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CS-598 Topics in Machine Learning 
Theory 

 
 
 
 
 

Lecture 1: intro, basic models and issues 

Avrim Blum 
08/27/14 

Avrim Blum 

Main Research Interests: 

 Machine Learning Theory. 
 Guarantees for learning algorithms, new models, clustering, 

semi-supervised learning. 

 Graph algorithms, approximation algorithms.  
 Also for problems related to learning… 

 Problems from economics / game theory. 
 Algorithms for pricing, allocation.  Analysis of dynamics when 

agents adapt.  Learning about agents from observed behavior. 

 Privacy 
 Design and analysis of methods for achieving formal privacy / 

utility tradeoffs and connections to learning. 

Here on sabbatical from CMU 

Office in 3212.  avrim@cs.cmu.edu 
 

Course Plan  
• Course web page: http://www.machinelearning.com 

• First half of lectures (roughly): I will present 
some classic material [PAC bounds, Regret 
guarantees, VC-dimension, Boosting, Kernels, …] 

• Second half (roughly): you will present some 
recent papers, e.g., from COLT 2014. 

• Need a volunteer to create a signup sheet. 
Reward: you get to sign up first! 

• I will be away for a couple weeks in the term.  
Will post assignments to do as a group in-class. 

OK, let’s get to it… 

Machine learning can be used to… 
• recognize speech, faces, 
• play games, steer cars, 
• adapt programs to users, 
• classify documents, protein sequences,... 

Goals of machine learning theory: 
Develop and analyze models to understand:  
• what kinds of tasks we can hope to learn, and 

from what kind of data, 
• what types of guarantees might we hope to 

achieve, 
• other common issues that arise. 

Influences 

Goals of machine learning theory: 
Develop and analyze models to understand:  
• what kinds of tasks we can hope to learn, and 

from what kind of data, 
• what types of guarantees might we hope to 

achieve, 
• other common issues that arise. 

Machine Learning 
Theory       Statistics 

Machine Learning 
Practice    

A typical setting 
• Imagine you want a computer program to 

help you decide which email messages are 
spam and which are important. 

• Might represent each message by n features. 
(e.g., return address, keywords, spelling, etc.) 

• Take sample S of data, labeled according to 
whether they were/weren’t spam. 

• Goal of algorithm is to use data seen so far 
produce good prediction rule (a “hypothesis”) 
h(x) for future data.  

http://www.machinelearning.com/
http://www.machinelearning.com/
http://videolectures.net/colt2014_barcelona
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The concept learning setting 
E.g.,  

Given data, some reasonable rules might be: 
•Predict SPAM if :known AND ($$ OR meds) 
 

•Predict SPAM if $$ + meds – known > 0. 
 

•... 

Big questions 

(A)How might we automatically generate 
rules that do well on observed data? 

[algorithm design] 
 

(B)What kind of confidence do we have 
that they will do well in the future? 

[confidence bound / sample complexity] 
 

for a given learning alg, how 
much data do we need... 

Power of basic paradigm 

• E.g., document classification 
– convert to bag-of-words 

– Linear separators do well 

• E.g., driving a car 
– convert image into     

features. 

– Use neural net with        
several outputs. 

Many problems solved by converting to basic 
“concept learning from structured data” setting.  

Natural formalization (PAC) 

• We are given sample S = {(x,y)}. 
– View labels y as being produced by some target 

function f.  

• Alg does optimization over S to produce 
some hypothesis (prediction rule) h. 

• Assume S is a random sample from some 
probability distribution D. Goal is for h to 
do well on new examples also from D. 

I.e., PrD[h(x)f(x)] < e. 

Email msg Spam or not? 

err(h) 

Example of analysis: Decision Lists 

Say we suspect there might be a good prediction 
rule of this form.  

1. Design an efficient algorithm A that will find a 
consistent DL if one exists. 

2. Show that if S is of reasonable size, then 
Pr[exists consistent DL h with err(h) > e] < d. 

3. This means that A is a good algorithm to use if 
f is, in fact, a DL. 

If S is of reasonable size, then A produces a 
hypothesis that is Probably Approximately Correct.      

