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15-859(B) Machine Learning Theory 
 

Learning from noisy data, intro to SQ 
model 

Avrim Blum 
02/26/14 

Learning when there is no perfect 
hypothesis 

• Hoeffding/Chernoff bounds: minimizing training error will 
approximately minimize true error: just need O(1/2) 
samples versus O(1/). 

• What about polynomial-time algorithms?  Seems harder. 

– Given data set S, finding apx best conjunction is NP-hard.  

– Can do other things, like minimize hinge-loss, but may be 
a big gap wrt error rate (“0/1 loss”). 

• One way to make progress: make assumptions on the “noise” 
in the data.  E.g., Random Classification Noise model. 

Learning from Random Classification Noise 
• PAC model, target f ∈ C, but assume labels from 

noisy channel. 

• “noisy” Oracle EX(f,D).  is the noise rate. 
– Example x is drawn from D. 

– With probability 1- see label l(x) = f(x). 

– With probability  see label l(x) = 1-f(x). 

• E.g., if h has non-noisy error p, what is the noisy 
error rate? 
– p(1-) + (1-p) =  + p(1-2). 
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Learning from Random Classification Noise 

Algorithm A PAC-learns C from random classification 

noise if for any f∈C, any distrib D, any  < 1/2, any 
,  > 0, given access to EX(f,D), A finds a hyp h 
that is -close to f, with probability ≥ 1-.   

Allowed time poly(1/, 1/, 1/(1-2), n , size(f)) 

• Q: is this a plausible goal? We are asking the 
learner to get closer to f than the data is. 

• A: OK because noisy error rate is linear in true 
error rate (squashed by 1-2) 
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Notation 

• Use “Pr[…]” for probability with respect to 
non-noisy distribution. 

• Use “Pr[…]” for probability with respect to 
noisy distribution. 

Learning OR-functions (assume monotone) 

• Let’s assume noise rate  is known. 

• Say pi = Pr[f(x)=0 and xi=1] 

• Any h that includes all xi such that pi=0 and no xi 
such that pi > /n is good. 

• So, just need to estimate pi to ±
𝜖

2𝑛
. 

– Rewrite as pi = Pr[f(x)=0|xi=1] × Pr[xi=1]. 

– 2nd part unaffected by noise (and if tiny, can ignore xi). 
Define qi as 1st part.   

– Then Pr[l(x)=0|xi=1] = qi(1-)+(1-qi) = +qi(1-2). 

– So, enough to approx LHS to ±𝑂
𝜖

2𝑛
1 − 2𝜂 . 
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Learning OR-functions (assume monotone) 

• If noise rate not known, can estimate with 
smallest value of Pr[l(x)=0|xi=1]. 
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Generalizing the algorithm 
Basic idea of algorithm was: 

• See how can learn in non-noisy model by asking 
about probabilities of certain events with some 
“slop”.  

• Try to learn in noisy model by breaking events into: 
– Parts predictably affected by noise. 

– Parts unaffected by noise. 

Let’s formalize this in notion of “statistical query” 
(SQ) algorithm.  Will see how to convert any SQ alg 
to work with noise. 

The Statistical Query Model 
• No noise. 

• Algorithm asks: “what is the probability a labeled 
example will have property ? Please tell me up to 
additive error .” 
– Formally, :𝑋 × 0,1 → 0,1 . Must be poly-time 

computable.  ≥ 1/poly(…). 

– Let P = Pr[(x,f(x))=1]. 

– World responds with P’ ∈ [P-, P+]. 

  [can extend to [0,1]-valued or vector-valued ] 

 

• May repeat poly(…) times.  Can also ask for unlabeled data.  
Must output h of error ≤ . No  in this model. 

The Statistical Query Model 
• Examples of queries: 

– What is the probability that xi=1 and label is negative? 

– What is the error rate of my current hypothesis h? 
[(x,l)=1 iff h(x)  l] 

• Get back answer to ±.  Can simulate from  ≈ 1/2 
examples. [That’s why need  ≥ 1/poly(…).] 

• To learn OR-functions, ask for Pr[xi=1 and f(x)=0] with 𝜏 =
𝜖

2𝑛
. 

Produce OR of all xi s.t. 𝑃𝜒
′ ≤

𝜖

2𝑛
. 

The Statistical Query Model 
• Many algorithms can be simulated with statistical 

queries: 
– Perceptron: ask for E[f(x)x : h(x)f(x)]  (formally define 

vector-valued  = f(x)x if h(x)f(x), and 0 otherwise.  Then divide by 
Pr[h(x)f(x)].) 

– Hill-climbing type algorithms: what is error rate of h? 
What would it be if I made this tweak? 

• Properties of SQ model: 
– Can automatically convert to work in presence of 

classification noise. 

– Can give a nice characterization of what can and cannot 
be learned in it. 

SQ-learnable ⇒ (PAC+Noise)-learnable 
• Given query , need to estimate from noisy 

data.  Idea: 
– Break into part predictably affected by noise, 

and part unaffected. 

– Estimate these parts separately. 

– Can draw fresh examples for each query or 
estimate many queries from same sample if 
VCDim of query space is small. 

• Running example: (x,l)=1 iff xi=1 and l=0. 
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How to estimate Pr[(x,f(x))=1]? 

• Let CLEAN = {x : (x,0) = (x,1)} 

• Let NOISY = {x : (x,0)  (x,1)} 
– What are these for “(x,l)=1 iff xi=1 and l=0” ? 

• Now we can write: 
– Pr[(x,f(x))=1] = Pr[(x,f(x))=1 and x∈CLEAN] + 

                             Pr[(x,f(x))=1 and x∈NOISY]. 

• Step 1: first part is easy to estimate from 
noisy data (easy to tell if x ∈ CLEAN). 

• What about the 2nd part? 

How to estimate Pr[(x,f(x))=1]? 

• Let CLEAN = {x : (x,0) = (x,1)} 
• Let NOISY = {x : (x,0)  (x,1)} 

– What are these for (x,l)=1 iff xi=1 and l=0 ? 

• Now we can write: 
– Pr[(x,f(x))=1] = Pr[(x,f(x))=1 and x∈CLEAN] + 
                             Pr[(x,f(x))=1 and x∈NOISY]. 

• Can estimate Pr[x ∈ NOISY]. 
• Also estimate P ≡ Pr[(x,l)=1 | x ∈ NOISY]. 
• Want P ≡ Pr[(x,f(x))=1 | x  ∈ NOISY]. 
• Write P = P(1-) + (1-P) =  + P(1-2). 
• So, P = (P - )/(1-2). 

– Just need to estimate P to additive error (1-2). 
– If don’t know , can have “guess and check” wrapper 

around entire algorithm. 

Characterizing what’s learnable using 
SQ algorithms 

• Key tool: Fourier analysis of boolean functions. 

• Sounds scary but it’s a cool idea! 

• Let’s think of functions from {0,1}n →{-1,1}. 

• View function f as a vector of 2n entries: 

𝐷 000 𝑓 000 , 𝐷 001 𝑓 001 , … , 𝐷 𝑥 𝑓 𝑥 , …  

• What is 〈𝑓, 𝑓〉? What is 〈𝑓, 𝑔〉?  

• What is an orthonormal basis?  Will see connection 
to SQ algs next time… 


