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15-859(B) Machine Learning 
Theory 

The Adversarial Multi-armed Bandit 
Problem 

Avrim Blum 

Start with recap 

Consider the following setting… 
 Each morning, you need to pick 

one of N possible routes to drive 
to work. 

 But traffic is different each day. 
 Not clear a priori which will be best. 

 When you get there you find out how 
long your route took.  (And maybe 
others too or maybe not.) 

Robots 
R Us 

32 min 

 Want a strategy for picking routes so that in the long 
run, whatever the sequence of traffic patterns has 
been, you’ve done nearly as well as the best fixed 
route in hindsight? (In expectation, over internal 
randomness in the algorithm) 

“No-regret” algorithms for repeated decisions 

General framework: 

 Algorithm has N options.  World chooses cost vector.  
Can view as matrix like this (maybe infinite # cols) 

 

 

 

 At each time step, algorithm picks row, life picks column. 

 Alg pays cost for action chosen. 

 Alg gets column as feedback (or just its own cost in 
the “bandit” model). 

 Need to assume some bound on max cost.  Let’s say all 
costs between 0 and 1. 
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“No-regret” algorithms for repeated decisions 

  
 

 

 

 

 

 At each time step, algorithm picks row, life picks column. 

 Alg pays cost for action chosen. 

 Alg gets column as feedback (or just its own cost in 
the “bandit” model). 

 Need to assume some bound on max cost.  Let’s say all 
costs between 0 and 1. 

Define average regret in T time steps as: 
     (avg per-day cost of alg) – (avg per-day cost of best  
     fixed row in hindsight).  
We want this to go to 0 or better as T gets large.          
[called a “no-regret” algorithm] 
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History and development (abridged) 
 [Hannan’57, Blackwell’56]:  Alg. with regret O((N/T)1/2). 

 Re-phrasing, need only T = O(N/2) steps to get time-
average regret down to .  (will call this quantity T) 

 Optimal dependence on T (or ).  Game-theorists 
viewed #rows N as constant, not so important as T, so 
pretty much done. 

Why optimal in T? 
 

 
• Say world flips fair coin each day. 
• Any alg, in T days, has expected cost T/2. 
• But E[min(# heads,#tails)] = T/2 – O(T1/2). 
• So, per-day gap is O(1/T1/2). 
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History and development (abridged) 
 [Hannan’57, Blackwell’56]:  Alg. with regret O((N/T)1/2). 

 Re-phrasing, need only T = O(N/2) steps to get time-
average regret down to .  (will call this quantity T) 

 Optimal dependence on T (or ).  Game-theorists 
viewed #rows N as constant, not so important as T, so 
pretty much done. 

 Learning-theory 80s-90s: “combining expert advice”.  
Imagine large class C of N prediction rules. 
 Perform (nearly) as well as best f2C. 
 [LittlestoneWarmuth’89]: Weighted-majority algorithm 

 E[cost] · OPT(1+) + (log N)/. 
 Regret O((log N)/T)1/2.  T = O((log N)/2). 

 Optimal as fn of N too, plus lots of work on exact 
constants, 2nd order terms, etc. [CFHHSW93]… 

 Extensions to bandit model (adds extra factor of N). 

 Bounds have only log dependence on # choices N. 

 So, conceivably can do well when N is exponential 
in natural problem size, if only could implement 
efficiently. 

 E.g., case of paths… 

 

 
 

 This is what we discussed last time. 

Efficient implicit implementation for large N… 

dest 

[Kalai-Vempala’03] and [Zinkevich’03] settings 

[Z] setting: 

 Assume S is convex.   

 Allow c(x) to be a convex function over S. 

 Assume given any y not in S, can algorithmically find 
nearest x 2 S. 

[KV] setting: 

 Implicit set S of feasible points in Rm. (E.g., m=#edges, 
S={indicator vectors 011010010 for possible paths}) 

 Assume have oracle for offline problem: given vector c, 
find x 2 S to minimize c¢x. (E.g., shortest path algorithm) 

 Use to solve online problem: on day t, must pick xt2 S 
before ct is given. 

 (c1¢x1+…+cT¢xT)/T ! minx2Sx¢(c1+…+cT)/T. 

x 

Plan for today 

 What if we only get feedback for the action we 
choose? (called the “multi-armed bandit” setting) 

 

 But first, a quick discussion of [0,1] vs {0,1} costs for 
RWM algorithm 

[0,1] costs vs {0,1} costs. 

We analyzed Randomized Wtd Majority for case that all 
costs in {0,1} (and slightly hand-waved extension to [0,1]) 

Here is an alternative simple way to extend to [0,1]. 

 Given cost vector c, view ci as bias of coin.  Flip to create 
boolean vector c’, s.t. E[c’i] = ci.  Feed c’ to alg A. 

 

 

 For any sequence of vectors c’, we have: 

 EA[cost’(A)] · mini cost’(i) + [regret term] 

 So, E$[EA[cost’(A)]] · E$[mini cost’(i)] + [regret term] 

 LHS is EA[cost(A)].  (since A picks weights before seeing costs) 

 RHS · mini E$[cost’(i)] + [r.t.] = mini[cost(i)] + [r.t.] 

