
1

15-859(B) Machine Learning
Theory

Avrim Blum
01/15/14

Lecture 2: Online learning I

Mistake-bound model:

•Basic results, halving and StdOpt algorithms
•Connections to information theory

Combining “expert advice”:
•(Randomized) Weighted Majority algorithm
•Regret-bounds and connections to game-theory

Recap from last time

• Last time: PAC model and Occam’s razor.
– If data set has m ≥ (1/e)[s ln(2) + ln(1/)]

examples, then whp any consistent hypothesis
with size(h) < s has err(h) < e.

– Equivalently, suffices to have s≤(em-ln(1/))/ln(2)

– “compression ⇒learning”

• [KV] book has esp. good coverage of this
and related topics.

• Occam bounds ⇒any class is learnable if
computation time is no object.

Recap: open problems
Can one efficiently PAC-learn…
• C={fns with only O(log n) relevant

variables}? (or even O(loglog n) or (1)
relevant variables)? This is a special case
of DTs, DNFs.

• Monotone DNF over uniform D?

• Weak agnostic learning of monomials.

Online learning
• What if we don’t want to make assumption

that data is coming from some fixed
distribution? Or any assumptions at all?

• Can no longer talk about past performance
predicting future results.

• Can we hope to say anything interesting??

Idea: mistake bounds & regret bounds.

Mistake-bound model
• View learning as a sequence of stages.

• In each stage, algorithm is given x, asked to
predict f(x), and then is told correct value.

• Make no assumptions about order of
examples.

• Goal is to bound total number of mistakes.

Alg A learns class C with mistake bound M if A
makes ≤ M mistakes on any sequence of examples
consistent with some f ∈ C.

Mistake-bound model

• Note: can no longer talk about “how much data do
I need to converge?” Maybe see same examples
over again and learn nothing new. But that’s OK if
don’t make mistakes either…

• Want mistake bound poly(n, s), where n is size of
example and s is size of smallest consistent f ∈ C.

• C is learnable in MB model if exists alg with
mistake bound and running time per stage poly(n,s).

Alg A learns class C with mistake bound M if A
makes ≤ M mistakes on any sequence of examples
consistent with some f ∈C.

2

Simple example: disjunctions
• Suppose features are boolean: X = {0,1}n.

• Target is an OR function, like x3 v x9 v x12.
• Can we find an on-line strategy that makes

at most n mistakes?
• Sure.

– Start with h(x) = x1 v x2 v ... v xn

– Invariant: {vars in h} ⊇ {vars in f }
– Mistake on negative: throw out vars in h set to 1

in x. Maintains invariant and decreases |h| by 1.
– No mistakes on positives. So at most n mistakes

total.

Simple example: disjunctions
• Algorithm makes at most n mistakes.

• No deterministic alg can do better:

 1 0 0 0 0 0 0 + or - ?

 0 1 0 0 0 0 0 + or - ?

 0 0 1 0 0 0 0 + or - ?

 0 0 0 1 0 0 0 + or - ?

 ...

MB model properties
An alg A is “conservative” if it only changes its

state when it makes a mistake.

Claim: if C is learnable with mistake-bound M,
then it is learnable by a conservative alg.

Why?

• Take generic alg A. Create new conservative
A’ by running A, but rewinding state if no
mistake is made.

• Still ≤ M mistakes because A still sees a
legal sequence of examples.

MB learnable ⇒ PAC learnable
Say alg A learns C with mistake-bound M.

Transformation 1:

• Run (conservative) A until it produces a hyp h
that survives ≥ (1/e)ln(M/) examples.

• Pr(fooled by any given h) ≤ /M.

• Pr(fooled ever) ≤ .

Uses at most (M/e)ln(M/) examples total.

• Fancier method gets O(e-1[M + ln(1/)])

One more example…
• Say we view each example as an integer

between 0 and 2n-1.

• C = {[0,a] : a < 2n}. (device fails if it gets too
hot)

• In PAC model we could just pick any
consistent hypothesis. Does this work in MB
model?

