perceptron algorithm, updating not
only on mistakes, but also on examples x that our current hypothesis gets correct by margin
less than γ/2. Assuming our data is separable by margin γ, then we can show that this is
guaranteed to halt in a number of rounds that is polynomial in 1/γ. (In fact, we can replace
γ/2 with (1− ε)γ and have bounds that are polynomial in 1/(εγ).)

The Margin Perceptron Algorithm(γ):

1. Assume again that all examples are normalized to have Euclidean length 1. Initialize
w1 = `(x)x, where x is the first example seen and initialize t to 1.

2. Predict positive if wt·x
||wt|| ≥ γ/2, predict negative if wt·x

||wt|| ≤ −γ/2, and consider an

example to be a margin mistake when wt·x
||wt|| ∈ (−γ/2, γ/2).

3. On a mistake (incorrect prediction or margin mistake), update as in the standard
Perceptron algorithm: wt+1 ← wt + `(x)x; t← t + 1.

Theorem 3 Let S be a sequence of labeled examples consistent with a linear threshold func-
tion w∗ · x > 0, where w∗ is a unit-length vector, and let

γ = min
x∈S

|w∗ · x|
||x||

.

Then the number of mistakes (including margin mistakes) made by Margin Perceptron(γ) on
S is at most 8/γ2.

Proof: The argument for this new algorithm follows the same lines as the argument for
the original Perceptron algorithm.

As before, each update increases wt ·w∗ by at least γ. What is now a little more complicated
is to bound the increase in ||wt||, since we are updating on some examples where the angle
is more than 90o. For the original algorithm, we had: ||wt+1||2 ≤ ||wt||2 + 1, which implies
||wt+1|| ≤ ||wt||+ 1

2||wt|| .

For the new algorithm, we instead get

||wt+1|| ≤ ||wt||+
1

2||wt||
+

γ

2
,

which we can see by breaking each x into its orthogonal part (for which the original statement
holds) and its parallel part (which adds at most γ/2 to the length of wt).
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We can now solve this directly, but just to get a simple upper bound, just notice that if
||wt|| ≥ 2/γ then ||wt+1|| ≤ ||wt||+ 3γ/4. So, after M updates we have:

||wM+1|| ≤ 2/γ + 3Mγ/4.

Solving Mγ ≤ 2/γ + 3Mγ/4 we get M ≤ 8/γ2, as desired.

For more information on perceptron and the analyses given here, see [Blo62, Nov62, MP69,
FS99, SSS05, TST05, BB06].

L2 margins and L1 margins. We saw that Perceptron makes at most 1/γ2 mistakes where
γ is the margin after normalizing by the L2 length of the target and the L2 length of the
examples. Winnow makes O((1/γ2) log n) mistakes after normalizing by the L1 length of
the target and L∞ length of the examples. If examples are in {0, 1}n, the nice thing about
Winnow is that adding extra irrelevant variables (variables where the target has zero weight)
doesn’t affect the L1 − L∞ margin. In general, Winnow does better if examples are dense
but the target is sparse, and Perceptron does better if the target is dense but examples are
sparse.

2 Kernel functions

What if our data doesn’t have a good linear separator? Here’s a neat idea, called the kernel
trick.

One thing we might like to do is map our data to a higher dimensional space, e.g., look at
all products of pairs of features, in the hope that data will be linearly separable there. If
we’re lucky, data will be separable by a large margin so we don’t have to pay a lot in terms
of mistakes. But this is going to a pain computationally. However, it turns out that many
learning algorithms only access data through performing dot-products (will get back to how
to interpret algorithms like Perceptron in this way in a minute). So, maybe we can perform
our mapping in such a way that we have an efficient way of computing dot-products. This
leads to idea of a kernel.

A Kernel is a function K(x,x′) such that for some mapping φ, K(x,x′) = φ(x) · φ(x′).

Some examples:

• K(x,x′) = (1 + x · x′)d.

• K(x,x′) = (1 + x1x
′
1)(1 + x2x

′
2)...(1 + xnx

′
n)

[corresponds to mapping x,x′ to list of all products of subsets]

• String kernels [count how many substrings of length p two strings have in common]

More generally, this is nice for the case where examples aren’t so easy to map directly into
Rn, but we have a reasonable notion of similarity we can encode in a kernel K.
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Neat fact: many of the learning algorithms for learning linear separators can be run using
kernels. E.g., for the Perceptron algorithm, wt is a weighted sum of examples, specifically,

wt = `(xi1)xi1 + · · ·+ `(xik)xit−1 ,

where xi1 , ...,xit−1 are the examples where we’ve made mistakes so far. So to compute
φ(wt) · φ(x), just do:

`(xi1)K(xi1 ,x) + · · ·+ `(xit−1)K(xit−1 ,x).

The examples that the hypothesis is written in terms of are called support vectors. If we
find the maximum margin separator for a given dataset, that is also something that can
be written in terms of support vectors (not hard to see). That’s the reason for the name
“support vector machine”.
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