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15-859(B) Machine Learning Theory 
 

Semi-Supervised Learning 

Semi-Supervised Learning 

• The main models we have been studying (PAC, 
mistake-bound) are for supervised learning. 
– Given labeled examples S = {(xi,yi)}, try to learn a 

good prediction rule. 

• However, often labeled data is expensive.   

• On the other hand, often unlabeled data is 
plentiful and cheap. 
– Documents, images, OCR, web-pages, protein 

sequences, … 

• Can we use unlabeled data to help? 

Semi-Supervised Learning 

• Can we use unlabeled data to help? 

• Two scenarios: active learning and semi-
supervised learning. 
– Active learning: have ability to ask for labels of 

unlabeled points of interest. 

– Semi-supervised learning: no querying. Just have 
lots of additional unlabeled data. 

– Will look today at SSL.  This is the most puzzling 
one since unclear what unlabeled data can do for 
you. 

Semi-Supervised Learning 

Can we use unlabeled data to help? 
• Unlabeled data is missing the most important 

info!  But maybe still has useful regularities 
that we can use…. 

Semi-Supervised Learning 

Can we use unlabeled data to help? 
• This is a question a lot of people in ML have 

been interested in.  A number of interesting 
methods have been developed. 

Today: 
• Discuss several methods for trying to use  

unlabeled data to help. 

• Extension of PAC model to make sense of 
what’s going on. 

Plan for today 

Methods: 
• Co-training 

• Transductive SVM 

• Graph-based methods 

Model: 
• Augmented PAC model for SSL. 

There’s also a book “Semi-supervised 
learning” on the topic. 
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Co-training 
[Blum&Mitchell’98] motivated by [Yarowsky’95] 

Yarowsky’s Problem & Idea: 
• Some words have multiple meanings (e.g., “plant”).  

Want to identify which meaning was intended in any 
given instance. 

• Standard approach: learn function from local 
context to desired meaning, using labeled data. 
“…nuclear power plant generated…” 

• Idea: use fact that in most documents, multiple 
uses have same meaning. Use to transfer confident 
predictions over. 

Co-training 
Actually, many problems have a similar characteristic. 

• Examples x can be written in two parts 
(x1,x2). 

• Either part alone is in principle sufficient to 
produce a good classifer. 

• E.g., speech+video, image and context, web 
page contents and links. 

• So if confident about label for x1, can use to 
impute label for x2, and vice versa. Use each 
classifier to help train the other. 

Example: classifying webpages 
• Co-training: Agreement between two parts 

– examples contain two sets of features, i.e. an example is 
x=〈x1, x2〉 and the belief is that the two parts of the 
example are sufficient and consistent, i.e. ∃ c1, c2 such that 
c1(x1)=c2(x2)=c(x) 
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Example: intervals 
Suppose x1 ∈ R, x2 ∈ R.  c1 = [a1,b1], c2 = [a2,b2] 

+ 

+ 
+ 

+ + 

Co-Training Theorems 
• [BM98] if x1, x2 are independent given the 

label: D = p(D1
+ x D2

+) + (1-p)(D1
- x D2

-), and if 
C is SQ-learnable, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data. 

• Def: h is weakly-useful if  

Pr[h(x)=1|c(x)=1] > Pr[h(x)=1|c(x)=0] + . 

(same as weak hyp if target c is balanced) 

• E.g., say “syllabus” appears on 1/3 of course 
pages but only 1/6 of non-course pages. 

Co-Training Theorems 
• [BM98] if x1, x2 are independent given the 

label: D = p(D1
+ x D2

+) + (1-p)(D1
- x D2

-), and if 
C is SQ-learnable, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data. 

• E.g., say “syllabus” appears on 1/3 of course 
pages but only 1/6 of non-course pages. 

• Use as noisy label.  Like classification noise 
with potentially asymmetric noise rates , . 

• Can learn so long as + < 1-. 
(helpful trick: balance data so observed labels are 50/50) 
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Co-Training Theorems 
• [BM98] if x1, x2 are independent given the 

label: D = p(D1
+ x D2

+) + (1-p)(D1
- x D2

-), and if 
C is SQ-learnable, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data. 

