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15-859(B) Machine Learning 
Theory 

Avrim Blum 
01/15/14 

Lecture 2: Online learning I 
 
Mistake-bound model: 

•Basic results,  halving and StdOpt algorithms 
•Connections to information theory 

Combining “expert advice”: 
•(Randomized) Weighted Majority algorithm 
•Regret-bounds and connections to game-theory 

Recap from last time 

• Last time: PAC model and Occam’s razor. 
– If data set has m ≥ (1/e)[s ln(2) + ln(1/)] 

examples, then whp any consistent hypothesis 
with size(h) < s has err(h) < e. 

– Equivalently, suffices to have s≤(em-ln(1/))/ln(2)  

– “compression ⇒learning” 

• [KV] book has esp. good coverage of this 
and related topics. 

• Occam bounds ⇒any class is learnable if 
computation time is no object. 

Recap: open problems 
Can one efficiently PAC-learn… 
• C={fns with only O(log n) relevant 

variables}? (or even O(loglog n) or (1) 
relevant variables)?  This is a special case 
of DTs, DNFs. 

• Monotone DNF over uniform D? 

• Weak agnostic learning of monomials. 

Online learning 
• What if we don’t want to make assumption 

that data is coming from some fixed 
distribution?  Or any assumptions at all? 

• Can no longer talk about past performance 
predicting future results. 

• Can we hope to say anything interesting?? 

Idea: mistake bounds & regret bounds.   

Mistake-bound model 
• View learning as a sequence of stages. 

• In each stage, algorithm is given x, asked to 
predict f(x), and then is told correct value.   

• Make no assumptions about order of 
examples. 

• Goal is to bound total number of mistakes. 

Alg A learns class C with mistake bound M if A 
makes ≤ M mistakes on any sequence of examples 
consistent with some f ∈ C. 

Mistake-bound model 

• Note: can no longer talk about “how much data do 
I need to converge?”  Maybe see same examples 
over again and learn nothing new.  But that’s OK if 
don’t make mistakes either… 

• Want mistake bound poly(n, s), where n is size of 
example and s is size of smallest consistent f ∈ C.   

• C is learnable in MB model if exists alg with 
mistake bound and running time per stage poly(n,s). 

Alg A learns class C with mistake bound M if A 
makes ≤ M mistakes on any sequence of examples 
consistent with some f ∈C. 
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Simple example: disjunctions 
• Suppose features are boolean: X = {0,1}n. 

• Target is an OR function, like x3 v x9 v x12.  
• Can we find an on-line strategy that makes 

at most n mistakes? 
• Sure. 

– Start with h(x) = x1 v x2 v ... v xn 

– Invariant: {vars in h} ⊇ {vars in f } 
– Mistake on negative: throw out vars in h set to 1 

in x.  Maintains invariant and decreases |h| by 1. 
– No mistakes on positives.  So at most n mistakes 

total. 

Simple example: disjunctions 
• Algorithm makes at most n mistakes. 

• No deterministic alg can do better: 

   1 0 0 0 0 0 0    + or - ?  

                  0 1 0 0 0 0 0    + or - ? 

               0 0 1 0 0 0 0    + or - ?  

                  0 0 0 1 0 0 0    + or - ? 

   ... 

 

MB model properties 
An alg A is “conservative” if it only changes its 

state when it makes a mistake. 

Claim: if C is learnable with mistake-bound M, 
then it is learnable by a conservative alg. 

Why? 

• Take generic alg A.  Create new conservative 
A’ by running A, but rewinding state if no 
mistake is made. 

• Still ≤ M mistakes because A still sees a 
legal sequence of examples. 

MB learnable ⇒ PAC learnable 
Say alg A learns C with mistake-bound M. 

Transformation 1: 

• Run (conservative) A until it produces a hyp h 
that survives ≥ (1/e)ln(M/) examples. 

• Pr(fooled by any given h) ≤ /M. 

• Pr(fooled ever) ≤ . 

Uses at most (M/e)ln(M/) examples total. 

 

• Fancier method gets O(e-1[M + ln(1/)])  

One more example… 
• Say we view each example as an integer 

between 0 and 2n-1.  

• C = {[0,a] : a < 2n}.  (device fails if it gets too 
hot) 

• In PAC model we could just pick any 
consistent hypothesis.  Does this work in MB 
model? 

• What would work? 

What can we do with 
unbounded computation time? 

• “Halving algorithm”: take majority vote 
over all consistent h ∈ C.  Makes at most 
lg(|C|) mistakes. 

