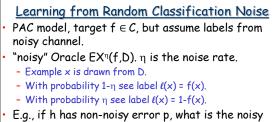
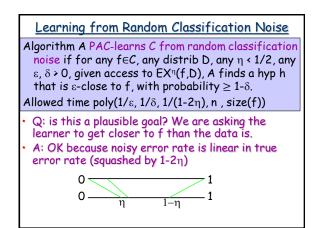


Learning when there is no perfect hypothesis

- Hoeffding/Chernoff bounds: minimizing training error will approximately minimize true error: just need $O(1/\varepsilon^2)$ samples versus $O(1/\varepsilon)$.
- What about polynomial-time algorithms? Seems harder.
- Given data set S, finding apx best conjunction is NP-hard.
 Can do other things, like minimize hinge-loss, but may be a big gap wrt error rate ("0/1 loss").
- One way to make progress: make assumptions on the "noise" in the data. E.g., Random Classification Noise model.



- E.g., if h has non-noisy error p, what is the noisy error rate?
 - $p(1-\eta) + (1-p)\eta = \eta + p(1-2\eta)$.



Notation

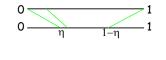
- Use "Pr[...]" for probability with respect to non-noisy distribution.
- Use "Pr_η[...]" for probability with respect to noisy distribution.

Learning OR-functions (assume monotone) Let's assume noise rate η is known. Say $p_i = \Pr[f(x)=0 \text{ and } x_i=1]$ Any h that includes all x_i such that $p_i=0$ and no x_i such that $p_i > \varepsilon/n$ is good. So, just need to estimate p_i to $\pm \frac{\varepsilon}{2n}$.

- Rewrite as $p_i = \Pr[f(x)=0|x_i=1] \times \Pr[x_i=1]$.
- 2^{nd} part unaffected by noise (and if tiny, can ignore $x_i).$ Define q_i as 1^{st} part.
- Then $\Pr_{\eta}[\ell(x)=0|x_i=1] = q_i(1-\eta)+(1-q_i)\eta = \eta+q_i(1-2\eta).$
- So, enough to approx LHS to $\pm O\left(\frac{\epsilon}{2n}(1-2\eta)\right)$.

Learning OR-functions (assume monotone)

• If noise rate not known, can estimate with smallest value of $\Pr_{\eta}[\ell(x)=0|x_i=1]$.



Generalizing the algorithm

Basic idea of algorithm was:

- See how can learn in non-noisy model by asking about probabilities of certain events with some "slop".
- Try to learn in noisy model by breaking events into:
 - Parts predictably affected by noise.
 - Parts unaffected by noise.
- Let's formalize this in notion of "statistical query" (SQ) algorithm. Will see how to convert any SQ alg to work with noise.

The Statistical Query Model

- No noise.
- Algorithm asks: "what is the probability a labeled example will have property χ? Please tell me up to additive error τ."
 - Formally, $\chi{:}X\times\{0,1\}\to\{0,1\}.$ Must be poly-time computable. $\tau\ge 1/\text{poly}(...).$
 - Let $P_{\chi} = \Pr[\chi(x,f(x))=1].$
 - World responds with $\mathsf{P}'_\chi\in[\mathsf{P}_\chi\text{-}\tau,\,\mathsf{P}_\chi\text{+}\tau].$
 - [can extend to [0,1]-valued or vector-valued $\boldsymbol{\chi}$]
- May repeat poly(...) times. Can also ask for unlabeled data. Must output h of error $\leq \epsilon.$ No δ in this model.

The Statistical Query Model

- Examples of queries:
- What is the probability that x_i=1 and label is negative? - What is the error rate of my current hypothesis h? $[\chi(x,\ell)=1 \text{ iff } h(x) \neq \ell]$
- Get back answer to $\pm \tau$. Can simulate from $\approx 1/\tau^2$ examples. [That's why need $\tau \ge 1/\text{poly}(...)$.]
- To learn OR-functions, ask for Pr[x_i=1 and f(x)=0] with $\tau = \frac{\epsilon}{2n}$. Produce OR of all x_i s.t. $P'_{\chi} \le \frac{\epsilon}{2n}$.

The Statistical Query Model

- Many algorithms can be simulated with statistical queries:
 - Perceptron: ask for E[f(x)x : $h(x) \neq f(x)$] (formally define vector-valued $\chi = f(x)x$ if $h(x) \neq f(x)$, and 0 otherwise. Then divide by Pr[$h(x) \neq f(x)$].)
 - Hill-climbing type algorithms: what is error rate of h? What would it be if I made this tweak?
- Properties of SQ model:
 - Can automatically convert to work in presence of classification noise.
 - Can give a nice characterization of what can and cannot be learned in it.

<u>SQ-learnable \Rightarrow (PAC+Noise)-learnable</u>

Given query $\chi_{\text{,}}$ need to estimate from noisy data. Idea:

- Break into part predictably affected by noise, and part unaffected.
- Estimate these parts separately.
- Can draw fresh examples for each query or estimate many queries from same sample if VCDim of query space is small.
- Running example: $\chi(x, \ell)=1$ iff $x_i=1$ and $\ell=0$.

How to estimate $Pr[\chi(x,f(x))=1]$?

- Let CLEAN = $\{x : \chi(x,0) = \chi(x,1)\}$
- Let NOISY = { $x : \chi(x,0) \neq \chi(x,1)$ }

- What are these for " $\chi(x,\ell)=1$ iff $x_i=1$ and $\ell=0$ "? Now we can write:

- $\Pr[\chi(x,f(x))=1] = \Pr[\chi(x,f(x))=1 \text{ and } x \in CLEAN] + \Pr[\chi(x,f(x))=1 \text{ and } x \in NOISY].$
- Step 1: first part is easy to estimate from noisy data (easy to tell if $x \in CLEAN$).
- What about the 2nd part?

How to estimate $Pr[\chi(x,f(x))=1]$?

- Let $CLEAN = \{x : \chi(x,0) = \chi(x,1)\}$
- Let NOISY = { $x : \chi(x,0) \neq \chi(x,1)$ } - What are these for $\chi(x,\ell)=1$ iff $x_i=1$ and $\ell=0$?
- Now we can write: - $Pr[\chi(x,f(x))=1] = Pr[\chi(x,f(x))=1 \text{ and } x \in CLEAN] + Pr[\chi(x,f(x))=1 \text{ and } x \in NOISY].$
- Can estimate Pr[x ∈ NOISY].
- Also estimate $P_{\eta} \equiv \Pr_{\eta}[\chi(x,\ell)=1 \mid x \in \text{NOISY}].$
- Want $P \equiv Pr[\chi(x, f(x))=1 | x \in NOISY].$
- Write $P_{\eta} = P(1-\eta) + (1-P)\eta = \eta + P(1-2\eta)$.

- Just need to estimate P_{η} to additive error $\tau(1-2\eta)$.
- If don't know η, can have "guess and check" wrapper around entire algorithm.

<u>Characterizing what's learnable using</u> <u>SQ algorithms</u>

- Key tool: Fourier analysis of boolean functions.
- Sounds scary but it's a cool idea!
- Let's think of functions from {0,1}ⁿ →{-1,1}.
 View function f as a vector of 2ⁿ entries:
- $\left(\sqrt{D[000]}f(000),\sqrt{D[001]}f(001),\dots,\sqrt{D[x]}f(x),\dots\right)$
- What is (f, f)? What is (f, g)?
- What is an orthonormal basis? Will see connection to SQ algs next time...