How can we find a consistent DL? 

if (x1=0) then -, else 
if (x2=1) then +, else 

if (x4=1) then +, else - 
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Decision List algorithm 
• Start with empty list. 

• Find if-then rule consistent with data.  
 (and satisfied by at least one example) 

• Put rule at bottom of list so far, and cross off 
examples covered. Repeat until no examples remain. 

If this fails, then: 
•No DL consistent with remaining data. 
•So, no DL consistent with original data. 

OK, fine.  Now why should we expect it 
to do well on future data? 

Confidence/sample-complexity 

• Consider some DL h with err(h)>e, that we’re 
worried might fool us. 

• Chance that h is consistent with S is at 
most (1-e)|S|. 

• Let |H| = number of DLs over n Boolean 
features.  |H| < n!4n. (for each feature there are 4 
possible rules, and no feature will appear more than once) 

 

  So, Pr[some DL h with err(h)>e is consistent] 
     · |H|(1-e)|S| · |H|e-²|S|. 

 

• This is < d for |S| > (1/e)[ln(|H|) + ln(1/d)] 

                        or about (1/e)[n ln n + ln(1/d)] 

Example of analysis: Decision Lists 

Say we suspect there might be a good prediction 
rule of this form.  

1. Design an efficient algorithm A that will find a 
consistent DL if one exists. 

2. Show that if |S| is of reasonable size, then 
Pr[exists consistent DL h with err(h) > e] < d. 

3. So, if f is in fact a DL, then whp A’s hypothesis 
will be approximately correct.  “PAC model” 

PAC model more formally: 
• We are given sample S = {(x,y)}. 

– Assume x’s come from some fixed probability distribution D over 
instance space. 

– View labels y as being produced by some target function f.  

• Alg does optimization over S to produce some hypothesis 
(prediction rule) h.  Goal is for h to do well on new 
examples also from D. I.e., PrD[h(x)f(x)] < e. 

Algorithm PAC-learns a class of functions C if: 
• For any given e>0, d>0, any target f 2 C, any dist. D, the 

algorithm produces h of err(h)<e with prob. at least 1-d. 
• Running time and sample sizes polynomial in relevant 

parameters: 1/e, 1/d, n (size of examples), size(f). 
• Learning is called “proper” if h 2 C.  Can also talk about 

“learning C by H”. 

We just gave a proper alg to PAC-learn decision lists. 

Confidence/sample-complexity 

• What’s great is there was nothing special 
about DLs in our argument. 

 

• All we said was: “if there are not too many 
rules to choose from, then it’s unlikely one 
will have fooled us just by chance.” 

 

• And in particular, the number of examples 
needs to only be proportional to log(|H|). 

(notice big difference between |H| and log(|H|).) 

Occam’s razor 
William of Occam (~1320 AD): 
 

 “entities should not be multiplied 
unnecessarily” (in Latin) 

 

Which we interpret as: “in general, prefer 
simpler explanations”. 

 

Why?  Is this a good policy?  What if we 
have different notions of what’s simpler? 
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Occam’s razor (contd) 
A computer-science-ish way of looking at it: 

 

• Say “simple” = “short description”. 

• At most 2s explanations can be < s bits long. 

• So, if the number of examples satisfies: 

   |S| > (1/e)[s ln(2) + ln(1/d)] 

    

   Then it’s unlikely a bad simple explanation 
will fool you just by chance. 

 

Think of as 

10x #bits to 

write down h.  

Occam’s razor (contd)2 

• Even if we have different notions of what’s 
simpler (e.g., different representation 
languages), we can both use Occam’s razor. 

 

• Of course, there’s no guarantee there will be 
a short explanation for the data.  That 
depends on your representation. 

Nice interpretation: 

Decision trees 
• Decision trees over {0,1}n not 

known to be PAC-learnable. 

x3 

x5 x2 

+ + - - 

• Given any data set S, it’s easy to find a consistent 
DT if one exists.  How? 

• Where does the DL argument break down? 

• Simple heuristics used in practice (ID3 etc.) don’t 
work for all c2C even for uniform D. 

