
1

CS-598 Topics in Machine Learning
Theory

Lecture 1: intro, basic models and issues

Avrim Blum
08/27/14

Avrim Blum

Main Research Interests:

 Machine Learning Theory.
 Guarantees for learning algorithms, new models, clustering,

semi-supervised learning.

 Graph algorithms, approximation algorithms.
 Also for problems related to learning…

 Problems from economics / game theory.
 Algorithms for pricing, allocation. Analysis of dynamics when

agents adapt. Learning about agents from observed behavior.

 Privacy
 Design and analysis of methods for achieving formal privacy /

utility tradeoffs and connections to learning.

Here on sabbatical from CMU

Office in 3212. avrim@cs.cmu.edu

Course Plan
• Course web page: http://www.machinelearning.com

• First half of lectures (roughly): I will present
some classic material [PAC bounds, Regret
guarantees, VC-dimension, Boosting, Kernels, …]

• Second half (roughly): you will present some
recent papers, e.g., from COLT 2014.

• Need a volunteer to create a signup sheet.
Reward: you get to sign up first!

• I will be away for a couple weeks in the term.
Will post assignments to do as a group in-class.

OK, let’s get to it…

Machine learning can be used to…
• recognize speech, faces,
• play games, steer cars,
• adapt programs to users,
• classify documents, protein sequences,...

Goals of machine learning theory:
Develop and analyze models to understand:
• what kinds of tasks we can hope to learn, and

from what kind of data,
• what types of guarantees might we hope to

achieve,
• other common issues that arise.

Influences

Goals of machine learning theory:
Develop and analyze models to understand:
• what kinds of tasks we can hope to learn, and

from what kind of data,
• what types of guarantees might we hope to

achieve,
• other common issues that arise.

Machine Learning
Theory Statistics

Machine Learning
Practice

A typical setting
• Imagine you want a computer program to

help you decide which email messages are
spam and which are important.

• Might represent each message by n features.
(e.g., return address, keywords, spelling, etc.)

• Take sample S of data, labeled according to
whether they were/weren’t spam.

• Goal of algorithm is to use data seen so far
produce good prediction rule (a “hypothesis”)
h(x) for future data.

http://www.machinelearning.com/
http://www.machinelearning.com/
http://videolectures.net/colt2014_barcelona

2

The concept learning setting
E.g.,

Given data, some reasonable rules might be:
•Predict SPAM if :known AND ($$ OR meds)

•Predict SPAM if $$ + meds – known > 0.

•...

Big questions

(A)How might we automatically generate
rules that do well on observed data?

[algorithm design]

(B)What kind of confidence do we have
that they will do well in the future?

[confidence bound / sample complexity]

for a given learning alg, how
much data do we need...

Power of basic paradigm

• E.g., document classification
– convert to bag-of-words

– Linear separators do well

• E.g., driving a car
– convert image into

features.

– Use neural net with
several outputs.

Many problems solved by converting to basic
“concept learning from structured data” setting.

Natural formalization (PAC)

• We are given sample S = {(x,y)}.
– View labels y as being produced by some target

function f.

• Alg does optimization over S to produce
some hypothesis (prediction rule) h.

• Assume S is a random sample from some
probability distribution D. Goal is for h to
do well on new examples also from D.

I.e., PrD[h(x)f(x)] < e.

Email msg Spam or not?

err(h)

Example of analysis: Decision Lists

Say we suspect there might be a good prediction
rule of this form.

1. Design an efficient algorithm A that will find a
consistent DL if one exists.

2. Show that if S is of reasonable size, then
Pr[exists consistent DL h with err(h) > e] < d.

3. This means that A is a good algorithm to use if
f is, in fact, a DL.

If S is of reasonable size, then A produces a
hypothesis that is Probably Approximately Correct.

How can we find a consistent DL?

if (x1=0) then -, else
if (x2=1) then +, else

if (x4=1) then +, else -

3

Decision List algorithm
• Start with empty list.

• Find if-then rule consistent with data.
 (and satisfied by at least one example)

• Put rule at bottom of list so far, and cross off
examples covered. Repeat until no examples remain.

If this fails, then:
•No DL consistent with remaining data.
•So, no DL consistent with original data.

OK, fine. Now why should we expect it
to do well on future data?

Confidence/sample-complexity

• Consider some DL h with err(h)>e, that we’re
worried might fool us.

• Chance that h is consistent with S is at
most (1-e)|S|.

• Let |H| = number of DLs over n Boolean
features. |H| < n!4n. (for each feature there are 4
possible rules, and no feature will appear more than once)

 So, Pr[some DL h with err(h)>e is consistent]
 · |H|(1-e)|S| · |H|e-²|S|.

• This is < d for |S| > (1/e)[ln(|H|) + ln(1/d)]

 or about (1/e)[n ln n + ln(1/d)]

Example of analysis: Decision Lists

Say we suspect there might be a good prediction
rule of this form.

1. Design an efficient algorithm A that will find a
consistent DL if one exists.

2. Show that if |S| is of reasonable size, then
Pr[exists consistent DL h with err(h) > e] < d.

3. So, if f is in fact a DL, then whp A’s hypothesis
will be approximately correct. “PAC model”

PAC model more formally:
• We are given sample S = {(x,y)}.

– Assume x’s come from some fixed probability distribution D over
instance space.

– View labels y as being produced by some target function f.

• Alg does optimization over S to produce some hypothesis
(prediction rule) h. Goal is for h to do well on new
examples also from D. I.e., PrD[h(x)f(x)] < e.

