
1

15-859(B) Machine Learning
Theory

Avrim Blum
01/15/14

Lecture 2: Online learning I

Mistake-bound model:

•Basic results, halving and StdOpt algorithms
•Connections to information theory

Combining “expert advice”:
•(Randomized) Weighted Majority algorithm
•Regret-bounds and connections to game-theory

Recap from last time

• Last time: PAC model and Occam’s razor.
– If data set has m ≥ (1/e)[s ln(2) + ln(1/)]

examples, then whp any consistent hypothesis
with size(h) < s has err(h) < e.

– Equivalently, suffices to have s≤(em-ln(1/))/ln(2)

– “compression ⇒learning”

• [KV] book has esp. good coverage of this
and related topics.

• Occam bounds ⇒any class is learnable if
computation time is no object.

Recap: open problems
Can one efficiently PAC-learn…
• C={fns with only O(log n) relevant

variables}? (or even O(loglog n) or (1)
relevant variables)? This is a special case
of DTs, DNFs.

• Monotone DNF over uniform D?

• Weak agnostic learning of monomials.

Online learning
• What if we don’t want to make assumption

that data is coming from some fixed
distribution? Or any assumptions at all?

• Can no longer talk about past performance
predicting future results.

• Can we hope to say anything interesting??

Idea: mistake bounds & regret bounds.

Mistake-bound model
• View learning as a sequence of stages.

• In each stage, algorithm is given x, asked to
predict f(x), and then is told correct value.

• Make no assumptions about order of
examples.

• Goal is to bound total number of mistakes.

Alg A learns class C with mistake bound M if A
makes ≤ M mistakes on any sequence of examples
consistent with some f ∈ C.

Mistake-bound model

• Note: can no longer talk about “how much data do
I need to converge?” Maybe see same examples
over again and learn nothing new. But that’s OK if
don’t make mistakes either…

• Want mistake bound poly(n, s), where n is size of
example and s is size of smallest consistent f ∈ C.

• C is learnable in MB model if exists alg with
mistake bound and running time per stage poly(n,s).

Alg A learns class C with mistake bound M if A
makes ≤ M mistakes on any sequence of examples
consistent with some f ∈C.

2

Simple example: disjunctions
• Suppose features are boolean: X = {0,1}n.

• Target is an OR function, like x3 v x9 v x12.
• Can we find an on-line strategy that makes

at most n mistakes?
• Sure.

– Start with h(x) = x1 v x2 v ... v xn

– Invariant: {vars in h} ⊇ {vars in f }
– Mistake on negative: throw out vars in h set to 1

in x. Maintains invariant and decreases |h| by 1.
– No mistakes on positives. So at most n mistakes

total.

Simple example: disjunctions
• Algorithm makes at most n mistakes.

• No deterministic alg can do better:

 1 0 0 0 0 0 0 + or - ?

 0 1 0 0 0 0 0 + or - ?

 0 0 1 0 0 0 0 + or - ?

 0 0 0 1 0 0 0 + or - ?

 ...

MB model properties
An alg A is “conservative” if it only changes its

state when it makes a mistake.

Claim: if C is learnable with mistake-bound M,
then it is learnable by a conservative alg.

Why?

• Take generic alg A. Create new conservative
A’ by running A, but rewinding state if no
mistake is made.

• Still ≤ M mistakes because A still sees a
legal sequence of examples.

MB learnable ⇒ PAC learnable
Say alg A learns C with mistake-bound M.

Transformation 1:

• Run (conservative) A until it produces a hyp h
that survives ≥ (1/e)ln(M/) examples.

• Pr(fooled by any given h) ≤ /M.

• Pr(fooled ever) ≤ .

Uses at most (M/e)ln(M/) examples total.

• Fancier method gets O(e-1[M + ln(1/)])

One more example…
• Say we view each example as an integer

between 0 and 2n-1.

• C = {[0,a] : a < 2n}. (device fails if it gets too
hot)

• In PAC model we could just pick any
consistent hypothesis. Does this work in MB
model?

