15-859(B) Machine Learning Theory

Avrim Blum 01/22/14

Lecture 4: The Perceptron Algorithm

Recap from last time

- Winnow algorithm for learning a disjunction of r out of n variables. eg f(x)= x₃ v x₉ v x₁₂
- h(x): predict pos iff $w_1x_1 + \dots + w_nx_n \ge n$.
- Initialize w_i = 1 for all i.
 - Mistake on pos: $w_i \leftarrow 2w_i$ for all x_i =1.
 - Mistake on neg: $w_i \leftarrow 0$ for all x_i =1.
- Thm: Winnow makes at most O(r log n) mistakes.

Recap from last time

- Winnow algorithm for learning a k-of-r function: e.g., $x_3 + x_9 + x_{10} + x_{12} \ge 2$.
- h(x): predict pos iff $w_1x_1 + ... + w_nx_n \ge n$.
- Initialize w_i = 1 for all i.
 - Mistake on pos: $w_i \leftarrow w_i(1+\epsilon)$ for all x_i =1.
 - Mistake on neg: $w_i \leftarrow w_i/(1+\epsilon)$ for all $x_i=1$. - Use $\epsilon = 1/2k$.
- Thm: Winnow makes at most O(rk log n) mistakes.

Winnow for general LTFs

More generally, can show the following (will do the analysis on hwk2): Suppose $\exists w^* s.t.$:

- $w^* \cdot x \ge c$ on positive x,
- w* · x \leq c γ on negative x.

Then mistake bound is

• $O((L_1(w^*)/\gamma)^2 \log n)$

Multiply by $L_{\infty}(X)$ if examples not in {0,1}

Perceptron algorithm

An even older and simpler algorithm, with a bound of a different form.

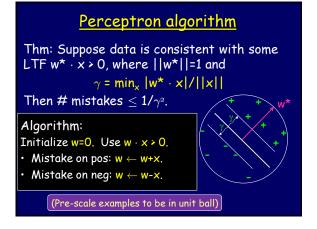
Suppose $\exists w^* s.t.$:

- * w* $\cdot \mathbf{x} \geq \gamma$ on positive x,
- w* \cdot x \leq - γ on negative x.

Then mistake bound is

• $O(L_2(w^*)L_2(x)/\gamma^2)$

L₂ margin of examples





Analysis

Thm: Suppose data is consistent with some LTF w^{*} · x > 0, where $||w^*||=1$ and $\gamma = \min_x |w^* \cdot x|$ (after scaling so all ||x||=1)

Then # mistakes \leq 1/ γ^2 .

Proof: consider |w · w*| and ||w||

- Each mistake increases $|\mathbf{w} \cdot \mathbf{w}^*|$ by at least γ . $(\mathbf{w} + \mathbf{x}) \cdot \mathbf{w}^* = \mathbf{w} \cdot \mathbf{w}^* + \mathbf{x} \cdot \mathbf{w}^* \ge \mathbf{w} \cdot \mathbf{w}^* + \gamma$.
- Each mistake increases www by at most 1. $(w + x) \cdot (w + x) = w \cdot w + 2(w \cdot x) + x \cdot x \le w \cdot w + 1.$
- So, in M mistakes, $\gamma M \leq |w \cdot w^*| \leq ||w|| \leq M^{1/2}$.

• So, $\mathsf{M} \leq 1/\gamma^2$.

Lower bound

It's not possible in general to get $< 1/\gamma^2$ mistakes. Proof: consider $1/\gamma^2$ coordinate vectors. $w^* = \pm \gamma x_1 \pm \gamma x_2 \pm \cdots \pm \gamma x_{1/\gamma^2}$ $||w^*|| = 1, |w^* \cdot x| = \gamma$

Proof: consider $|w \cdot w^*|$ and ||w||

- Each mistake increases $|\mathbf{w} \cdot \mathbf{w}^*|$ by at least γ . $(\mathbf{w} + \mathbf{x}) \cdot \mathbf{w}^* = \mathbf{w} \cdot \mathbf{w}^* + \mathbf{x} \cdot \mathbf{w}^* \geq \mathbf{w} \cdot \mathbf{w}^* + \gamma$.
- Each mistake increases ww by at most 1. $(w + x) \cdot (w + x) = w \cdot w + 2(w \cdot x) + x \cdot x \le w \cdot w + 1.$
- So, in M mistakes, $\gamma M \leq |w \cdot w^*| \leq ||w|| \leq M^{1/2}$.
- So, $\mathsf{M} \leq 1/\gamma^2$.

What if no perfect separator?

In this case, a mistake could cause $|w \cdot w^*|$ to drop. The γ -hinge-loss of $w^* = \sum_x \max[0, 1 - l(x)(x \cdot w^*)/\gamma]$ (by how much, in units of γ , would you have to move the points to all be correct by γ)

Proof: consider $|w \cdot w^*|$ and ||w||

- Each mistake increases $|\mathbf{w} \cdot \mathbf{w}^*|$ by at least γ . $(\mathbf{w} + \mathbf{x}) \cdot \mathbf{w}^* = \mathbf{w} \cdot \mathbf{w}^* + \mathbf{x} \cdot \mathbf{w}^* \ge \mathbf{w} \cdot \mathbf{w}^* + \gamma$.
- Each mistake increases www by at most 1. $(w + x) \cdot (w + x) = w \cdot w + 2(w \cdot x) + x \cdot x \le w \cdot w + 1.$
- So, in M mistakes, $\gamma M \leq |w \cdot w^*| \leq ||w|| \leq M^{1/2}$.
- So, $\mathsf{M} \leq 1/\gamma^2$.

What if no perfect separator?

In this case, a mistake could cause $|w \cdot w^*|$ to drop. The γ -hinge-loss of $w^* = \sum_x \max[0, 1 - l(x)(x \cdot w^*)/\gamma]$ Mistakes(perceptron) $\leq 1/\gamma^2 + 2(\gamma$ -hinge-loss(w^*))

Proof: consider |w · w*| and ||w||

- Each mistake increases $|\mathbf{w} \cdot \mathbf{w}^*|$ by at least γ . $(\mathbf{w} + \mathbf{x}) \cdot \mathbf{w}^* = \mathbf{w} \cdot \mathbf{w}^* + \mathbf{x} \cdot \mathbf{w}^* \ge \mathbf{w} \cdot \mathbf{w}^* + \gamma$.
- Each mistake increases www by at most 1. $(w + x) \cdot (w + x) = w \cdot w + 2(w \cdot x) + x \cdot x \le w \cdot w + 1.$
- So, in M mistakes, $\gamma M \leq |w \cdot w^*| \leq ||w|| \leq M^{1/2}$.
- So, $M \leq 1/\gamma^2$.

Kernel functions

See board...