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15-859(B) Machine Learning 
Theory 

Learning and Game Theory 
 

Plan for Today & Next time 
• 2-player zero-sum games 

• 2-player general-sum games 
– Nash equilibria 

– Correlated equilibria 

• Internal/swap regret and connection to 
correlated equilibria 

• Many-player games with structure: 
congestion games / exact potential games 
– Best-response dynamics 

– Price of anarchy, Price of stability 

 

2-Player Zero-Sum games 
• Two players R and C.  Zero-sum means that what’s 

good for one is bad for the other. 
 

• Game defined by matrix with a row for each of R’s 
options and a column for each of C’s options.  
Matrix tells who wins how much. 

• an entry (x,y) means: x = payoff to row player, y = payoff to 
column player.  “Zero sum” means that y = -x. 

• E.g., penalty shot: 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 

Game Theory terminolgy 
• Rows and columns are called pure strategies. 

 

• Randomized algs called mixed strategies. 
 

• “Zero sum” means that game is purely 
competitive. (x,y) satisfies x+y=0. (Game 
doesn’t have to be fair). 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 

Minimax-optimal strategies 
• Minimax optimal strategy is a (randomized) 

strategy that has the best guarantee on its 
expected gain, over choices of the opponent. 
[maximizes the minimum] 

• I.e., the thing to play if your opponent knows 
you well. 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 

Minimax-optimal strategies 
• Can solve for minimax-optimal strategies 

using Linear programming 

• No-regret strategies will do nearly as well or 
better. 

• I.e., the thing to play if your opponent knows 
you well. 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 



2 

Minimax Theorem (von Neumann 1928) 
• Every 2-player zero-sum game has a unique 

value V. 

• Minimax optimal strategy for R guarantees 
R’s expected gain at least V. 

• Minimax optimal strategy for C guarantees 
C’s expected loss at most V. 

Existence of no-regret strategies gives one 
way of proving the theorem. 

Can use notion of minimax 
optimality to explain bluffing 

in poker 

Simplified Poker (Kuhn 1950) 

• Two players A and B.   

• Deck of 3 cards: 1,2,3. 

• Players ante $1. 

• Each player gets one card.  

•  A goes first.  Can bet $1 or pass. 
• If A bets, B can call or fold. 

• If A passes, B can bet $1 or pass. 

– If B bets, A can call or fold. 

• High card wins (if no folding). Max pot $2. 

• Two players A and B.  3 cards: 1,2,3. 

• Players ante $1. Each player gets one card.  

•  A goes first.  Can bet $1 or pass. 
• If A bets, B can call or fold. 

• If A passes, B can bet $1 or pass. 

– If B bets, A can call or fold. 

Writing as a Matrix Game 
• For a given card, A can decide to 

• Pass but fold if B bets. [PassFold] 
• Pass but call if B bets. [PassCall] 
• Bet. [Bet] 

• Similar set of choices for B. 

Can look at all strategies as a 
big matrix… 

[FP,FP,CB] [FP,CP,CB] [FB,FP,CB] [FB,CP,CB] 

[PF,PF,PC] 
[PF,PF,B] 

[PF,PC,PC] 
[PF,PC,B] 
[B,PF,PC] 
[B,PF,B] 

[B,PC,PC] 
[B,PC,B] 

  0             0             -1/6             -1/6 
0            1/6           -1/3             -1/6 

-1/6           0                0                1/6 
-1/6        –1/6             1/6              1/6 
-1/6           0                0                1/6 
1/6        –1/3              0               –1/2 
1/6        –1/6           –1/6             –1/2 
0         –1/2             1/3             –1/6 
0         –1/3             1/6             –1/6 

And the minimax optimal 
strategies are… 

• A:  
– If hold 1, then 5/6 PassFold and 1/6 Bet. 
– If hold 2, then ½  PassFold and ½ PassCall. 
– If hold 3, then ½  PassCall and ½ Bet. 

Has both bluffing and underbidding… 
• B: 

– If hold 1, then 2/3 FoldPass and 1/3 FoldBet. 
– If hold 2, then 2/3 FoldPass and 1/3 CallPass. 
– If hold 3, then CallBet 

Minimax value of game is –1/18 to A. 
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Now, to General-Sum games… 

General-sum games 

• In general-sum games, can get win-win 
and lose-lose situations. 

• E.g., “what side of sidewalk to walk on?”: 

  (1,1)   (-1,-1) 
 

(-1,-1)  (1,1) 

 Left 
 

Right 

 Left   Right person 
walking 

towards you 

you 

General-sum games 

• In general-sum games, can get win-win 
and lose-lose situations. 

