15-859(B) Machine Learning Theory

Avrim Blum 01/15/14

Lecture 2: Online learning I

Mistake-bound model:

Basic results, halving and StdOpt algorithms
Connections to information theory

- Combining "expert advice": •(Randomized) Weighted Majority algorithm
 - •Regret-bounds and connections to game-theory

Recap from last time

- Last time: PAC model and Occam's razor.
 - If data set has $m \ge (1/\epsilon)[s \ln(2) + \ln(1/\delta)]$ examples, then whp any consistent hypothesis with size(h) < s has err(h) < ϵ .
 - Equivalently, suffices to have $s \le (\epsilon m \ln(1/\delta))/\ln(2)$
 - "compression ⇒learning"
- [KV] book has esp. good coverage of this and related topics.
- Occam bounds ⇒any class is learnable if computation time is no object.

<u>Recap: open problems</u>

Can one efficiently PAC-learn...

- C={fns with only O(log n) relevant variables}? (or even O(loglog n) or $\omega(1)$ relevant variables)? This is a special case of DTs, DNFs.
- Monotone DNF over uniform D?
- Weak agnostic learning of monomials.

Online learning

- What if we don't want to make assumption that data is coming from some fixed distribution? Or any assumptions at all?
- Can no longer talk about past performance predicting future results.
- · Can we hope to say anything interesting??

Idea: mistake bounds & regret bounds.

Mistake-bound model

- View learning as a sequence of stages.
- In each stage, algorithm is given x, asked to predict f(x), and then is told correct value.
- Make no assumptions about order of examples.
- · Goal is to bound total number of mistakes.

Alg A learns class C with mistake bound M if A makes \leq M mistakes on any sequence of examples consistent with some f \in C.

Mistake-bound model

Alg A learns class C with mistake bound M if A makes \leq M mistakes on any sequence of examples consistent with some f \in C.

- Note: can no longer talk about "how much data do I need to converge?" Maybe see same examples over again and learn nothing new. But that's OK if don't make mistakes either...
- Want mistake bound poly(n, s), where n is size of example and s is size of smallest consistent f ∈ C.
- C is learnable in MB model if exists alg with mistake bound and running time per stage poly(n,s).

Simple example: disjunctions

- Suppose features are boolean: X = {0,1}ⁿ.
- Target is an OR function, like $x_3 v x_9 v x_{12}$.
- Can we find an on-line strategy that makes at most n mistakes?
- Sure.
 - Start with h(x) = x_1 v x_2 v ... v x_n
 - Invariant: {vars in h} \supseteq {vars in f}
 - Mistake on negative: throw out vars in h set to 1 in x. Maintains invariant and decreases |h| by 1.
 - No mistakes on positives. So at most n mistakes total.

Simple example: disjunctions

Algorithm makes at most n mistakes.

No deterministic alg can do better:

...

MB model properties

An alg A is "conservative" if it only changes its state when it makes a mistake.

Claim: if C is learnable with mistake-bound M, then it is learnable by a conservative alg. Why?

- Take generic alg A. Create new conservative A' by running A, but rewinding state if no mistake is made.
- Still ≤ M mistakes because A still sees a legal sequence of examples.

<u>MB learnable \Rightarrow PAC learnable</u>

Say alg A learns C with mistake-bound M. Transformation 1:

- Run (conservative) A until it produces a hyp h that survives $\geq (1/\epsilon) \ln(M/\delta)$ examples.
- Pr(fooled by any given h) $\leq \delta/M$.
- Pr(fooled ever) ≤ δ.
 Uses at most (M/ε)ln(M/δ) examples total.

Fancier method gets $O(\epsilon^{-1}[M + \ln(1/\delta)])$

One more example...

- Say we view each example as an integer between 0 and 2ⁿ-1.
- C = {[0,a] : a < 2ⁿ}. (device fails if it gets too hot)
- In PAC model we could just pick any consistent hypothesis. Does this work in MB model?
- What would work?

<u>What can we do with</u> <u>unbounded computation time?</u>

- "Halving algorithm": take majority vote over all consistent $h \in C$. Makes at most lg(|C|) mistakes.
- What if C has functions of different sizes?
- For any (prefix-free) representation, can make at most 1 mistake per bit of target.
 - give each h a weight of $(\frac{1}{2})^{size(h)}$
 - Total sum of weights ≤ 1 .
 - Take weighted vote. Each mistake removes at least $\frac{1}{2}$ of total weight left.

