Topics in Machine Learning
Theory

Lecture 4: The Perceptron Algorithm

Recap from last time

* Winnow algorithm for learning a k-of-r
function: e.g., X3+ Xg+ Xo + Xqp > 2.
* h(x): predict pos iff wix; + .. + w.x, > n.
* Initialize w; = 1 for all i.
- Mistake on pos: w; < w;(1+¢) for all x;=1.
- Mistake on neg: w; + w;/(1+¢) for all x;=1.
- Use e = 1/2k.
+ Thm: Winnow makes at most O(rk log n)
mistakes.

Perceptron algorithm

An even older and simpler algorithm, with a
bound of a different form.

Suppose 3 w* s.t.:

* w* . x> ~on positive x,

* w* - x < -y on negative x.

Then mistake bound is
© O(L(Ww*)Lo(x)/?)

| L, margin of examples |

Recap from last time

+ Winnow algorithm for learning a disjunction
of r out of nvariables. eg f(x)= X3V Xg vV X1,
* h(x): predict pos iff wix; + .. + w,x, > n.
« Initialize w; = 1 for all i.
- Mistake on pos: w; < 2w; for all x;=1.
- Mistake on neg: w; + O for all x;=1.
+ Thm: Winnow makes at most O(r log n)
mistakes.

Winnow for general LTFs

More generally, can show the following (you will do
the analysis in class next week):

Suppose 3 w* s.t.:
* w* . x> con positive x,
* w* . x < ¢ - yon negative x.

Then mistake bound is
* O((Ly(w*)/7)? log n)

‘ examples not in {0,1}

Perceptron algorithm

Thm: Suppose data is consistent with some
LTF w* - x> 0, where ||w*]||=1 and

v = min, [w* - x|/]|x]]
Then # mistakes < 1/+2.

s

Algorithm:

Initialize w=0. Usew - x > 0.
* Mistake on pos: w < w+Xx.
+ Mistake on neg: w + w-x.

\ (Pre-scale examples to be in unit ball) ]




Perceptron algorithm

Example: (0,1) -
(11)+

Algorithm:

Initialize w=0. Usew - x> 0.
* Mistake on pos: w < w+x.
* Mistake on neg: w + w-x.

Lower bound

It's not possible in general to get < 1/y? mistakes.
Proof: consider 1/y? coordinate vectors.
w' = tyx; tyx, £ % YX1/y2
lw*l|=1,lw" x| =y

Proof: consider w - w* and ||w]|

+ Each mistake increases w - w* by at least .
W+X) - w=w-w+x - w*>w-w*+1.

+ Each mistake increases w-w by at most 1.
W+x)-(w+x)=ww+2w-x)+xx <ww+1

- S0, in M mistakes, YM < w-w* < ||w]| < MV2,

+ So, M <1/

What if no perfect separator?

In this case, a mistake could cause |w - w*| to drop.
The -hinge-loss of w* = X, max[0, 1 - ((x)(x-w*)/~]
Mistakes(perceptron) < 1/+2 + 2(v-hinge-loss(w*))

Proof: consider w - w* and | |w]|

+ Each mistake increases w - w* by at least .
W+x) - ws=w-wX+x-w">w-w*+n.

- Each mistake increases w-w by at most 1.
w+x) - (w+x)=ww+2wx)+xx <ww+1

- So, in M mistakes, YM < w-w* < ||w|| < M2,

+ So, M <1/,

Analysis

Thm: Suppose data is consistent with some LTF
w* - x>0, where ||w*||=1 and

v = min, |W* - x| (after scaling so all ||x||=1)
Then # mistakes < 1/42.

Proof: consider w - w* and ||w]|

- Each mistake increases w - w* by at least .
W+x) - ws=w-w*+x-w*>w-w*+-.

+ Each mistake increases w-w by at most 1.
wW+x)-(w+x)=ww+2w-x)+xx<ww+ 1

+ So, in M mistakes, YM < w-w* < ||w|| < MV2,

+ So, M <1/

What if no perfect separator?

In this case, a mistake could cause |w - w*| to drop.

The y-hinge-loss of w* = 3, max[0, 1 - I(x)(x-w*)/~]

(by how much, in units of ~, would you have to move
the points to all be correct by )

Proof: consider w - w* and ||w]|

+ Each mistake increases w - w* by at least .
W+x) - w =w-wr+x-w*">w-w*+.

+ Each mistake increases w-w by at most 1.
W+x)-W+x)=ww+2w-x)+x-x <ww+1

+ So, in M mistakes, YM < w-w* < ||w|| < MV2,

+ So, M <1/

Kernel functions

See board...




