
Reinforcement learning

and
Markov Decision Processes (MDPs)

15-859(B)

Avrim Blum

RL and MDPs

General scenario: We are an agent in some state. Have obser-

vations, perform actions, get rewards. (See lights, pull levers, get

cookies)

Markov Decision Process: like DFA problem except we’ll assume:

• Transitions are probabilistic. (harder than DFA)

• Observation = state. (easier than DFA)

Assumption is that reward and next state are (probabilistic) func-

tions of current observation and action only.

• Goal is to learn a good strategy for collecting reward, rather

than necessarily to make a model. (different from DFA)

&%
'$

&%
'$
&%
'$

�
�

�
�

�
�

�
�

�
��:

X
X

X
X

X
X

X
X

X
XXz

s1

s2

s3

a1,0.6

a1,0.4

Typical example

Imagine a grid world with walls.

• Actions left, right, up, down.

• If not currently hugging a wall, then with some probability the

action takes you to an incorrect neighbor.

• Entering top-right corner gives reward of 100 and then takes

you to a random state.

Nice features of MDPs

• Like DFA, an appealing model of agent trying to figure out

actions to take in the world. Incorporates notion of actions

being good or bad for reasons that will only become apparent

later.

• Probabilities allow to handle situations like: wanted robot to

go forward 1 foot but went forward 1.5 feet instead and turned

slightly to right. Or someone randomly picked it up and moved

it somewhere else.

• Natural learning algorithms that propagate reward backwards

through state space. If get reward 100 in state s, then perhaps

give value 90 to state s′ you were in right before s.

• Probabilities can to some extent model states that look the

same by merging them, though this is not always a great model.

Limitations

• States that look the same can be a real problem. E.g., “door is

locked” and “door is unlocked”. Don’t want to just keep trying,

and explicitly modeling belief-state blows up problem size.

• Markov assumption not quite right (similar issue).

• “POMDP” model captures probabilistic transitions and lack of

full observability, but much less to say about them.

What exactly do we mean by a good strategy?

Several notions of what we might want a learned strategy to opti-

mize:

• Expected reward per time step.

• Expected reward in first t steps.

• Expected discounted reward: r0+γr1+γ2r2+γ3r3+ . . . (γ < 1)

We will focus on this last one.

• Why γi, and not, e.g., 1/i2?

One answer: makes it time independent. In other words the best

action to take in state s doesn’t depend on when you get there.

So, we are looking for an optimal policy (a mapping from states to

actions).

Q-values

Goal is to maximize discounted reward:

r0 + γr1 + γ2r2 + γ3r3 + . . . ,

Define: Q(s, a) = expected discounted reward if perform a from s
and then follow optimal policy from then on.

Define: V (s) = max
a

Q(s, a).

Equivalent defn: V (s) = max
a

[R(s, a) + γ
∑

s′
Pr(s′)V (s′)].

(R(s, a) = expected reward for doing action a in state s.)

Why is this OK as a definition?

A: Only one solution.

Can see this either by proving by contradiction, or noticing that if you’re off by

some amount ∆ on the right-hand-side, then you’ll be off by only γ∆ on the

left-hand-side.

How to solve for Q-values?

Suppose we are given the transition and reward functions. How to

solve for Q-values? Two natural ways:

1. Dynamic Programming. Start with guesses V0(s) for all states

s. Update using:

Vi(s) = max
a



E[R(s, a)] + γ
∑

s′
Pr(s′)Vi−1(s

′)





Get ǫ-close in O(1
γ log 1

ǫ) steps. In fact, if initialize all V0(s) = 0,

then Vt(s) represents max discounted reward if game ends in t

steps.

2. Linear Programming. Replace “max” with “≥” and minimize
∑

s V (s) subject to these constraints.

Q-learning

Start off with initial guesses Q̂(s, a) for all Q-values. Then update

these as you travel. Update rules:

• Deterministic world: in state s, do a, go to s′, get reward r:

Q̂(s, a) ←− r + γ max
a′

Q̂(s′, a′)

• Probabilistic world: on the tth update of Q̂(s, a):

Q̂(s, a) ←− (1− αt)Q̂(s, a) + αt[r + γ max
a′

Q̂(s′, a′)]

Idea: dampen the randomness.

