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15-859(B) Machine Learning 
Theory 

More on why large margins are good 
for learning.  Kernels and  general 

similarity functions.  L1 – L2 connection. 

Avrim Blum 

02/19/14 

Margins 

If data is separable by large margin , then that’s a good 
thing.  Need sample size only Õ(1/2) to learn to 
constant error rate. 

 
 
 

Some ways to see it: 

1. The perceptron algorithm does well: makes only 
1/2 mistakes. 

2. Margin bounds: whp all consistent large-margin 
separators have low true error. 

3. Really-Simple-Learning + boosting… 

4. Random projection… 

|wx|  , 𝑤 = 1, 𝑥 = 1 

+ 
+ + 

+ + 

+ 

- 
- 
- 

- 
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Today: 3 & 4. 

A really simple learning algorithm 
Suppose data is separable by margin .  Here is 

another way to see why this is good for 
learning. 

 

Consider the following simple algorithm… 
1. Pick a random linear separator. 
2. See if it is any good.   
3. If it is a weak hypothesis (error rate  ½ - /4), 

plug into boosting.   Else don’t.  Repeat. 
 

Claim: if ∃ a large margin separator, then ≥ 𝑐𝛾 chance that 
random separator is weak hyp. 

Can pick random separators before seeing data, so can 
view as 𝑀𝐴𝐽𝑘(𝐻) for k = O 1/𝛾2 , 𝐻 = 𝑂(𝑘/𝛾) 

Proof: Consider random h s.t. ℎ ⋅ 𝑤∗ ≥ 0:  

 Pick a (positive) example x.  Consider the 2-d 
plane defined by x and target w*. 
 

 Prh(hx  0 | hw*  0) 
              (/2 - )/ = ½ - /. 

 So, Eh[err(h) | hw*  0]  ½ - /. 
 

 Since err(h) is bounded between 0 and 1, there 
must be an (𝛾) chance of success. 

A really simple learning algorithm 
Claim: if data has a separator of margin , there’s 

a reasonable chance a random linear separator 
will have error  ½ - /4. [all hyperplanes through origin] 

w* 
x 

QED 

Another way to see why large margin is good 

Johnson-Lindenstrauss Lemma: 
Given n points in Rn, if project randomly to Rk, for 

k = O(-2 log n), then whp all pairwise distances 
preserved up to 1   (after scaling by (n/k)1/2). 

Cleanest proofs: IndykMotwani98, DasguptaGupta99 

JL Lemma, cont 

Proof easiest for slightly different projection: 
 Pick k vectors u1, …, uk iid from n-diml gaussian. 

 Map p → 𝑝 ⋅ 𝑢1, … , 𝑝 ⋅ 𝑢𝑘 . 

 What happens to vij = pi – pj? 

 Becomes (vij ⋅ u1, … , vij ⋅ uk) 

 Each component is iid from 1-diml gaussian, scaled by 
|vij|. 

 For concentration on sum of squares, plug in version 
of Hoeffding for RVs that are squares of gaussians. 

 So, whp all lengths apx preserved, and in fact not hard 
to see that whp all angles are apx preserved too. 

Given n points in Rn, if project randomly to Rk, for k = O(-2 log n), then 
whp all pairwise distances preserved up to 1 (after scaling). 

Cleanest proofs: IM98, DG99 
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Random projection and margins 
Natural connection [ArriagaVempala99]: 

 Suppose we have a set S of points in Rn, separable by 
margin . 

 JL lemma says if project to random k-dimensional space 
for k=O(-2 log |S|), whp still separable (by margin /2). 

 Think of projecting points and target vector w. 

 Angles between pi and w change by at most /2. 

 Could have picked projection before sampling data.  

 So, it’s really just a k-dimensional problem after all.  Do 
all your learning in this k-diml space. 

 So, random projections can help us 
think about why margins are good for 
learning. [note: this argument does NOT imply 

uniform convergence in original space] 

OK, now to another way to 
view kernels… 

Kernel function recap 
 We have a lot of great algorithms for learning 

linear separators (perceptron, SVM, …).  But, a lot 
of time, data is not linearly separable. 
 One option: use a more complicated algorithm. 
 Another option: use a kernel function! 

 Many algorithms only interact with the data via 
dot-products. 
 So, let’s just re-define dot-product. 
 E.g., K(x,y) = (1 + x⋅y)d. 

- K(x,y) = (x) ⋅ (y), where () is implicit mapping into 
an nd-dimensional space. 

 Algorithm acts as if data is in “-space”. Allows it to 
produce non-linear curve in original space.   

 Don’t have to pay for high dimension if data is linearly 
separable there by a large margin. 

+ + 
+ 

+ 

- - - 

- 

Question: do we need the 
notion of an implicit space to 

understand what makes a 
kernel helpful for learning? 

• Match intuition that you are looking for a 
good measure of similarity for the problem 
at hand? 

 
• Get the power of the standard theory with 

less of “something for nothing” feel to it? 

Can we develop a more intuitive theory? 

And remove even need for existence of Φ? 

Can we develop a more intuitive theory? 