• [BalcanB05] in some cases (e.g., LTFs), you 
can use this to learn from a single labeled 
example! 

Co-Training Theorems 
• [BM98] if x1, x2 are independent given the 

label: D = p(D1
+ x D2

+) + (1-p)(D1
- x D2

-), and if 
C is SQ-learnable, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data. 

• [BalcanB05] in some cases (e.g., LTFs), you 
can use this to learn from a single labeled 
example! 
– Pick random hyperplane and boost (using above). 

– Repeat process multiple times. 

– Get 4 kinds of hyps: {close to c, close to :c, close 
to 1, close to 0} 

Co-Training Theorems 
• [BM98] if x1, x2 are independent given the 

label: D = p(D1
+ x D2

+) + (1-p)(D1
- x D2

-), and if 
C is SQ-learnable, then can learn from an 
initial “weakly-useful” h1 plus unlabeled data. 

• [BalcanB05] in some cases (e.g., LTFs), you 
can use this to learn from a single labeled 
example! 

• [BalcanBYang04] if don’t want to assume 
indep, and C is learnable from positive data 
only, then suffices for D+ to have expansion. 

Co-Training and expansion 

  Text info Link info 

+ 

+ 

+ 

X1 
X2 

Want initial sample to expand to full set of positives 
after limited number of iterations. 

Transductive SVM [Joachims98] 

• Suppose we believe target separator goes through 
low density regions of the space/large margin. 

• Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U) 

+ 

+ 

_ 

_ 

Labeled data only 

+ 

+ 

_ 

_ 

+ 

+ 

_ 

_ 

Transductive SVM 
SVM 

Transductive SVM [Joachims98] 

• Suppose we believe target separator goes through 
low density regions of the space/large margin. 

• Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U) 

• Unfortunately, optimization problem is now NP-
hard.  Algorithm instead does local optimization. 
– Start with large margin over labeled data. Induces 

labels on U. 

– Then try flipping labels in greedy fashion. 

 
+ 

+ 
_ 

_ 

+ 
+ 

_ 

_ 

+ 
+ 

_ 

_ 
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Graph-based methods 
• Suppose we believe that very similar 

examples probably have the same label. 

• If you have a lot of labeled data, this 
suggests a Nearest-Neighbor type of alg. 

• If you have a lot of unlabeled data, suggests 
a graph-based method. 

Graph-based methods 
• Transductive approach.  (Given L + U, output 

predictions on U). 

• Construct a graph with edges between very 
similar examples. 

• Solve for: 
– Minimum cut 

– Minimum “soft-cut” 
[ZhuGhahramaniLafferty] 

– Spectral partitioning 

Graph-based methods 
• Suppose just two labels: 0 & 1.  

• Solve for labels f(x) for unlabeled examples 
x to minimize: 
–  e=(u,v)|f(u)-f(v)|   [soln = minimum cut] 

–  e=(u,v) (f(u)-f(v))2 [soln = electric potentials] 

• In case of min-cut, can use counting/VC-dim 
results to get confidence                          
bounds. 

- 

- + 

+ 

How can we think about 
these approaches to using 

unlabeled data in a PAC-style 
model? 

PAC-SSL Model [BalcanB05] 
• Augment the notion of a concept class C 

with a notion of compatibility  between a 
concept and the data distribution. 

• “learn C” becomes “learn (C,)” (i.e. learn 
class C under compatibility notion ) 
 

• Express relationships that one hopes the 
target function and underlying distribution 
will possess. 
 

• Idea: use unlabeled data & the belief that 
the target is compatible to reduce C down to 
just {the highly compatible functions in C}. 

PAC-SSL Model [BalcanB05] 
• Augment the notion of a concept class C 

with a notion of compatibility  between a 
concept and the data distribution. 

• “learn C” becomes “learn (C,)” (i.e. learn 
class C under compatibility notion ) 
 

• To do this, need unlabeled data to allow us to 
uniformly estimate compatibilities well. 
 

• Require that the degree of compatibility be 
something that can be estimated from a finite 
sample. 
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PAC-SSL Model [BalcanB05] 
• Augment the notion of a concept class C 

with a notion of compatibility  between a 
concept and the data distribution. 