αt = 1/t or similar. With αt = 1/t, you get a fair average of all the rewards
received for doing a in state s. If you make more slowly decreasing, you favor
more recent r’s.

Proof of convergence (deterministic case for simplicity)

Start with some Q̂ values. Let: ∆0 = maxs,a |Q̂(s, a)−Q(s, a)|.

Define a “Q-interval” to be an interval in which every (s, a) is tried

at least once.

Claim: after the ith Q-interval, maxs,a |Q̂(s, a) − Q(s, a)| ≤ ∆0γi. In

addition, during the ith Q-interval, this maximum difference will be

at most ∆0γi−1.

Proof: Prove by induction. Base case (the very beginning) is OK.

After an update in interval i of Q̂(s, a), (let’s say that action a takes

you from s to s′) we have:

|Q̂(s, a)−Q(s, a)| = |(r + γ max
a′

Q̂(s′, a′))− (r + γ max
a′

Q(s′, a′)|

= γ|max
a′

Q̂(s′, a′)−max
a′

Q(s′, a′)|

≤ γ max
a′
|Q̂(s′, a′)−Q(s′, a′)|

≤ γ · γi−1∆0.

So, to get convergence, pick actions so that #intervals →∞.

Does approximating V give an apx optimal policy?

Say we find V̂ and use greedy policy π with respect to V̂ . Does

V̂ (s) ≈ V (s) necessarily imply V π(s) ≈ V (s) for all states s?

• V π(s) is value of s if we follow policy π.

• Let ǫ = maxs |V̂ (s)− V (s)|. Assuming this quantity is small.

• Let ∆ = maxs[V (s)−V π(s)]. Want to show this has to be small

too.

Does apx V give an apx optimal policy? Yes.

Let s be a state where gap is largest: V (s) − V π(s) = ∆. Say

opt(s) = a but π(s) = b. V π(s) = R(s, b) + γ
∑

s′Prb(s
′)V π(s′).

Step 1: Consider following π for 1 step and then doing opt from

then on. At best this helps by γ∆.

Step 2: So, this implies that

∆(1− γ) ≤ [R(s, a) + γ
∑

s′
Pr
a

(s′)V (s′)]− [R(s, b) + γ
∑

s′
Pr
b
(s′)V (s′)].

Step 3: But, since b looked better according to V̂ ,

0 ≥ [R(s, a) + γ
∑

s′
Pr
a

(s′)V̂ (s′)]− [R(s, b) + γ
∑

s′
Pr
b
(s′)V̂ (s′)].

Step 4: But since |V (s′)− V̂ (s′)| ≤ ǫ, by subtracting we get:

∆(1− γ) ≤ γ[
∑

s′
Pr
a

(s′)ǫ] + γ[
∑

s′
Pr
b
(s′)ǫ] ≤ 2γǫ.

So, ∆ ≤ 2ǫγ/(1− γ).

What if state space is too large to write down explicitly?

In practice, often have large state space. Each state described by

set of features.

Much like concept learning except:

– Next example is probabilistic function of action and previous

example.

– Most examples don’t have labels. Only get feedback infre-

quently (e.g., when you win the game, reach the goal, etc.).

What if state space is too large to write down explicitly?

Neat idea: Use Q-learning (or TD(λ)) to train standard learning

algorithm with “hallucinated” feedback.

Say we’re in state s, do action a, get reward r, and go to s′. Use

(1−α)Q̂(s, a)+α(r + γV̂ (s′)) as the label. Can think of like training

up an evaluation function for chess by trying to make it be self-

consistent.

Will this really work? “May work in practice but it will never work

in theory”.

Depends on how well your predictor can fit the value function. Even

if it can fit it, you might still get into a bad feedback loop.

Work by Geoff Gordon on what conditions really ensure things will

go well. In practice, it can still sometimes work fine even if these

aren’t satisfied. E.g., TD-gammon backgammon player.