• What would work?

What can we do with
unbounded computation time?

• “Halving algorithm”: take majority vote
over all consistent h ∈ C. Makes at most
lg(|C|) mistakes.

• What if C has functions of different sizes?
• For any (prefix-free) representation, can

make at most 1 mistake per bit of target.
– give each h a weight of (½)size(h)
– Total sum of weights ≤ 1.
– Take weighted vote. Each mistake removes at

least ½ of total weight left.

3

What can we do with
unbounded computation time?

• “Halving algorithm”: take majority vote
over all consistent h ∈ C. Makes at most
lg(|C|) mistakes.

• What if we had a “prior” p over fns in C?
– Weight the vote according to p. Make at most

lg(1/pf) mistakes, where f is target fn.

• What if f was really chosen according to p?
– Expected number of mistakes ≤ h[ph lg(1/ph)]

= entropy of distribution p.

Is halving alg optimal?
• Not necessarily (see hwk TBA).

• Can think of MB model as 2-player game
between alg and adversary.
– Adversary picks x to split C into C-(x) and

C+(x). [fns that label x as – or + respectively]

– Alg gets to pick one to throw out.

– Game ends when all fns left are equivalent.

– Adversary wants to make game last as long as
possible.

• OPT(C) = MB when both play optimally.

Is halving alg optimal?
• Halving algorithm: throw out larger set.

• Optimal algorithm: throw out set with
larger mistake bound.

• You’ll think about this more on the hwk…

What if there is no perfect function?
Think of as h ∈ C as “experts” giving advice

to you. Want to do nearly as well as best
of them in hindsight.

These are called “regret bounds”.
Show that our algorithm does nearly as
well as best predictor in some class.

We’ll look at a strategy whose running
time is O(|C|). So, only computationally
efficient when C is small.

Using “expert” advice

• We solicit n “experts” for their advice. (Will the
market go up or down?)

• We then want to use their advice somehow to
make our prediction. E.g.,

Say we want to predict the stock market.

Can we do nearly as well as best in hindsight?

[“expert” ́ someone with an opinion. Not necessarily someone
who knows anything.]
[note: would be trivial in PAC (i.i.d.) setting]

Using “expert” advice
If one expert is perfect, can get · lg(n) mistakes

with halving alg.
But what if none is perfect? Can we do nearly as

well as the best one in hindsight?

Strategy #1:
• Iterated halving algorithm. Same as before, but

once we've crossed off all the experts, restart
from the beginning.

• Makes at most lg(n)[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
“learned”. Can we do better?

4

Weighted Majority Algorithm
Intuition: Making a mistake doesn't completely

disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:
– Start with all experts having weight 1.

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.

Weights: 1 1 1 1

Predictions: U U U D We predict: U

Weights: ½ ½ ½ 1

Truth: D

Analysis: do nearly as well as best
expert in hindsight

• M = # mistakes we've made so far.

• m = # mistakes best expert has made so far.

• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.

 So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,

constant
ratio

Randomized Weighted Majority
2.4(m + lg n) not so good if the best expert makes a

mistake 20% of the time. Can we do better? Yes.

• Instead of taking majority vote, use weights as
probabilities. (e.g., if 70% on up, 30% on down, then pick

70:30) Idea: smooth out the worst case.

• Also, generalize ½ to 1- e.

unlike most
worst-case

bounds, numbers
are pretty good.

M = expected
#mistakes

Analysis
• Say at time t we have fraction Ft of

weight on experts that made mistake.

• So, we have probability Ft of making a mistake, and
we remove an eFt fraction of the total weight.
– Wfinal = n(1-e F1)(1 - e F2)...

– ln(Wfinal) = ln(n) + t [ln(1 - e Ft)] ≤ ln(n) - e t Ft

 (using ln(1-x) < -x)

 = ln(n) - e M. (Ft = E[# mistakes])

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-e)m).

• Now solve: ln(n) - e M > m ln(1-e).