• E.g., “which movie should we go to?”: 

 (8,2)  (0,0) 
 

 (0,0)  (2,8) 

Peabody 
 

Capt America 

Peabody     Capt America 

No longer a unique “value” to the game. 

Nash Equilibrium 
• A Nash Equilibrium is a stable pair of 

strategies  (could be randomized). 
• Stable means that neither player has 

incentive to deviate on their own. 
• E.g., “what side of sidewalk to walk on”: 

  (1,1)   (-1,-1) 
 

(-1,-1)  (1,1) 

 Left 
 

Right 

 Left   Right 

NE are: both left, both right, or both 50/50. 

Uses 
• Economists use games and equilibria as 

models of interaction. 
• E.g., pollution / prisoner’s dilemma: 

–  (imagine pollution controls cost $4 but improve 
everyone’s environment by $3) 

  (2,2)  (-1,3) 
 

(3,-1)  (0,0) 

 don’t pollute 
 

pollute 

don’t pollute   pollute 

Need to add extra incentives to get good overall behavior. 

NE can do strange things 
• Braess paradox: 

– Road network, traffic going from s to t. 

– travel time as function of fraction x of 
traffic on a given edge. 

Fine.  NE is 50/50.  Travel time = 1.5 

s 

x 

1 

1 

t 

x 
travel time = 1, 
indep of traffic 

travel time 
t(x)=x.  



4 

NE can do strange things 
• Braess paradox: 

– Road network, traffic going from s to t. 

– travel time as function of fraction x of 
traffic on a given edge. 

Add new superhighway.  NE: everyone 
uses zig-zag path.  Travel time = 2. 

s 

x 

1 

1 

t 

x 
travel time = 1, 
indep of traffic 

travel time 
t(x)=x.  

0 

Existence of NE 
• Nash (1950) proved: any general-sum game 

must have at least one such equilibrium. 
– Might require mixed strategies. 

• This also yields minimax thm as a corollary. 
– Pick some NE and let V = value to row player in 

that equilibrium.  
– Since it’s a NE, neither player can do better 

even knowing the (randomized)  strategy their 
opponent is playing. 

– So, they’re each playing minimax optimal. 

Existence of NE in 2-player games 

• Proof will be non-constructive. 
• Unlike case of zero-sum games, we do not 
know any polynomial-time algorithm for 
finding Nash Equilibria in n £ n general-sum 
games. [known to be “PPAD-hard”] 

• Notation: 
– Assume an nxn matrix. 
– Use (p1,...,pn) to denote mixed strategy for row 

player, and (q1,...,qn) to denote mixed strategy 
for column player. 

Proof 

• We’ll start with Brouwer’s fixed point 
theorem. 
– Let S be a compact convex region in Rn and let 

f:S ! S be a continuous function. 

– Then there must exist x 2 S such that f(x)=x. 

– x is called a “fixed point” of f. 

• Simple case: S is the interval [0,1]. 

• We will care about: 
– S = {(p,q): p,q are legal probability distributions 

on 1,...,n}.   I.e.,  S =  simplexn £ simplexn 

Proof (cont) 

• S = {(p,q): p,q are mixed strategies}. 

• Want to define f(p,q) = (p’,q’) such that: 
– f is continuous.  This means that changing p 

or q a little bit shouldn’t cause p’ or q’ to 
change a lot. 

– Any fixed point of f is a Nash Equilibrium. 

• Then Brouwer will imply existence of NE. 

Try #1 

• What about f(p,q) = (p’,q’) where p’ is best 
response to q, and q’ is best response to p? 

• Problem: not necessarily well-defined: 
– E.g., penalty shot: if p = (0.5,0.5) then q’ could 

be anything. 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 
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Try #1 

• What about f(p,q) = (p’,q’) where p’ is best 
response to q, and q’ is best response to p? 

• Problem: also not continuous: 
– E.g., if p = (0.51, 0.49) then q’ = (1,0).  If p = 

(0.49,0.51) then q’ = (0,1). 

(0,0)  (1,-1) 
 

(1,-1)  (0,0) 

 Left 
 

Right 

 Left   Right 

Instead we will use... 

• f(p,q) = (p’,q’) such that: 
– q’ maximizes [(expected gain wrt p) - ||q-q’||2] 

– p’ maximizes [(expected gain wrt q) - ||p-p’||2] 

p  p’ 

Note: quadratic + linear = quadratic. 

Instead we will use... 

• f(p,q) = (p’,q’) such that: 
– q’ maximizes [(expected gain wrt p) - ||q-q’||2] 

– p’ maximizes [(expected gain wrt q) - ||p-p’||2] 

p 

Note: quadratic + linear = quadratic. 

p’ 

Instead we will use... 