• What would work?

What can we do with
unbounded computation time?

• “Halving algorithm”: take majority vote
over all consistent h ∈ C. Makes at most
lg(|C|) mistakes.

• What if C has functions of different sizes?
• For any (prefix-free) representation, can

make at most 1 mistake per bit of target.
– give each h a weight of (½)size(h)
– Total sum of weights ≤ 1.
– Take weighted vote. Each mistake removes at

least ½ of total weight left.

3

What can we do with
unbounded computation time?

• “Halving algorithm”: take majority vote
over all consistent h ∈ C. Makes at most
lg(|C|) mistakes.

• What if we had a “prior” p over fns in C?
– Weight the vote according to p. Make at most

lg(1/pf) mistakes, where f is target fn.

• What if f was really chosen according to p?
– Expected number of mistakes ≤ h[ph lg(1/ph)]

= entropy of distribution p.

Is halving alg optimal?
• Not necessarily (see hwk TBA).

• Can think of MB model as 2-player game
between alg and adversary.
– Adversary picks x to split C into C-(x) and

C+(x). [fns that label x as – or + respectively]

– Alg gets to pick one to throw out.

– Game ends when all fns left are equivalent.

– Adversary wants to make game last as long as
possible.

• OPT(C) = MB when both play optimally.

Is halving alg optimal?
• Halving algorithm: throw out larger set.

• Optimal algorithm: throw out set with
larger mistake bound.

• You’ll think about this more on the hwk…

What if there is no perfect function?
Think of as h ∈ C as “experts” giving advice

to you. Want to do nearly as well as best
of them in hindsight.

These are called “regret bounds”.
Show that our algorithm does nearly as
well as best predictor in some class.

We’ll look at a strategy whose running
time is O(|C|). So, only computationally
efficient when C is small.

Using “expert” advice

• We solicit n “experts” for their advice. (Will the
market go up or down?)

• We then want to use their advice somehow to
make our prediction. E.g.,

Say we want to predict the stock market.

Can we do nearly as well as best in hindsight?

[“expert” ́ someone with an opinion. Not necessarily someone
who knows anything.]
[note: would be trivial in PAC (i.i.d.) setting]

Using “expert” advice
If one expert is perfect, can get · lg(n) mistakes

with halving alg.
But what if none is perfect? Can we do nearly as

well as the best one in hindsight?

Strategy #1:
• Iterated halving algorithm. Same as before, but

once we've crossed off all the experts, restart
from the beginning.

• Makes at most lg(n)[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
“learned”. Can we do better?

4

Weighted Majority Algorithm
Intuition: Making a mistake doesn't completely

disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:
– Start with all experts having weight 1.

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.

Weights: 1 1 1 1

Predictions: U U U D We predict: U

Weights: ½ ½ ½ 1

Truth: D

Analysis: do nearly as well as best
expert in hindsight

• M = # mistakes we've made so far.

• m = # mistakes best expert has made so far.

• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.

 So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,

constant
ratio

Randomized Weighted Majority
2.4(m + lg n) not so good if the best expert makes a

mistake 20% of the time. Can we do better? Yes.

• Instead of taking majority vote, use weights as
probabilities. (e.g., if 70% on up, 30% on down, then pick

70:30) Idea: smooth out the worst case.

• Also, generalize ½ to 1- e.

unlike most
worst-case

bounds, numbers
are pretty good.

M = expected
#mistakes

Analysis
• Say at time t we have fraction Ft of

weight on experts that made mistake.

• So, we have probability Ft of making a mistake, and
we remove an eFt fraction of the total weight.
– Wfinal = n(1-e F1)(1 - e F2)...

– ln(Wfinal) = ln(n) + t [ln(1 - e Ft)] ≤ ln(n) - e t Ft

 (using ln(1-x) < -x)

 = ln(n) - e M. ( Ft = E[# mistakes])

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-e)m).

• Now solve: ln(n) - e M > m ln(1-e).