• What if C has functions of different sizes? 
• For any (prefix-free) representation, can 

make at most 1 mistake per bit of target. 
– give each h a weight of (½)size(h) 
– Total sum of weights ≤ 1. 
– Take weighted vote. Each mistake removes at 

least ½ of total weight left. 
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What can we do with 
unbounded computation time? 

• “Halving algorithm”: take majority vote 
over all consistent h ∈ C.  Makes at most 
lg(|C|) mistakes. 

• What if we had a “prior” p over fns in C? 
– Weight the vote according to p.  Make at most 

lg(1/pf) mistakes, where f is target fn. 

• What if f was really chosen according to p? 
– Expected number of mistakes ≤ h[ph lg(1/ph)] 

= entropy of distribution p. 

Is halving alg optimal? 
• Not necessarily (see hwk TBA). 

• Can think of MB model as 2-player game 
between alg and adversary. 
– Adversary picks x to split C into C-(x) and 

C+(x).  [fns that label x as – or + respectively] 

– Alg gets to pick one to throw out. 

– Game ends when all fns left are equivalent. 

– Adversary wants to make game last as long as 
possible. 

• OPT(C) = MB when both play optimally. 

Is halving alg optimal? 
• Halving algorithm: throw out larger set. 

• Optimal algorithm: throw out set with 
larger mistake bound. 

• You’ll think about this more on the hwk… 

What if there is no perfect function? 
Think of as h ∈ C as “experts” giving advice 

to you.  Want to do nearly as well as best 
of them in hindsight. 

These are called “regret bounds”.   
Show that our algorithm does nearly as 
well as best predictor in some class. 

We’ll look at a strategy whose running 
time is O(|C|).  So, only computationally 
efficient when C is small. 

Using “expert” advice 

• We solicit n “experts” for their advice. (Will the 
market go up or down?) 

• We then want to use their advice somehow to 
make our prediction.  E.g., 

Say we want to predict the stock market. 

Can we do nearly as well as best in hindsight? 

[“expert” ́  someone with an opinion.  Not necessarily someone 
who knows anything.] 
[note: would be trivial in PAC (i.i.d.) setting] 

Using “expert” advice 
If one expert is perfect, can get · lg(n) mistakes 

with halving alg.   
But what if none is perfect?  Can we do nearly as 

well as the best one in hindsight?  

Strategy #1: 
• Iterated halving algorithm.  Same as before, but 

once we've crossed off all the experts, restart 
from the beginning. 

• Makes at most lg(n)[OPT+1] mistakes, where OPT 
is #mistakes of the best expert in hindsight. 

 

Seems wasteful. Constantly forgetting what we've 
“learned”.  Can we do better? 
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Weighted Majority Algorithm 
Intuition: Making a mistake doesn't completely 

disqualify an expert. So, instead of crossing 
off, just lower its weight. 

 

Weighted Majority Alg: 
– Start with all experts having weight 1. 

– Predict based on weighted majority vote. 

– Penalize mistakes by cutting weight in half. 

Weights:    1     1     1     1 

Predictions:    U    U    U    D We predict:    U 

Weights:    ½    ½     ½    1 

Truth:    D 

Analysis: do nearly as well as best 
expert in hindsight 

•  M = # mistakes we've made so far. 

•  m = # mistakes best expert has made so far. 

•  W = total weight (starts at n). 
 

•  After each mistake, W drops by at least 25%. 

    So, after M mistakes, W is at most n(3/4)M. 

•  Weight of best expert is (1/2)m. So, 

constant  
ratio 

Randomized Weighted Majority 
2.4(m + lg n) not so good if the best expert makes a 

mistake 20% of the time. Can we do better? Yes. 

• Instead of taking majority vote, use weights as 
probabilities. (e.g., if 70% on up, 30% on down, then pick 

70:30)  Idea: smooth out the worst case. 

• Also, generalize ½ to 1- e.  

unlike most 
worst-case 

bounds, numbers 
are pretty good. 

M = expected 
#mistakes 

Analysis 
• Say at time t we have fraction Ft of                    

weight on experts that made mistake. 

• So, we have probability Ft of making a mistake, and 
we remove an eFt fraction of the total weight. 
– Wfinal = n(1-e F1)(1 - e F2)... 

– ln(Wfinal) = ln(n) + t [ln(1 - e Ft)] ≤ ln(n) - e t Ft 

      (using ln(1-x) < -x) 

                       = ln(n) - e M.             ( Ft = E[# mistakes]) 

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-e)m). 