Algorithm PAC-learns a class of functions C if:
• For any given e>0, d>0, any target f 2 C, any dist. D, the

algorithm produces h of err(h)<e with prob. at least 1-d.
• Running time and sample sizes polynomial in relevant

parameters: 1/e, 1/d, n (size of examples), size(f).
• Learning is called “proper” if h 2 C. Can also talk about

“learning C by H”.

We just gave a proper alg to PAC-learn decision lists.

Confidence/sample-complexity

• What’s great is there was nothing special
about DLs in our argument.

• All we said was: “if there are not too many
rules to choose from, then it’s unlikely one
will have fooled us just by chance.”

• And in particular, the number of examples
needs to only be proportional to log(|H|).

(notice big difference between |H| and log(|H|).)

Occam’s razor
William of Occam (~1320 AD):

 “entities should not be multiplied
unnecessarily” (in Latin)

Which we interpret as: “in general, prefer
simpler explanations”.

Why? Is this a good policy? What if we
have different notions of what’s simpler?

4

Occam’s razor (contd)
A computer-science-ish way of looking at it:

• Say “simple” = “short description”.

• At most 2s explanations can be < s bits long.

• So, if the number of examples satisfies:

 |S| > (1/e)[s ln(2) + ln(1/d)]

 Then it’s unlikely a bad simple explanation
will fool you just by chance.

Think of as

10x #bits to

write down h.

Occam’s razor (contd)2

• Even if we have different notions of what’s
simpler (e.g., different representation
languages), we can both use Occam’s razor.

• Of course, there’s no guarantee there will be
a short explanation for the data. That
depends on your representation.

Nice interpretation:

Decision trees
• Decision trees over {0,1}n not

known to be PAC-learnable.

x3

x5 x2

+ + - -

• Given any data set S, it’s easy to find a consistent
DT if one exists. How?

• Where does the DL argument break down?

• Simple heuristics used in practice (ID3 etc.) don’t
work for all c2C even for uniform D.

• Would suffice to find the (apx) smallest DT
consistent with any dataset S, but that’s NP-hard.

More examples
Other classes we can PAC-learn: (how?)
• 3-CNF formulas (3-SAT formulas)
• AND-functions, OR-functions, 3-DNF formulas
• k-Decision lists (each if-condition is a

conjunction of size k), k is constant.

Given a data set S, deciding if there is a
consistent 2-term DNF formula is NP-complete.
Does that mean 2-term DNF is hard to learn?

More examples

Given a data set S, deciding if there is a
consistent 2-term DNF formula is NP-complete.
Does that mean 2-term DNF is hard to learn?

Hard to learn C by C, but easy to learn C by
H, where H = {2-CNF}.

If computation-time is no object,
then any class is PAC-learnable

• Occam bounds) any class is learnable if
computation time is no object:
– Let s1=10, d1 = d/2. For i=1,2,… do:

• Request (1/e)[si + ln(1/di)] examples Si.

• Check if there is a function of size at most si
consistent with Si. If so, output it and halt.

• si+1 = 2si, di+1 = di/2.

– At most d1 + d2 + … · d chance of failure.

– Total data used: O((1/e)[size(f)+ln(1/d)ln(size(f))]).

1st terms sum to 𝑂(𝑠𝑖𝑧𝑒 𝑓) by telescoping. 2nd terms sum to:

ln
2

𝛿
+ ln

4

𝛿
+ … + ln

𝑠𝑖𝑧𝑒 𝑓

𝛿
≤ ln (𝑠𝑖𝑧𝑒 𝑓 ln

𝑠𝑖𝑧𝑒 𝑓

𝛿
= ln2 𝑠𝑖𝑧𝑒 𝑓 + ln (𝑠𝑖𝑧𝑒 𝑓) ln

1

𝛿

5

More about the PAC model

• What if your alg only worked for d = ½, what would
you do?

• What if it only worked for e = ¼, or even e = ½-1/n?
This is called weak-learning. Will get back to later.

• Agnostic learning model: Don’t assume anything
about f. Try to reach error opt(C) + e.

Algorithm PAC-learns a class of functions C if:
• For any given e>0, d>0, any target f 2 C, any dist. D, the

algorithm produces h of err(h)<e with prob. at least 1-d.
• Running time and sample sizes polynomial in relevant

parameters: 1/e, 1/d, n, size(f).
• Require h to be poly-time evaluatable. Learning is called

“proper” if h 2 C. Can also talk about “learning C by H”.

More about the PAC model

Drawbacks of model:
• In the real world, labeled examples are much more

expensive than running time.
• “Prior knowledge/beliefs” might be not just over form of

target but other relations to data.
• Doesn’t address other kinds of info (cheap unlabeled data,

pairwise similarity information).
• Only considers “one shot” learning.

Algorithm PAC-learns a class of functions C if:
• For any given e>0, d>0, any target f 2 C, any dist. D, the

algorithm produces h of err(h)<e with prob. at least 1-d.
• Running time and sample sizes polynomial in relevant

parameters: 1/e, 1/d, n, size(f).
• Require h to be poly-time evaluatable. Learning is called

“proper” if h 2 C. Can also talk about “learning C by H”.

Extensions we’ll get at later:
• Replace log(|H|) with “effective number of

degrees of freedom”.

+

+

+

+

-
-

-

-

– There are infinitely many linear separators, but
not that many really different ones.

• Other more refined analyses.

Some classic open problems
Can one efficiently PAC-learn…
• an intersection of 2 halfspaces? (2-term

DNF trick doesn’t work)

• C={fns with only O(log n) relevant
variables}? (or even O(loglog n) or (1)
relevant variables)? This is a special case
of DTs, DNFs.

• Monotone DNF over uniform D?

• Weak agnostic learning of monomials.