<u>What can we do with</u> <u>unbounded computation time?</u>

- "Halving algorithm": take majority vote over all consistent $h \in C$. Makes at most lg(|C|) mistakes.
- What if we had a "prior" p over fns in C?
 - Weight the vote according to $p_{.}\,$ Make at most $lg(1/p_{f})$ mistakes, where f is target fn.
- What if f was really chosen according to p?
 Expected number of mistakes ≤ ∑_h[p_h lg(1/p_h)]
 = entropy of distribution p.

Is halving alg optimal?

- Not necessarily (see hwk TBA).
- Can think of MB model as 2-player game between alg and adversary.
 - Adversary picks x to split C into $C_{(x)}$ and $C_{+}(x)$. [fns that label x as or + respectively]
 - Alg gets to pick one to throw out.
 - Game ends when all fns left are equivalent.
 - Adversary wants to make game last as long as possible.
- OPT(C) = MB when both play optimally.

Is halving alg optimal?

- Halving algorithm: throw out larger set.
- Optimal algorithm: throw out set with larger mistake bound.
- You'll think about this more on the hwk...

What if there is no perfect function?

Think of as $h \in C$ as "experts" giving advice to you. Want to do nearly as well as best of them in hindsight.

These are called "regret bounds". >Show that our algorithm does nearly as well as best predictor in some class.

We'll look at a strategy whose running time is O(|C|). So, only computationally efficient when C is small.

Using "expert" advice

Say we want to predict the stock market.

- We solicit n "experts" for their advice. (Will the market go up or down?)
- We then want to use their advice somehow to make our prediction. E.g.,

Expt 1	Expt 2	Expt 3	neighbor's dog	truth
down	up	up	up	up
down	up	up	down	down

Can we do nearly as well as best in hindsight?

["expert" ´ someone with an opinion. Not necessarily someone who knows anything.] [note: would be trivial in PAC (i.i.d.) setting]

Using "expert" advice

- If one expert is perfect, can get $\cdot lg(n)$ mistakes with halving alg.
- But what if none is perfect? Can we do nearly as well as the best one in hindsight?

Strategy #1:

- Iterated halving algorithm. Same as before, but once we've crossed off all the experts, restart from the beginning.
- Makes at most $\lg(n)[OPT+1]$ mistakes, where OPT is <code>#mistakes</code> of the best expert in hindsight.
- Seems wasteful. Constantly forgetting what we've "learned". Can we do better?

Weighted Majority Algorithm

Intuition: Making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority Alg:

- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

<u>Analysis: do nearly as well as best</u> <u>expert in hindsight</u>

- M = # mistakes we've made so far.
- m = # mistakes best expert has made so far.
- W = total weight (starts at n).
- After each mistake, W drops by at least 25%.
 So, after M mistakes, W is at most n(3/4)^M.
- Weight of best expert is (1/2)^m. So,

Randomized Weighted Majority

- 2.4(m + lg n) not so good if the best expert makes a mistake 20% of the time. Can we do better? Yes.
- Instead of taking majority vote, use weights as probabilities. (e.g., if 70% on up, 30% on down, then pick 70:30) Idea: smooth out the worst case.
- Also, generalize ¹/₂ to 1- ε.

$\begin{array}{l} \text{Solves to:} \quad M \leq \frac{-m\ln(1-\varepsilon) + \ln(n)}{\varepsilon} \approx (1+\varepsilon/2)m + \frac{1}{\varepsilon}\ln(n) \\ \hline \text{M=expected} \\ \text{\#mistakes} \\ M \leq 1.39m + 2\ln n \quad \leftarrow \varepsilon = 1/2 \\ M \leq 1.15m + 4\ln n \quad \leftarrow \varepsilon = 1/4 \\ M \leq 1.07m + 8\ln n \quad \leftarrow \varepsilon = 1/8 \\ \hline \text{M=mistakes} \\ M \leq 1.07m + 8\ln n \quad \leftarrow \varepsilon = 1/8 \\ \hline \text{M=mistakes} \\ \text{M=mistakes} \\$