• f(p,q) = (p’,q’) such that: 
– q’ maximizes [(expected gain wrt p) - ||q-q’||2] 

– p’ maximizes [(expected gain wrt q) - ||p-p’||2] 
 

• f is well-defined and continuous since 
quadratic has unique maximum and small 
change to p,q only moves this a little. 

• Also fixed point = NE.  (even if tiny 
incentive to move, will move little bit). 

• So, that’s it! 

 
 

Internal/Swap Regret  
and 

 Correlated Equilibria   

What if all players minimize regret? 
 In zero-sum games, empirical frequencies quickly 

approach minimax optimality. 

 In general-sum games, does behavior quickly (or 
at all) approach a Nash equilibrium?   

 After all, a Nash Eq is exactly a set of 
distributions that are no-regret wrt each 
other.  So if the distributions stabilize, they 
must converge to a Nash equil. 

 Well, unfortunately, they might not stabilize.   
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A bad example for general-sum games 

• Augmented Shapley game from [Zinkevich04]: 
– First 3 rows/cols are Shapley game (rock / paper / 

scissors but if both do same action then both lose). 
– 4th action “play foosball” has slight negative if other 

player is still doing r/p/s but positive if other player 
does 4th action too. 

RWM will cycle among first 3 and have no regret, but do 
worse than only Nash Equilibrium of both playing 
foosball. 

 
• We didn’t really expect this to work given how 

hard NE can be to find… 

Another interesting bad example 

• [Balcan-Constantin-Mehta12]: 
– Failure to converge even in Rank-1 games (games 

where R+C has rank 1). 
– Interesting because one can find equilibria efficiently 

in such games. 

What can we say? 

If algorithms minimize “internal” or “swap” regret, 
then empirical distribution of play approaches 
correlated equilibrium. 

 Foster & Vohra, Hart & Mas-Colell,… 

 Though doesn’t imply play is stabilizing. 

What are internal/swap regret 
and correlated equilibria? 

More general forms of regret 
1. “best expert” or “external” regret: 

– Given n strategies.  Compete with best of them in 
hindsight. 

2. “sleeping expert” or “regret with time-intervals”: 
– Given n strategies, k properties.  Let Si be set of days 

satisfying property i (might overlap). Want to 
simultaneously achieve low regret over each Si. 

3. “internal” or “swap” regret:  like (2), except that 
Si = set of days in which we chose strategy i. 

Internal/swap-regret 
• E.g., each day we pick one stock to buy 

shares in. 
– Don’t want to have regret of the form “every 

time I bought IBM, I should have bought 
Microsoft instead”. 

• Formally, swap regret is wrt optimal 
function f:{1,…,n}!{1,…,n} such that every 
time you played action j, it plays f(j). 

Correlated equilibrium 

• Distribution over entries in matrix, such that if a 
trusted party chooses one at random and tells 
you your part, you have no incentive to deviate. 

• E.g., Shapley game. 

 -1,-1  -1,1   1,-1 
 

  1,-1 -1,-1  -1,1 
 

 -1,1   1,-1   -1,-1 

R 
 

P 
 

S 

R       P       S 

In general-sum games, if all players have low swap-
regret, then empirical distribution of play is apx 
correlated equilibrium.  

-1,-1 

-1,-1 

-1,-1 



7 

Connection 
• If all parties run a low swap regret 

algorithm, then empirical distribution of 
play is an apx correlated equilibrium. 

– Correlator chooses random time t 2 {1,2,…,T}.  
Tells each player to play the action j they 
played in time t (but does not reveal value of t). 

– Expected incentive to deviate:jPr(j)(Regret|j) 
= swap-regret of algorithm 

– So, this suggests correlated equilibria may be 
natural things to see in multi-agent systems 
where individuals are optimizing for themselves 

Correlated vs Coarse-correlated Eq 

“Correlated equilibrium” 
• You have no incentive to deviate, even after 

seeing what the advice is. 

“Coarse-Correlated equilibrium” 
• If only choice is to see and follow, or not to see 

at all, would prefer the former. 

In both cases: a distribution over entries in the 
matrix.  Think of a third party choosing from this 
distr and telling you your part as “advice”. 

Low external-regret ) apx coarse correlated equilib. 

Internal/swap-regret, contd 
Algorithms for achieving low regret of this 

form: 
– Foster & Vohra, Hart & Mas-Colell, Fudenberg 

& Levine. 

– Will present method of [BM05] showing how to 
convert any “best expert” algorithm into one 
achieving low swap regret. 