• Now solve: ln(n) - e M > m ln(1-e). 

Ft 

Summarizing 

• E[# mistakes] ≤ (1+e)OPT + e-1log(n)                         
= OPT + (eOPT + e-1log(n)) 

 

• If set e=(log(n)/OPT)1/2 to balance the two terms 
out (or use guess-and-double), get bound of            
M ≤ OPT+2(OPT⋅log n)1/2  ≤  OPT+2(T log n)1/2 

 

• Define average regret in T time steps as: 
(avg per-day cost of alg) – (avg per-day cost of best  

     fixed expert in hindsight). 

Goes to 0 or better as T→ ∞  =  “no-regret” algorithm]. 

Extensions 
• What if experts are actions? (rows in a matrix 

game, ways to drive to work,…) 

• At each time t, each has a loss (cost) in {0,1}. 

• Can still run the algorithm 

– Rather than viewing as “pick a prediction with 
prob proportional to its weight” , 

– View as “pick an expert with probability 
proportional to its weight” 

– Alg pays expected cost 𝑝𝑡 ⋅ 𝑐𝑡 = 𝐹𝑡.  

• Same analysis applies. 

Do nearly as well as best action in hindsight! 
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Extensions 
• What if losses (costs) in [0,1]?  

• Just modify alg update rule: 𝑤𝑖 ← 𝑤𝑖 1 − 𝜖𝑐𝑖 . 

• Fraction of wt removed from system is: 
    ( 𝑤𝑖𝜖𝑐𝑖𝑖 )/( 𝑤𝑖)𝑖 = 𝜖  𝑝𝑖𝑖 𝑐𝑖 = 𝜖[𝑜𝑢𝑟 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡] 

• Analysis very similar to case of {0,1}. 
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 Guarantee: do nearly as well as fixed row in hindsight 

 Which implies doing nearly as well (or better) 
than minimax optimal 
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If play RWM against a best-response oracle, 𝑝  will 
approach minimax optimality (most 𝑝  will be close). 

 
(If if didn’t, wouldn’t be getting promised guarantee) 

Connections to minimax optimality 
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If play two RWM against each other, then empirical 
distributions must be near-minimax-optimal. 

   
(Else, one or the other could & would take advantage) 

Connections to minimax optimality 

A natural generalization 
 A natural generalization of our regret goal (thinking of 

driving) is: what if we also want that on rainy days, we do 
nearly as well as the best route for rainy days. 

 And on Mondays, do nearly as well as best route for 
Mondays. 

 

 More generally, have N “rules” (on Monday, use path P). 
Goal: simultaneously, for each rule i, guarantee to do 
nearly as well as it on the time steps in which it fires. 

 

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N). 
(costi(X) = cost of X on time steps where rule i fires.) 

 

 Can we get this?  

A natural generalization 
 This generalization is esp natural in machine learning for 

combining multiple if-then rules. 

 E.g., document classification.  Rule: “if <word-X> appears 
then predict <Y>”.  E.g., if has football then classify as 
sports. 

 So, if 90% of documents with football are about sports, 
we should have error · 11% on them. 

“Specialists” or “sleeping experts” problem. 

 Assume we have N rules. 

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N). 
(costi(X) = cost of X on time steps where rule i fires.) 
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A simple algorithm and analysis (all on one slide) 

 Start with all rules at weight 1. 
 At each time step, of the rules i that fire, 

select one with probability pi / wi. 
 Update weights: 

 If didn’t fire, leave weight alone. 
 If did fire, raise or lower depending on performance 

compared to weighted average: 
 ri = [j pj cost(j)]/(1+e) – cost(i) 
 wi Ã  <-  wi(1+e)ri 

 So, if rule i does exactly as well as weighted average, 
its weight drops a little.  Weight increases if does 
better than weighted average by more than a (1+e) 
factor.  This ensures sum of weights doesn’t increase. 

 Final wi = (1+e)E[costi(alg)]/(1+e)-costi(i). So, exponent · e-1log N.  
 So, E[costi(alg)] · (1+e)costi(i) + O(e-1log N). 

Application: adapting to change 

 What if we want to adapt to change - do nearly as well 
as best recent expert? 

 For each expert, instantiate copy who wakes up on day t 
for each 0 ≤ t ≤ T-1. 

 Our cost in previous t days is at most (1+𝜖)(best expert 
in last t days) + O(𝜖−1 log(NT)). 

 (not best possible bound since extra log(T) but not bad). 


