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15-859(B) Machine Learning 
Theory 

Avrim Blum 
01/15/14 

Lecture 2: Online learning I 
 
Mistake-bound model: 

•Basic results,  halving and StdOpt algorithms 
•Connections to information theory 

Combining “expert advice”: 
•(Randomized) Weighted Majority algorithm 
•Regret-bounds and connections to game-theory 

Recap from last time 

• Last time: PAC model and Occam’s razor. 
– If data set has m ≥ (1/e)[s ln(2) + ln(1/)] 

examples, then whp any consistent hypothesis 
with size(h) < s has err(h) < e. 

– Equivalently, suffices to have s≤(em-ln(1/))/ln(2)  

– “compression ⇒learning” 

• [KV] book has esp. good coverage of this 
and related topics. 

• Occam bounds ⇒any class is learnable if 
computation time is no object. 

Recap: open problems 
Can one efficiently PAC-learn… 
• C={fns with only O(log n) relevant 

variables}? (or even O(loglog n) or (1) 
relevant variables)?  This is a special case 
of DTs, DNFs. 

• Monotone DNF over uniform D? 

• Weak agnostic learning of monomials. 

Online learning 
• What if we don’t want to make assumption 

that data is coming from some fixed 
distribution?  Or any assumptions at all? 

• Can no longer talk about past performance 
predicting future results. 

• Can we hope to say anything interesting?? 

Idea: mistake bounds & regret bounds.   

Mistake-bound model 
• View learning as a sequence of stages. 

• In each stage, algorithm is given x, asked to 
predict f(x), and then is told correct value.   

• Make no assumptions about order of 
examples. 

• Goal is to bound total number of mistakes. 

Alg A learns class C with mistake bound M if A 
makes ≤ M mistakes on any sequence of examples 
consistent with some f ∈ C. 

Mistake-bound model 

• Note: can no longer talk about “how much data do 
I need to converge?”  Maybe see same examples 
over again and learn nothing new.  But that’s OK if 
don’t make mistakes either… 

• Want mistake bound poly(n, s), where n is size of 
example and s is size of smallest consistent f ∈ C.   

• C is learnable in MB model if exists alg with 
mistake bound and running time per stage poly(n,s). 

Alg A learns class C with mistake bound M if A 
makes ≤ M mistakes on any sequence of examples 
consistent with some f ∈C. 
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Simple example: disjunctions 
• Suppose features are boolean: X = {0,1}n. 

• Target is an OR function, like x3 v x9 v x12.  
• Can we find an on-line strategy that makes 

at most n mistakes? 
• Sure. 

– Start with h(x) = x1 v x2 v ... v xn 

– Invariant: {vars in h} ⊇ {vars in f } 
– Mistake on negative: throw out vars in h set to 1 

in x.  Maintains invariant and decreases |h| by 1. 
– No mistakes on positives.  So at most n mistakes 

total. 

Simple example: disjunctions 
• Algorithm makes at most n mistakes. 

• No deterministic alg can do better: 

   1 0 0 0 0 0 0    + or - ?  

                  0 1 0 0 0 0 0    + or - ? 

               0 0 1 0 0 0 0    + or - ?  

                  0 0 0 1 0 0 0    + or - ? 

   ... 

 

MB model properties 
An alg A is “conservative” if it only changes its 

state when it makes a mistake. 

Claim: if C is learnable with mistake-bound M, 
then it is learnable by a conservative alg. 

Why? 

• Take generic alg A.  Create new conservative 
A’ by running A, but rewinding state if no 
mistake is made. 

• Still ≤ M mistakes because A still sees a 
legal sequence of examples. 

MB learnable ⇒ PAC learnable 
Say alg A learns C with mistake-bound M. 

Transformation 1: 

• Run (conservative) A until it produces a hyp h 
that survives ≥ (1/e)ln(M/) examples. 

• Pr(fooled by any given h) ≤ /M. 

• Pr(fooled ever) ≤ . 

Uses at most (M/e)ln(M/) examples total. 

 

• Fancier method gets O(e-1[M + ln(1/)])  

One more example… 
• Say we view each example as an integer 

between 0 and 2n-1.  

• C = {[0,a] : a < 2n}.  (device fails if it gets too 
hot) 

• In PAC model we could just pick any 
consistent hypothesis.  Does this work in MB 
model? 

• What would work? 

What can we do with 
unbounded computation time? 

• “Halving algorithm”: take majority vote 
over all consistent h ∈ C.  Makes at most 
lg(|C|) mistakes. 