Ft

Summarizing

• E[# mistakes] ≤ (1+e)OPT + e-1log(n)
= OPT + (eOPT + e-1log(n))

• If set e=(log(n)/OPT)1/2 to balance the two terms
out (or use guess-and-double), get bound of
M ≤ OPT+2(OPT⋅log n)1/2 ≤ OPT+2(T log n)1/2

• Define average regret in T time steps as:
(avg per-day cost of alg) – (avg per-day cost of best

 fixed expert in hindsight).

Goes to 0 or better as T→ ∞ = “no-regret” algorithm].

Extensions
• What if experts are actions? (rows in a matrix

game, ways to drive to work,…)

• At each time t, each has a loss (cost) in {0,1}.

• Can still run the algorithm

– Rather than viewing as “pick a prediction with
prob proportional to its weight” ,

– View as “pick an expert with probability
proportional to its weight”

– Alg pays expected cost 𝑝𝑡 ⋅ 𝑐𝑡 = 𝐹𝑡.

• Same analysis applies.

Do nearly as well as best action in hindsight!

5

Extensions
• What if losses (costs) in [0,1]?

• Just modify alg update rule: 𝑤𝑖 ← 𝑤𝑖 1 − 𝜖𝑐𝑖 .

• Fraction of wt removed from system is:
 (𝑤𝑖𝜖𝑐𝑖𝑖)/(𝑤𝑖)𝑖 = 𝜖 𝑝𝑖𝑖 𝑐𝑖 = 𝜖[𝑜𝑢𝑟 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡]

• Analysis very similar to case of {0,1}.

World – life - opponent

RWM (multiplicative weights alg)

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c1 c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

 Guarantee: do nearly as well as fixed row in hindsight

 Which implies doing nearly as well (or better)
than minimax optimal

World – life - opponent

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

If play RWM against a best-response oracle, 𝑝 will
approach minimax optimality (most 𝑝 will be close).

(If if didn’t, wouldn’t be getting promised guarantee)

Connections to minimax optimality

World – life - opponent

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

If play two RWM against each other, then empirical
distributions must be near-minimax-optimal.

(Else, one or the other could & would take advantage)

Connections to minimax optimality

A natural generalization
 A natural generalization of our regret goal (thinking of

driving) is: what if we also want that on rainy days, we do
nearly as well as the best route for rainy days.

 And on Mondays, do nearly as well as best route for
Mondays.

 More generally, have N “rules” (on Monday, use path P).
Goal: simultaneously, for each rule i, guarantee to do
nearly as well as it on the time steps in which it fires.

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

 Can we get this?

A natural generalization
 This generalization is esp natural in machine learning for

combining multiple if-then rules.

 E.g., document classification. Rule: “if <word-X> appears
then predict <Y>”. E.g., if has football then classify as
sports.

 So, if 90% of documents with football are about sports,
we should have error · 11% on them.

“Specialists” or “sleeping experts” problem.

 Assume we have N rules.

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

6

A simple algorithm and analysis (all on one slide)

 Start with all rules at weight 1.
 At each time step, of the rules i that fire,

select one with probability pi / wi.
 Update weights:

 If didn’t fire, leave weight alone.
 If did fire, raise or lower depending on performance

compared to weighted average:
 ri = [j pj cost(j)]/(1+e) – cost(i)
 wi Ã <- wi(1+e)ri

 So, if rule i does exactly as well as weighted average,
its weight drops a little. Weight increases if does
better than weighted average by more than a (1+e)
factor. This ensures sum of weights doesn’t increase.

 Final wi = (1+e)E[costi(alg)]/(1+e)-costi(i). So, exponent · e-1log N.
 So, E[costi(alg)] · (1+e)costi(i) + O(e-1log N).

Application: adapting to change

 What if we want to adapt to change - do nearly as well
as best recent expert?

 For each expert, instantiate copy who wakes up on day t
for each 0 ≤ t ≤ T-1.

 Our cost in previous t days is at most (1+𝜖)(best expert
in last t days) + O(𝜖−1 log(NT)).

 (not best possible bound since extra log(T) but not bad).