 

 

What would we intuitively want in a 
good measure of similarity for a  

given learning problem? 
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A reasonable idea: 
 Say have a learning problem P (distribution D 

over examples labeled by unknown target f). 

 Sim fn K:(    ,     )→[-1,1] is good for P if: 
most x are on average more similar to random 
pts of their own label than to random pts of 
the other label, by some gap . 

E.g., most images of men are on average -more 
similar to random images of men than random 
images of women, and vice-versa. 

(Scaling so all values in [-1,1]) 

A reasonable idea: 
 Say have a learning problem P (distribution D 

over examples labeled by unknown target f). 

 Sim fn K:(x,y)→[-1,1] is (,)-good for P if at 
least a 1- fraction of examples x satisfy: 

Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)l(x)]+ 

E.g., most images of men are on average -more 
similar to random images of men than random 
images of women, and vice-versa. 

(Scaling so all values in [-1,1]) 

A reasonable idea: 
 Say have a learning problem P (distribution D 

over examples labeled by unknown target f). 

 Sim fn K:(x,y)→[-1,1] is (,)-good for P if at 
least a 1- fraction of examples x satisfy: 

Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)l(x)]+ 

How can we use it? 

Just do “average nearest-nbr” 
At least a 1- fraction of x satisfy: 

  Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)l(x)]+ 

 Draw S+ of O((1/2)ln 1/2) positive examples. 

 Draw S- of O((1/2)ln 1/2) negative examples 

 Classify x based on which gives better score. 
 Hoeffding: for any given “good x”, prob of error over 

draw of S+,S- at most 2. 

 So, at most  chance our draw is bad on more than  
fraction of “good x”.   

 With prob ≥ 1-, error rate ≤  + . 

But not broad enough 

 K(x,y)=x⋅y has good separator but doesn’t 
satisfy defn. (half of positives are more similar to 
negs that to typical pos) 

+ + 

_ 

30o 

30o 

These have avg 
similarity 0.5 to -, 

0.25 to + 

But not broad enough 

 Idea: would work if we didn’t pick y’s from top-left.   

 Broaden to say: OK if ∃ large region R s.t. most x are on 
average more similar to y∈R of same label than to y∈R of 
other label. (even if don’t know R in advance) 

+ + 

_ 

30o 

30o 

http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
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Broader defn… 

 Ask that exists a set R of “reasonable” y 
(allow probabilistic) s.t. almost all x satisfy 

 Formally, say K is (’,,)-good if 𝐸𝑥[𝛾-hinge loss(𝑥)] 
≤ ’, and Pr(R+), Pr(R-) ≥ . 

 Thm 1: this is a legitimate way to think about good 
kernels: 
 If kernel has margin  in implicit space, then for 

any  is (,2,)-good in this sense. 

Ey[K(x,y)|l(x)=l(y), y∈R] ≥ Ey[K(x,y)|l(x)l(y), y∈R]+ 

Broader defn… 

 Ask that exists a set R of “reasonable” y 
(allow probabilistic) s.t. almost all x satisfy 

 Formally, say K is (’,,)-good if 𝐸𝑥[𝛾-hinge loss(𝑥)] 
≤ ’, and Pr(R+), Pr(R-) ≥ . 

 Thm 2: even if not a legal kernel, this is 
nonetheless sufficient for learning. 
 If K is (’,,)-good, ’<<, can learn to error  with 

𝑂
1

𝜖𝛾2 log
1

𝜖𝛾𝜏
 labeled examples. 

[and Õ(1/(2)) unlabeled examples] 

Ey[K(x,y)|l(x)=l(y), y∈R] ≥ Ey[K(x,y)|l(x)l(y), y∈R]+ 

How to use such a sim fn? 

 Assume ∃ R s.t. Pry[R+,R-] ≥ and almost all x 
satisfy 

 Draw S = {y1,…,yn},  n≈1/(2). 

 View as “landmarks”, use to map new data: 
F(x) = [K(x,y1), …,K(x,yn)]. 

 Whp, exists separator of good L1 margin in 
this space: w=[0,0,1/n+,1/n+,0,0,0,-1/n-,0] 

(n+ = # yi ∈ R+, n- = #y ∈ R-) 

 So, take new set of examples, project to 
this space, and run good L1 alg (Winnow). 

could be unlabeled 

Ey[K(x,y)|l(x)=l(y), y∈R] ≥ Ey[K(x,y)|l(x)l(y), y∈R]+ 

Other notes 
 So, large margin in implicit space  satisfy this defn (with 

potentially quadratic penalty in margin). 

 Can apply to similarity functions that are not legal kernels.  
E.g., 

 K(x,y)=1 if x,y within distance d, else 0. 

 K(s1, s2) = output of arbitrary dynamic-programming alg 
applied to s1, s2, scaled to [-1,1]. 

 Nice work on using this in the context of edit-distance 
similarity fns for string data [Bellet-Sebban-Habrard 11] 

 This def is really an L1 style margin, so has nice properties: 

 E.g., given k similarity fns with hope that some convex 
combination is good: only log(k) blowup in sample size. 