• What if C has functions of different sizes? 
• For any (prefix-free) representation, can 

make at most 1 mistake per bit of target. 
– give each h a weight of (½)size(h) 
– Total sum of weights ≤ 1. 
– Take weighted vote. Each mistake removes at 

least ½ of total weight left. 
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What can we do with 
unbounded computation time? 

• “Halving algorithm”: take majority vote 
over all consistent h ∈ C.  Makes at most 
lg(|C|) mistakes. 

• What if we had a “prior” p over fns in C? 
– Weight the vote according to p.  Make at most 

lg(1/pf) mistakes, where f is target fn. 

• What if f was really chosen according to p? 
– Expected number of mistakes ≤ h[ph lg(1/ph)] 

= entropy of distribution p. 

Is halving alg optimal? 
• Not necessarily (see hwk TBA). 

• Can think of MB model as 2-player game 
between alg and adversary. 
– Adversary picks x to split C into C-(x) and 

C+(x).  [fns that label x as – or + respectively] 

– Alg gets to pick one to throw out. 

– Game ends when all fns left are equivalent. 

– Adversary wants to make game last as long as 
possible. 

• OPT(C) = MB when both play optimally. 

Is halving alg optimal? 
• Halving algorithm: throw out larger set. 

• Optimal algorithm: throw out set with 
larger mistake bound. 

• You’ll think about this more on the hwk… 

What if there is no perfect function? 
Think of as h ∈ C as “experts” giving advice 

to you.  Want to do nearly as well as best 
of them in hindsight. 

These are called “regret bounds”.   
Show that our algorithm does nearly as 
well as best predictor in some class. 

We’ll look at a strategy whose running 
time is O(|C|).  So, only computationally 
efficient when C is small. 

Using “expert” advice 

• We solicit n “experts” for their advice. (Will the 
market go up or down?) 

• We then want to use their advice somehow to 
make our prediction.  E.g., 

Say we want to predict the stock market. 

Can we do nearly as well as best in hindsight? 

[“expert” ́  someone with an opinion.  Not necessarily someone 
who knows anything.] 
[note: would be trivial in PAC (i.i.d.) setting] 

Using “expert” advice 
If one expert is perfect, can get · lg(n) mistakes 

with halving alg.   
But what if none is perfect?  Can we do nearly as 

well as the best one in hindsight?  

Strategy #1: 
• Iterated halving algorithm.  Same as before, but 

once we've crossed off all the experts, restart 
from the beginning. 

• Makes at most lg(n)[OPT+1] mistakes, where OPT 
is #mistakes of the best expert in hindsight. 

 

Seems wasteful. Constantly forgetting what we've 
“learned”.  Can we do better? 
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Weighted Majority Algorithm 
Intuition: Making a mistake doesn't completely 

disqualify an expert. So, instead of crossing 
off, just lower its weight. 

 

Weighted Majority Alg: 
– Start with all experts having weight 1. 

– Predict based on weighted majority vote. 

– Penalize mistakes by cutting weight in half. 

Weights:    1     1     1     1 

Predictions:    U    U    U    D We predict:    U 

Weights:    ½    ½     ½    1 

Truth:    D 

Analysis: do nearly as well as best 
expert in hindsight 

•  M = # mistakes we've made so far. 

•  m = # mistakes best expert has made so far. 

•  W = total weight (starts at n). 
 

•  After each mistake, W drops by at least 25%. 

    So, after M mistakes, W is at most n(3/4)M. 

•  Weight of best expert is (1/2)m. So, 

constant  
ratio 

Randomized Weighted Majority 
2.4(m + lg n) not so good if the best expert makes a 

mistake 20% of the time. Can we do better? Yes. 

• Instead of taking majority vote, use weights as 
probabilities. (e.g., if 70% on up, 30% on down, then pick 

70:30)  Idea: smooth out the worst case. 

• Also, generalize ½ to 1- e.  

unlike most 
worst-case 

bounds, numbers 
are pretty good. 

M = expected 
#mistakes 

Analysis 
• Say at time t we have fraction Ft of                    

weight on experts that made mistake. 

• So, we have probability Ft of making a mistake, and 
we remove an eFt fraction of the total weight. 
– Wfinal = n(1-e F1)(1 - e F2)... 

– ln(Wfinal) = ln(n) + t [ln(1 - e Ft)] ≤ ln(n) - e t Ft 

      (using ln(1-x) < -x) 

                       = ln(n) - e M.             ( Ft = E[# mistakes]) 

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-e)m). 

