
1

15-859(B) Machine Learning Theory

Learning from noisy data, intro to SQ
model

Avrim Blum
02/26/14

Learning when there is no perfect
hypothesis

• Hoeffding/Chernoff bounds: minimizing training error will
approximately minimize true error: just need O(1/2)
samples versus O(1/).

• What about polynomial-time algorithms? Seems harder.

– Given data set S, finding apx best conjunction is NP-hard.

– Can do other things, like minimize hinge-loss, but may be
a big gap wrt error rate (“0/1 loss”).

• One way to make progress: make assumptions on the “noise”
in the data. E.g., Random Classification Noise model.

Learning from Random Classification Noise
• PAC model, target f ∈ C, but assume labels from

noisy channel.

• “noisy” Oracle EX(f,D). is the noise rate.
– Example x is drawn from D.

– With probability 1- see label l(x) = f(x).

– With probability see label l(x) = 1-f(x).

• E.g., if h has non-noisy error p, what is the noisy
error rate?
– p(1-) + (1-p) = + p(1-2).

1

0 1

0

 1-

Learning from Random Classification Noise

Algorithm A PAC-learns C from random classification

noise if for any f∈C, any distrib D, any < 1/2, any
, > 0, given access to EX(f,D), A finds a hyp h
that is -close to f, with probability ≥ 1-.

Allowed time poly(1/, 1/, 1/(1-2), n , size(f))

• Q: is this a plausible goal? We are asking the
learner to get closer to f than the data is.

• A: OK because noisy error rate is linear in true
error rate (squashed by 1-2)

1

0 1

0

 1-

Notation

• Use “Pr[…]” for probability with respect to
non-noisy distribution.

• Use “Pr[…]” for probability with respect to
noisy distribution.

Learning OR-functions (assume monotone)

• Let’s assume noise rate is known.

• Say pi = Pr[f(x)=0 and xi=1]

• Any h that includes all xi such that pi=0 and no xi
such that pi > /n is good.

• So, just need to estimate pi to ±
𝜖

2𝑛
.

– Rewrite as pi = Pr[f(x)=0|xi=1] × Pr[xi=1].

– 2nd part unaffected by noise (and if tiny, can ignore xi).
Define qi as 1st part.

– Then Pr[l(x)=0|xi=1] = qi(1-)+(1-qi) = +qi(1-2).

– So, enough to approx LHS to ±𝑂
𝜖

2𝑛
1 − 2𝜂 .

2

Learning OR-functions (assume monotone)

• If noise rate not known, can estimate with
smallest value of Pr[l(x)=0|xi=1].

1

0 1

0

 1-

Generalizing the algorithm
Basic idea of algorithm was:

• See how can learn in non-noisy model by asking
about probabilities of certain events with some
“slop”.

• Try to learn in noisy model by breaking events into:
– Parts predictably affected by noise.

– Parts unaffected by noise.

Let’s formalize this in notion of “statistical query”
(SQ) algorithm. Will see how to convert any SQ alg
to work with noise.

The Statistical Query Model
• No noise.

• Algorithm asks: “what is the probability a labeled
example will have property ? Please tell me up to
additive error .”
– Formally, :𝑋 × 0,1 → 0,1 . Must be poly-time

computable. ≥ 1/poly(…).

– Let P = Pr[(x,f(x))=1].

– World responds with P’ ∈ [P-, P+].

 [can extend to [0,1]-valued or vector-valued]

• May repeat poly(…) times. Can also ask for unlabeled data.
Must output h of error ≤ . No in this model.

The Statistical Query Model
• Examples of queries:

– What is the probability that xi=1 and label is negative?

– What is the error rate of my current hypothesis h?
[(x,l)=1 iff h(x) l]

• Get back answer to ±. Can simulate from ≈ 1/2
examples. [That’s why need ≥ 1/poly(…).]

• To learn OR-functions, ask for Pr[xi=1 and f(x)=0] with 𝜏 =
𝜖

2𝑛
.

Produce OR of all xi s.t. 𝑃𝜒
′ ≤

𝜖

2𝑛
.

The Statistical Query Model
• Many algorithms can be simulated with statistical

queries:
– Perceptron: ask for E[f(x)x : h(x)f(x)] (formally define

vector-valued = f(x)x if h(x)f(x), and 0 otherwise. Then divide by
Pr[h(x)f(x)].)

– Hill-climbing type algorithms: what is error rate of h?
What would it be if I made this tweak?

• Properties of SQ model:
– Can automatically convert to work in presence of

classification noise.

– Can give a nice characterization of what can and cannot
be learned in it.

SQ-learnable ⇒ (PAC+Noise)-learnable
• Given query , need to estimate from noisy

data. Idea:
– Break into part predictably affected by noise,

and part unaffected.

– Estimate these parts separately.

– Can draw fresh examples for each query or
estimate many queries from same sample if
VCDim of query space is small.

• Running example: (x,l)=1 iff xi=1 and l=0.

3

How to estimate Pr[(x,f(x))=1]?

• Let CLEAN = {x : (x,0) = (x,1)}

• Let NOISY = {x : (x,0) (x,1)}
– What are these for “(x,l)=1 iff xi=1 and l=0” ?

• Now we can write:
– Pr[(x,f(x))=1] = Pr[(x,f(x))=1 and x∈CLEAN] +

 Pr[(x,f(x))=1 and x∈NOISY].

• Step 1: first part is easy to estimate from
noisy data (easy to tell if x ∈ CLEAN).

• What about the 2nd part?

How to estimate Pr[(x,f(x))=1]?

• Let CLEAN = {x : (x,0) = (x,1)}
• Let NOISY = {x : (x,0) (x,1)}

– What are these for (x,l)=1 iff xi=1 and l=0 ?

• Now we can write:
– Pr[(x,f(x))=1] = Pr[(x,f(x))=1 and x∈CLEAN] +
 Pr[(x,f(x))=1 and x∈NOISY].

• Can estimate Pr[x ∈ NOISY].
• Also estimate P ≡ Pr[(x,l)=1 | x ∈ NOISY].
• Want P ≡ Pr[(x,f(x))=1 | x ∈ NOISY].
• Write P = P(1-) + (1-P) = + P(1-2).
• So, P = (P -)/(1-2).

– Just need to estimate P to additive error (1-2).
– If don’t know , can have “guess and check” wrapper

around entire algorithm.

Characterizing what’s learnable using
SQ algorithms

• Key tool: Fourier analysis of boolean functions.

• Sounds scary but it’s a cool idea!

• Let’s think of functions from {0,1}n →{-1,1}.

• View function f as a vector of 2n entries:

𝐷 000 𝑓 000 , 𝐷 001 𝑓 001 , … , 𝐷 𝑥 𝑓 𝑥 , …

• What is 〈𝑓, 𝑓〉? What is 〈𝑓, 𝑔〉?

• What is an orthonormal basis? Will see connection
to SQ algs next time…