In other words, costs between 0 and 1 just make the 
problem easier… 

c 
$ 

c’ 
world A 

Cost’ = cost on 
c’ vectors 
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Experts ! Bandit setting 

 In the bandit setting, only get feedback for the action 
we choose.  Still want to compete with best action in 
hindsight. 

 [ACFS02] give algorithm with cumulative regret            
O( (TN log N)1/2 ).  [average regret O( ((N log N)/T)1/2 ).] 

 

 Will do a somewhat weaker version of their analysis 
(same algorithm but not as tight a bound). 

 

 Talk about it in the context of online pricing… 

Online pricing 
• Say you are selling lemonade (or a cool new software tool, or 

bottles of water at the world cup). 

• For t=1,2,…T 

– Seller sets price pt 

– Buyer arrives with valuation vt 

– If vt ¸ pt, buyer purchases and pays pt, else doesn’t. 

– Repeat. 

• Assume all valuations · h. 

$2 

• Goal: do nearly as well as best fixed 
price in hindsight. 

View each possible 
price as a different 

row/expert 

• If vt revealed, run RWM. E[gain] ¸ OPT(1-²) - O(²-1 h log n). 

Multi-armed bandit problem 
Exponential Weights for Exploration and Exploitation (exp3) 

 
 

RWM 
 
 

n = 
#experts 

  

Exp3 

Distrib pt 

Expert i ~ qt 

Gain gi
t 

Gain vector ĝt 

qt 

qt = (1-°)pt + ° unif 

ĝt = (0,…,0, gi
t/qi

t,0,…,0) 

OPT 

OPT 

1. RWM believes gain is: pt ¢ ĝt  =  pi
t(gi

t/qi
t)  ´ gt

RWM 

3. Actual gain is: gi
t  = gt

RWM (qi
t/pi

t) ¸ gt
RWM(1-°) 

2. t gt
RWM ¸        (1-²) - O(²-1 nh/° log n) OPT  

4. E[      ] ¸ OPT.  OPT                           Because E[ĝj
t] = (1- qj

t)0 + qj
t(gj

t/qj
t) = gj

t , 
so E[maxj[t ĝj

t]] ¸ maxj [ E[t ĝj
t] ]  = OPT. 

· nh/° 

[Auer,Cesa-Bianchi,Freund,Schapire] 

Multi-armed bandit problem 
Exponential Weights for Exploration and Exploitation (exp3) 

 
 

RWM 
 
 

n = 
#experts 

 

  

Exp3 

Distrib pt 

Expert i ~ qt 

Gain gi
t 

Gain vector ĝt 

qt 

qt = (1-°)pt + ° unif 

ĝt = (0,…,0, gi
t/qi

t,0,…,0) 

OPT 

OPT 

Conclusion (° = ²):   
  E[Exp3] ¸ OPT(1-²)2 - O(²-2 nh log(n))  

[Auer,Cesa-Bianchi,Freund,Schapire] 

· nh/° 

Balancing would give O((OPT nh log n)2/3) in bound because of ²-2.  
But can reduce to ²-1 and O((OPT nh log n)1/2) with better analysis.  

Another reduction (not as good but more generic) 

Given: algorithm A for full-info setting with regret · R(T). 

Goal: use in black-box manner for bandit problem. 

Preliminaries: 

 First, suppose we break our T time steps into K blocks of 
size T/K each.  

 

 

 

 

 Use same distrib throughout block and update based on 
average cost vector c for block . 

 Then, will get regret · R(K) £ T/K. 

 What if we instead update on cost vector c’ 2 [0,1]N 
that’s a random variable whose expectation is correct? 

B1 B2 B BK 

T/K 

Because really paying 
T/K £ c  per block  

B1 B2 B 

Given: algorithm A for full-info setting with regret · R(T). 

Goal: use in black-box manner for bandit problem. 

Preliminaries: 

 First, suppose we break our T time steps into K blocks of 
size T/K each.  

 

 

 

 

 Do at least as well by {0,1}![0,1] argument.  Still get 
regret bound R(K) £ T/K. 

 How does this help us for bandit problem? 

 What if we instead update on cost vector c’ 2 [0,1]N 
that’s a random variable whose expectation is correct? 

BK 

T/K 

Another reduction (not as good but more generic) 
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Experts ! Bandit setting 

 For bandit problem, for each action, pick random time 
step in each block to try it as “exploration”. 

 Define c’ only wrt these exploration steps. 

 Just have to pay an extra at most NK for cost of this 
exploration. 
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T/K 

Experts ! Bandit setting 

 For bandit problem, for each action, pick random time 
step in each block to try it as “exploration”. 

 Define c’ only wrt these exploration steps. 

 Just have to pay an extra at most NK for cost of this 
exploration. 

 

 

 

 

 Final bound: R(K) £ T/K + NK. 

 Using K = (T/N)2/3 and bound from RWM, get cumulative 
regret bound of O(T2/3N1/3 log N) . 

B1 B2 B BK 

T/K 

Summary 
Algorithms for online decision-making with 
strong guarantees on performance compared 
to best fixed choice. 

• Application: play repeated game against 
adversary.  Perform nearly as well as fixed 
strategy in hindsight.  

Can apply even with very limited feedback. 
• Application: which way to drive to work, with 

only feedback about your own paths; online 
pricing, even if only have buy/no buy feedback. 