• Would suffice to find the (apx) smallest DT 
consistent with any dataset S, but that’s NP-hard. 

More examples 
Other classes we can PAC-learn: (how?) 
• 3-CNF formulas  (3-SAT formulas) 
• AND-functions, OR-functions, 3-DNF formulas 
• k-Decision lists (each if-condition is a 

conjunction of size k), k is constant. 
 
 

Given a data set S, deciding if there is a 
consistent 2-term DNF formula is NP-complete.  
Does that mean 2-term DNF is hard to learn? 

More examples 

Given a data set S, deciding if there is a 
consistent 2-term DNF formula is NP-complete.  
Does that mean 2-term DNF is hard to learn? 

Hard to learn C by C, but easy to learn C by 
H, where H = {2-CNF}. 

If computation-time is no object, 
then any class is PAC-learnable 

• Occam bounds ) any class is learnable if 
computation time is no object: 
– Let s1=10, d1 = d/2.  For i=1,2,… do: 

• Request (1/e)[si + ln(1/di)] examples Si. 

• Check if there is a function of size at most si 
consistent with Si.  If so, output it and halt. 

• si+1 = 2si, di+1 = di/2. 

– At most d1 + d2 + … · d chance of failure. 

– Total data used: O((1/e)[size(f)+ln(1/d)ln(size(f))]). 

1st terms sum to 𝑂(𝑠𝑖𝑧𝑒 𝑓 ) by telescoping.  2nd terms sum to: 

ln
2

𝛿
+ ln

4

𝛿
+ … + ln

𝑠𝑖𝑧𝑒 𝑓

𝛿
≤ ln (𝑠𝑖𝑧𝑒 𝑓 ln

𝑠𝑖𝑧𝑒 𝑓

𝛿
= ln2 𝑠𝑖𝑧𝑒 𝑓 + ln (𝑠𝑖𝑧𝑒 𝑓 ) ln

1

𝛿
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More about the PAC model 

• What if your alg only worked for d = ½, what would 
you do? 

• What if it only worked for e = ¼, or even e = ½-1/n?  
This is called weak-learning.  Will get back to later. 

• Agnostic learning model: Don’t assume anything 
about f.  Try to reach error opt(C) + e. 

Algorithm PAC-learns a class of functions C if: 
• For any given e>0, d>0, any target f 2 C, any dist. D, the 

algorithm produces h of err(h)<e with prob. at least 1-d. 
• Running time and sample sizes polynomial in relevant 

parameters: 1/e, 1/d, n, size(f). 
• Require h to be poly-time evaluatable.  Learning is called 

“proper” if h 2 C.  Can also talk about “learning C by H”. 

More about the PAC model 

Drawbacks of model: 
• In the real world, labeled examples are much more 

expensive than running time.  
• “Prior knowledge/beliefs” might be not just over form of 

target but other relations to data. 
• Doesn’t address other kinds of info (cheap unlabeled data, 

pairwise similarity information). 
• Only considers “one shot” learning. 

Algorithm PAC-learns a class of functions C if: 
• For any given e>0, d>0, any target f 2 C, any dist. D, the 

algorithm produces h of err(h)<e with prob. at least 1-d. 
• Running time and sample sizes polynomial in relevant 

parameters: 1/e, 1/d, n, size(f). 
• Require h to be poly-time evaluatable.  Learning is called 

“proper” if h 2 C.  Can also talk about “learning C by H”. 

Extensions we’ll get at later: 
• Replace log(|H|) with “effective number of 

degrees of freedom”. 

+ 

+ 

+ 

+ 

- 
- 

- 

- 

– There are infinitely many linear separators, but 
not that many really different ones. 

• Other more refined analyses. 

Some classic open problems 
Can one efficiently PAC-learn… 
• an intersection of 2 halfspaces? (2-term 

DNF trick doesn’t work) 

• C={fns with only O(log n) relevant 
variables}? (or even O(loglog n) or (1) 
relevant variables)?  This is a special case 
of DTs, DNFs. 

• Monotone DNF over uniform D? 

• Weak agnostic learning of monomials. 


