15-859(B) Machine Learning
Theory

Lecture 2: Online learning I

Mistake-bound model:
*Basic results, halving and StdOpt algorithms
*Connections fo information theory

Combining “expert advice":
*(Randomized) Weighted Majority algorithm
*Regret-bounds and connections to game-theory

Recap: open problems

Can one efficiently PAC-learn...

+ C={fns with only O(log n) relevant
variables}? (or even O(loglog n) or w(1)
relevant variables)?

+ Monotone DNF over uniform D?
- Weak aghostic learning of monomials.

Mistake-bound model
+ View learning as a sequence of stages.
+ In each stage, algorithm is given x, asked to
predict 7(x), and then is told correct value.
* Make no assumptions about order of
examples.
* Goal is to bound total number of mistakes.

Mif A

Recap from last time

+ Last time: PAC model and Occam's razor.

- If data set has m = (1/¢)[s In(2) + In(1/5)]
examples, then whp any consistent hypothesis
with size(h) < s has err(h) < c.

- Equivalently, suffices to have s<(sm-In(1/3))/In(2)

- “compression =learning"

* [KV] book has esp. good coverage of this

and related topics.

+ Occam bounds =any class is learnable if

computation time is no object.

Online learning

* What if we don't want to make assumption

that data is coming from some fixed
distribution? Or any assumptions at all?

+ Can no longer talk about past performance

predicting future results.

+ Can we hope fo say anything interesting??

Tdea: mistake bounds & regret bounds.

Mistake-bound model
[MifA

<M
feC

* Note: can no longer talk about “how much data do

T need to converge?” Maybe see same examples
over again and learn nothing new. But that's OK if
don't make mistakes either...

+ Want mistake bound poly(n, s), where n is size of

example and s is size of smallest consistent f € C.

- Cis in MB model if exists alg with

mistake bound and running time per stage poly(n,s).

Simple example: disjunctions
* Suppose features are boolean: X = {0,1}".
+ Target is an OR function, like x5 v Xg v X1,.
+ Can we find an on-line strategy that makes
at most n mistakes?
* Sure.
- Start with h(x) =x; vx, v .. Vvx,
- Invariant: {varsin h} 2 {vars in f}

- Mistake on negative: throw out vars in h set to 1
in x. Maintains invariant and decreases |h| by 1.

- No mistakes on positives. So at most n mistakes
total.

MB model properties

An alg A is “conservative" if it only changes its
state when it makes a mistake.

Claim: if C is learnable with mistake-bound M,
then it is learnable by a conservative alg.

Why?

* Take generic alg A. Create new conservative
A’ by running A, but rewinding state if no
mistake is made.

- Still <M mistakes because A still sees a
legal sequence of examples.

One more example...

+ Say we view each example as an integer
between O and 2"-1.

+ C={[0,a] : a<2"}. (device fails if it gets too
hot)

+ In PAC model we could just pick any
consistent hypothesis. Does this work in MB
model?

+ What would work?

Simple example: disjunctions

+ Algorithm makes at most n mistakes.

+ No deterministic alg can do better:
1000000 +or-?
0100000 +or-2?
0010000 +or-?
0001000 +or-2?

MB learnable = PAC learnable

Say alg A learns C with mistake-bound M.
Transformation 1:
* Run (conservative) A until it produces a hyp h
that survives > (1/¢)In(M/38) examples.
* Pr(fooled by any given h) <&/M.
* Pr(fooled ever) <.
Uses at most (M/¢)In(M/3) examples total.

* Fancier method gets O(z"'[M + In(1/5)])

What can we do with
unbounded computation time?

* "Halving algorithm”: take majority vote
over all consistent h € C. Makes at most
Ig(|C|) mistakes.

* What if C has functions of different sizes?

* For any (prefix-free) representation, can
make at most 1 mistake per bit of target.

- give each h a weight of (3)size(™
- Total sum of weights < 1.

- Take weighted vote. Each mistake removes at
least 3 of total weight left.

What can we do with

unbounded computation time?

* "Halving algorithm": take majority vote
over all consistent h € C. Makes at most
lg(|C|) mistakes.

* What if we had a "prior” p over fns in C?

- Weight the vote according to p. Make at most
Ig(1/p¢) mistakes, where f is target fn.

+ What if f was really chosen according to p?
- Expected number of mistakes <, [py, 19(1/py)]
= entropy of distribution p.