• “learn C” becomes “learn (C,)” (i.e. learn 
class C under compatibility notion ) 
 

• Require  to be an expectation over individual 
examples: 

–  (h,D)=Ex~D[(h, x)] compatibility of h with D, 

(h,x) 2 [0,1] 

–   errunl(h)=1-(h, D)  incompatibility of h with D 

(unlabeled error rate of h) 

Margins, Compatibility 

• Margins: belief is that should exist a large margin separator. 

 

 

 

 

 
 

• Incompatibility of h and D (unlabeled error rate of h) – the 
probability mass within distance  of h. 

• Can be written as an expectation over individual examples 
(h,D)=𝐸𝑥∈𝐷[(h,x)] where: 

•  (h,x)=0 if dist(x,h) < 

•  (h,x)=1 if dist(x,h) >  

Highly compatible + 

+ 

+ 

_ 

_ 

• Margins: belief is that should exist a large margin separator. 

 

 

 

 
 

 

• If do not want to commit to  in advance,  define (h,x) to be 
a smooth function of dist(x,h), e.g.:  

 

 

• Illegal notion of compatibility: the largest  s.t. D has 
probability mass exactly zero within distance  of h. 

 

Highly compatible + 

+ 

+ 

_ 

_ 

Margins, Compatibility 
Co-Training, Compatibility 

• Co-training: examples come as pairs <x1, x2> and the goal 
is to learn a pair of functions  <h1, h2> 

• Hope is that the two parts of the example are consistent. 

 

• Legal (and natural) notion of compatibility:   

– the compatibility of <h1, h2> and D:  

 

 

– can be written as an expectation over examples: 

 Sample Complexity - Uniform convergence bounds 
 

Finite Hypothesis Spaces, Doubly Realizable Case 

• Define CD,() = {h in C : errunl(h) < }. 

Theorem 

 

 

 

 

 

• Bound the # of labeled examples as a measure of the 

helpfulness of D with respect to  
– a helpful distribution is one in which CD,() is small 

 Example 

• Every variable is a positive indicator or negative 

indicator.  No example has both kinds. 
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 Semi-Supervised Learning 
 Natural Formalization (PAC) 

• We will say an algorithm "PAC-learns" if it runs in 

poly time using samples poly in respective bounds. 

 

• E.g., can think of ln|C| as # bits to describe target 

without knowing D, and ln|CD,()| as number of bits to 

describe target knowing a good approximation to D, 

given the assumption that the target has low 

unlabeled error rate. 

Target in C, but not fully compatible 

Finite Hypothesis Spaces – c* not fully compatible: 

Theorem 
 

Infinite hypothesis spaces / VC-dimension 

Infinite Hypothesis Spaces 

Assume (h,x) in {0,1} and (C) = {h : h in C} where h(x) = (h,x). 

C[m,D] - expected # of splits of m points from D with concepts in C. 

 

-Cover-based bounds 
• For algorithms that behave in a specific way:  

– first use the unlabeled data to choose a 
representative set of compatible hypotheses 

– then use the labeled sample to choose among these 
 

Theorem 
 

 
 
 
 
 
 
 
 
 

 
  

 
 

• Can result in much better bound than uniform convergence. 

-Cover-based bounds 
• For algorithms that behave in a specific way:  

– first use the unlabeled data to choose a 
representative set of compatible hypotheses 

– then use the labeled sample to choose among these 
 

E.g., in case of co-training linear separators with 
independence assumption: 
–  -cover of compatible set  = {0, 1, c*, ¬c*} 

E.g., Transductive SVM when data is in two blobs. 

+ 

+ 

_ 

_ 

Ways unlabeled data can help in this model 

• If the target is highly compatible with D and have enough 
unlabeled data to estimate  over all h ∈ C, then can reduce 
the search space (from C down to just those h ∈ C whose 
estimated unlabeled error rate is low). 

 
• By providing an estimate of D, unlabeled data can allow a 

more refined distribution-specific notion of hypothesis 
space size  (such as Annealed VC-entropy or the size of the 
smallest -cover). 

 
• If D is nice so that the set of compatible h ∈ C has a small 

-cover and the elements of the cover are far apart, then 
can learn from even fewer labeled examples than the 1/ 
needed just to verify a good hypothesis. 