Ft

Summarizing

• E[# mistakes] ≤ (1+e)OPT + e-1log(n)
= OPT + (eOPT + e-1log(n))

• If set e=(log(n)/OPT)1/2 to balance the two terms
out (or use guess-and-double), get bound of
M ≤ OPT+2(OPT⋅log n)1/2 ≤ OPT+2(T log n)1/2

• Define average regret in T time steps as:
(avg per-day cost of alg) – (avg per-day cost of best

 fixed expert in hindsight).

Goes to 0 or better as T→ ∞ = “no-regret” algorithm].

Extensions
• What if experts are actions? (rows in a matrix

game, ways to drive to work,…)

• At each time t, each has a loss (cost) in {0,1}.

• Can still run the algorithm

– Rather than viewing as “pick a prediction with
prob proportional to its weight” ,

– View as “pick an expert with probability
proportional to its weight”

– Alg pays expected cost 𝑝𝑡 ⋅ 𝑐𝑡 = 𝐹𝑡.

• Same analysis applies.

Do nearly as well as best action in hindsight!

5

Extensions
• What if losses (costs) in [0,1]?

• Just modify alg update rule: 𝑤𝑖 ← 𝑤𝑖 1 − 𝜖𝑐𝑖 .

• Fraction of wt removed from system is:
 (𝑤𝑖𝜖𝑐𝑖𝑖)/(𝑤𝑖)𝑖 = 𝜖 𝑝𝑖𝑖 𝑐𝑖 = 𝜖[𝑜𝑢𝑟 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡]

• Analysis very similar to case of {0,1}.

World – life - opponent

RWM (multiplicative weights alg)

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c1 c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

 Guarantee: do nearly as well as fixed row in hindsight

 Which implies doing nearly as well (or better)
than minimax optimal

World – life - opponent

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

If play RWM against a best-response oracle, 𝑝 will
approach minimax optimality (most 𝑝 will be close).

(If if didn’t, wouldn’t be getting promised guarantee)

Connections to minimax optimality

World – life - opponent

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

If play two RWM against each other, then empirical
distributions must be near-minimax-optimal.

(Else, one or the other could & would take advantage)

Connections to minimax optimality

A natural generalization
 A natural generalization of our regret goal (thinking of

driving) is: what if we also want that on rainy days, we do
nearly as well as the best route for rainy days.

 And on Mondays, do nearly as well as best route for
Mondays.

 More generally, have N “rules” (on Monday, use path P).
Goal: simultaneously, for each rule i, guarantee to do
nearly as well as it on the time steps in which it fires.

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

 Can we get this?

A natural generalization
 This generalization is esp natural in machine learning for

combining multiple if-then rules.

 E.g., document classification. Rule: “if <word-X> appears
then predict <Y>”. E.g., if has football then classify as
sports.

 So, if 90% of documents with football are about sports,
we should have error · 11% on them.

“Specialists” or “sleeping experts” problem.

 Assume we have N rules.

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

6

A simple algorithm and analysis (all on one slide)

 Start with all rules at weight 1.
 At each time step, of the rules i that fire,

select one with probability pi / wi.
 Update weights:

 If didn’t fire, leave weight alone.
 If did fire, raise or lower depending on performance

compared to weighted average:
 ri = [j pj cost(j)]/(1+e) – cost(i)
 wi Ã <- wi(1+e)ri

 So, if rule i does exactly as well as weighted average,
its weight drops a little. Weight increases if does
better than weighted average by more than a (1+e)
factor. This ensures sum of weights doesn’t increase.

 Final wi = (1+e)E[costi(alg)]/(1+e)-costi(i). So, exponent · e-1log N.
 So, E[costi(alg)] · (1+e)costi(i) + O(e-1log N).

Application: adapting to change

 What if we want to adapt to change - do nearly as well
as best recent expert?

 For each expert, instantiate copy who wakes up on day t
for each 0 ≤ t ≤ T-1.

 Our cost in previous t days is at most (1+𝜖)(best expert
in last t days) + O(𝜖−1 log(NT)).

 (not best possible bound since extra log(T) but not bad).