– Unfortunately, #steps to achieve low swap 
regret is O(n log n) rather than O(log n). 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 

  

Alg 

Play p = pQ 

Cost vector c 
q2

 

A1 

A2 

An 

. 

. 

. 

Q 

– Allows us to view pj as prob we play 
action j, or as prob we play alg Aj. 

p2c 

– Give Aj feedback of pjc. 

– Aj guarantees t (pj
tct)¢qj

t · mini t pj
tci

t + [regret term] 

– Write as:       t pj
t(qj

t¢ct) · mini t pj
tci

t + [regret term] 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 

  

Alg 

Play p = pQ 

Cost vector c 
q2

 

A1 

A2 

An 

. 

. 

. 

Q 

– Sum over j, get: 

 

p2c 

t ptQtct · j mini t pj
tci

t + n[regret term] 

– Write as:       t pj
t(qj

t¢ct) · mini t pj
tci

t + [regret term] 

Our total cost For each j, can move our prob to its own i=f(j) 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 

  

Alg 

Play p = pQ 

Cost vector c 
q2

 

A1 

A2 

An 

. 

. 

. 

Q 

– Sum over j, get: 

 

p2c 

t ptQtct · j mini t pj
tci

t + n[regret term] 

Our total cost For each j, can move our prob to its own i=f(j) 

– Get swap-regret at most n times orig external regret. 
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Congestion games 
• Many multi-agent interactions have 

structure.  One nice class: Congestion Games 

• Always have a pure-strategy equilibrium. 

• Have a potential function s.t. whenever a 
player switches, potential drops by exactly 
that player’s improvement.   
– So, best-response dynamics always gives an 

equilibrium. 

– Can view as positive statement about very simple 
learning rule. 

• Let’s start with an example. 

G 

Fair cost-sharing 
Fair cost-sharing:  n players in weighted directed graph G. 

Player i wants to get from si to ti, and they share cost 
of edges they use with others. 

Fair cost-sharing:  n players in weighted directed graph G. 
Player i wants to get from si to ti, and they share cost 
of edges they use with others. 

s 

t 

1 n 

Good equilibrium: all use edge of cost 1. 
(cost 1/n per player) 

Bad equilibrium: all use edge of cost n. 
(cost 1 per player) 

Cost(bad equilib) = n¢Cost(good equilib) 

Good equilibria, Bad equilibria Good equilibria, Bad equilibria 

… 1 1 1 1 

s1 sn 

t 

0 0 0 

k ¿ n 

cars 

Shared 
transit 

Note that here, 
bad equilb is what 
you’d expect from 
natural dynamics 
(players entering 
one at time, etc) 

Fair cost-sharing:  n players in weighted directed graph G. 
Player i wants to get from si to ti, and they share cost 
of edges they use with others. 

Price of Anarchy and Price of Stability 

• Price of Anarchy: ratio of worst equilibrium to 
social optimum.  (worst-case over games in class) 

– We saw for cost-sharing PoA = (n). Also O(n). 

• Price of Stability: ratio of best equilibrium to 
social optimum. (worst-case over games in class) 

– For cost-sharing, PoS = £(log n). 

• Exact Potential function: Function © s.t. if player 
moves, potential changes by exactly as much as 
cost of player who moved. 
– Guarantees that best-response dynamics will reach 

Nash equilibrium 

Potential functions and PoS 
For cost-sharing, PoS = O(log n): 
• Given state S, let ne = # players on edge e. Cost(S) = 

 

• Define potential ©(S) =  
 

• So, cost(S) · ©(S) · log(n) £ cost(S).  

• Now consider best-response dynamics starting           
from OPT.  © can only decrease. 

… 1 1 1 1 

s1 sn 

t 

0 0 0 

k ¿ n 

cars 

Shared 
transit 
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Congestion games more generally 
Game defined by n players and m resources. 
• Each player i choses a set of resources (e.g., a path) from 

collection Si of allowable sets of resources (e.g., paths 
from si to ti).  
 

• Cost of a resource j is a function fj(nj) of the number nj 
of players using it. 
 

• Cost incurred by player i is the sum, over all resources 
being used, of the cost of the resource. 

• Generic potential function:  

 
 

• Best-response dynamics may take a long time to reach 
equil, but if gap between © and cost is small, can get to 
apx-equilib (additive appropximation) fast. 

Current/recent research directions  
(esp in relation to machine learning) 

 

• Are there natural dynamics that can manage to reach 
good equilibria on their own? 

 

• Can one say anything interesting about “combining expert 
advice” types of problems where the quality of an expert 
depends on what the other players are doing?  (In 
particular, in comparison to best equilibrium) 