<u>Summarizing</u>

- $E[\# \text{ mistakes}] \le (1+\epsilon)OPT + \epsilon^{-1}\log(n)$ = OPT + ($\epsilon OPT + \epsilon^{-1}\log(n)$)
- If set $\varepsilon = (\log(n)/OPT)^{1/2}$ to balance the two terms out (or use guess-and-double), get bound of $M \le OPT+2(OPT \cdot \log n)^{1/2} \le OPT+2(T \log n)^{1/2}$
- Define average regret in T time steps as: (avg per-day cost of alg) - (avg per-day cost of best fixed expert in hindsight).
 Goes to 0 or better as T→∞ = "no-regret" algorithm].

<u>Extensions</u>

- What if experts are actions? (rows in a matrix game, ways to drive to work,...)
- At each time t, each has a loss (cost) in {0,1}.
- Can still run the algorithm
 - Rather than viewing as "pick a prediction with prob proportional to its weight",
 - View as "pick an expert with probability proportional to its weight"
 - Alg pays expected cost $\overrightarrow{p_t} \cdot \overrightarrow{c_t} = F_t$.
- Same analysis applies.
 - Do nearly as well as best action in hindsight!

Extensions

- What if losses (costs) in [0,1]?
- Just modify alg update rule: $w_i \leftarrow w_i(1 \epsilon c_i)$.
- Fraction of wt removed from system is: $(\sum_{i} w_i \epsilon c_i) / (\sum_{i} w_i) = \epsilon \sum_{i} p_i c_i = \epsilon [our expected cost]$
- Analysis very similar to case of {0,1}.

RWM (multiplicative weights alg)

Guarantee: do nearly as well as fixed row in hindsight

Which implies doing nearly as well (or better) than minimax optimal

A natural generalization

- A natural generalization of our regret goal (thinking of driving) is: what if we also want that on rainy days, we do nearly as well as the best route for rainy days.
- And on Mondays, do nearly as well as best route for Mondays.
- More generally, have N "rules" (on Monday, use path P). Goal: simultaneously, for each rule i, guarantee to do nearly as well as it on the time steps in which it fires.
- For all i, want E[cost_i(alg)] · (1+E)cost_i(i) + O(E⁻¹log N). (cost_i(X) = cost of X on time steps where rule i fires.)
- Can we get this?

A natural generalization

- This generalization is esp natural in machine learning for combining multiple if-then rules.
- E.g., document classification. Rule: "if <word-X> appears then predict <Y>". E.g., if has football then classify as sports.
- So, if 90% of documents with football are about sports, we should have error · 11% on them.

"Specialists" or "sleeping experts" problem.

- Assume we have N rules.
- For all i, want E[cost_i(alg)] · (1+ε)cost_i(i) + O(ε⁻¹log N). (cost_i(X) = cost of X on time steps where rule i fires.)

A simple algorithm and analysis (all on one slide)

- Start with all rules at weight 1.
- At each time step, of the rules i that fire, select one with probability p_i / w_i.
- Update weights:
 - If didn't fire, leave weight alone.
- If didn't fire, leave weight alone.
 If did fire, raise or lower depending on performance compared to weighted average:

 r_i = [Σ_i p_i cost(j)]/(1+ε) cost(i)
 w_i Ā <- w(1+ε)^T

 So, if rule i does exactly as well as weighted average, its weight drops a little. Weight increases if does better than weighted average by more than a (1+ε) factor. This ensures sum of weights doesn't increase.
 Final w_i = (1+ε)<sup>E[cost_i(alg)]/(1+ε)-cost_i(i)}. So, exponent · ε⁻¹log N.
 So Ercost (alg) · (1+ε)^{Clost_i(i)} · (0(-²log N))
 </sup>
- So, E[cost_i(alg)] · (1+ε)cost_i(i) + O(ε⁻¹log N).

Application: adapting to change

- What if we want to adapt to change do nearly as well as best recent expert?
- + For each expert, instantiate copy who wakes up on day t for each $0 \leq t \leq T\text{-}1.$
- Our cost in previous t days is at most $(1+\epsilon)$ (best expert in last t days) + $O(\epsilon^{-1} \log(NT))$.
- (not best possible bound since extra log(T) but not bad).