• Now solve: ln(n) - e M > m ln(1-e). 

Ft 

Summarizing 

• E[# mistakes] ≤ (1+e)OPT + e-1log(n)                         
= OPT + (eOPT + e-1log(n)) 

 

• If set e=(log(n)/OPT)1/2 to balance the two terms 
out (or use guess-and-double), get bound of            
M ≤ OPT+2(OPT⋅log n)1/2  ≤  OPT+2(T log n)1/2 

 

• Define average regret in T time steps as: 
(avg per-day cost of alg) – (avg per-day cost of best  

     fixed expert in hindsight). 

Goes to 0 or better as T→ ∞  =  “no-regret” algorithm]. 

Extensions 
• What if experts are actions? (rows in a matrix 

game, ways to drive to work,…) 

• At each time t, each has a loss (cost) in {0,1}. 

• Can still run the algorithm 

– Rather than viewing as “pick a prediction with 
prob proportional to its weight” , 

– View as “pick an expert with probability 
proportional to its weight” 

– Alg pays expected cost 𝑝𝑡 ⋅ 𝑐𝑡 = 𝐹𝑡.  

• Same analysis applies. 

Do nearly as well as best action in hindsight! 
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Extensions 
• What if losses (costs) in [0,1]?  

• Just modify alg update rule: 𝑤𝑖 ← 𝑤𝑖 1 − 𝜖𝑐𝑖 . 

• Fraction of wt removed from system is: 
    ( 𝑤𝑖𝜖𝑐𝑖𝑖 )/( 𝑤𝑖)𝑖 = 𝜖  𝑝𝑖𝑖 𝑐𝑖 = 𝜖[𝑜𝑢𝑟 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡] 

• Analysis very similar to case of {0,1}. 
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 Guarantee: do nearly as well as fixed row in hindsight 

 Which implies doing nearly as well (or better) 
than minimax optimal 
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If play RWM against a best-response oracle, 𝑝  will 
approach minimax optimality (most 𝑝  will be close). 

 
(If if didn’t, wouldn’t be getting promised guarantee) 

Connections to minimax optimality 
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If play two RWM against each other, then empirical 
distributions must be near-minimax-optimal. 

   
(Else, one or the other could & would take advantage) 

Connections to minimax optimality 

A natural generalization 
 A natural generalization of our regret goal (thinking of 

driving) is: what if we also want that on rainy days, we do 
nearly as well as the best route for rainy days. 

 And on Mondays, do nearly as well as best route for 
Mondays. 

 

 More generally, have N “rules” (on Monday, use path P). 
Goal: simultaneously, for each rule i, guarantee to do 
nearly as well as it on the time steps in which it fires. 

 

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N). 
(costi(X) = cost of X on time steps where rule i fires.) 

 

 Can we get this?  

A natural generalization 
 This generalization is esp natural in machine learning for 

combining multiple if-then rules. 

 E.g., document classification.  Rule: “if <word-X> appears 
then predict <Y>”.  E.g., if has football then classify as 
sports. 

 So, if 90% of documents with football are about sports, 
we should have error · 11% on them. 

“Specialists” or “sleeping experts” problem. 

 Assume we have N rules. 

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N). 
(costi(X) = cost of X on time steps where rule i fires.) 
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A simple algorithm and analysis (all on one slide) 

 Start with all rules at weight 1. 
 At each time step, of the rules i that fire, 

select one with probability pi / wi. 
 Update weights: 

 If didn’t fire, leave weight alone. 
 If did fire, raise or lower depending on performance 

compared to weighted average: 
 ri = [j pj cost(j)]/(1+e) – cost(i) 
 wi Ã  <-  wi(1+e)ri 

 So, if rule i does exactly as well as weighted average, 
its weight drops a little.  Weight increases if does 
better than weighted average by more than a (1+e) 
factor.  This ensures sum of weights doesn’t increase. 

 Final wi = (1+e)E[costi(alg)]/(1+e)-costi(i). So, exponent · e-1log N.  
 So, E[costi(alg)] · (1+e)costi(i) + O(e-1log N). 

Application: adapting to change 

 What if we want to adapt to change - do nearly as well 
as best recent expert? 

 For each expert, instantiate copy who wakes up on day t 
for each 0 ≤ t ≤ T-1. 

 Our cost in previous t days is at most (1+𝜖)(best expert 
in last t days) + O(𝜖−1 log(NT)). 

 (not best possible bound since extra log(T) but not bad). 