Is halving alg optimal?
* Halving algorithm: throw out larger seft.

* Optimal algorithm: throw out set with
larger mistake bound.

+ You'll think about this more on the hwk...

Using "expert” advice

+ We solicit n "experts” for their advice. (Will the
market go up or down?)

- We then want to use their advice somehow to
make our prediction. E.g.,

Expt 1 Expt 2 Expt 3 neighbor's dog | truth
down up up

down up up

Can we do nearly as well as best in hindsight?

["expert”” someone with an opinion. Not necessarily someone
who knows anything.]

[note: would be trivial in PAC (i.i.d.) setting]

Is halving alg optimal?
- Not necessarily (see hwk TBA).
+ Can think of MB model as 2-player game
between alg and adversary.
- Adversary picks x to split C into C(x) and
C.(x). [fns that label x as - or + respectively]
- Alg gets to pick one to throw out.
- Game ends when dll fns left are equivalent.

- Adversary wants to make game last as long as
possible.

What if there is no perfect function?

Think of as h € C as "experts" giving advice
to you. Want to do nearly as well as best
of them in hindsight.

We'll look at a strategy whose running

time is O(|C|). So, only computationally
efficient when C is small.

Using "expert” advice

If one expert is perfect, can get - Ig(n) mistakes
with halving alg.
Can we do nearly as
well as the best one in hindsight?
Strategy #1:
+ Tterated halving algorithm. Same as before, but

once we've crossed of f all the experts, restart
from the beginning.

+ Makes at most lg(n)[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
“learned”. Can we do better?

Weighted Majority Algorithm

Making a mistake doesn't completely
disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.
Weights: 1

Predictions: D We predict: U Truth: D
Weights: 1

Randomized Weighted Majority

2.4(m + Ig n) not so good if the best expert makes a
mistake 20% of the time. Can we do better?

+ Instead of taking majority vote, use weights as
probabilities. (e.g., if 70% on up, 30% on down, then pick
70:30) smooth out the worst case.

- Also, generalize 3 to 1- ¢.

—mIn(1 —¢&) 4+ In(n) 1
o< ZmIng _-'* B (14 2/2)m + = In(n)

M =expected | ;= 1 39, :'-m; - =1/2
‘ #mistakes - unlike most

1.15m +dInn - 1 /4 worst-case
bounds, numbers
1.07m+8Inn «—c=1/8 are pretty good.

Summarizing

- E[# mistakes] < (1+€)OPT + g'llog(n)
= OPT + (gOPT + ¢tlog(n))

- If set £=(log(n)/OPT)Y2 to balance the two terms
out (or use guess-and-double), get bound of
M < OPT+2(OPT-log n)/2 < OPT+2(Tlogn)Y/?

* Define in T time steps as:

(avg per-day cost of alg) - (avg per-day cost of best
fixed expert in hindsight).

Goes to O or better as T-» o = “no-regret” algorithm].

M < .

Analysis: do nearly as well as best
expert in hindsight

M -

m -

W=]

After each mistake, W drops by at least 25%.

So, after M mistakes, W is at most n(3/4)M.

Weight of best expert is (1/2)™. So,

(1 < n Y constant
) ratio

Analysis »

+ Say at time t we have fraction I, of

weight on experts that made mistake.

* S0, we have probability I, of making a mistake, and

we remove an ¢I, fraction of the total weight.
= Wring = n(1-2 F)(1 - & Fy)...
= IN(Wring) = In(n) + Z; [In(1 - € F)l < In(n) - £ X, F,
(using In(1-x) < -x)
=In(n) - ¢ M. (Z F, = E[# mistakes])

+ If best expert makes m mistakes, then In(Wy;,q) > In((1-€)™).
+ Now solve: In(n) - ¢ M > m In(1-¢).

M ~ (14 m+ E log(n)

Extensions

* What if experts are actions? (rows in a matrix

game, ways fo drive to work,...)

+ At each time t, each has a loss (cost) in {0,1}.
+ Can still run the algorithm

- Rather than viewing as "pick a prediction with
prob proportional fo its weight” ,

- View as "pick an expert with probability
proportional to its weight"

- Alg pays expected cost p; - ¢/ = F;.

* Same analysis applies.

Do nearly as well as best action in hindsight!

Extensions
* What if losses (costs) in [0,1]?
+ Just modify alg update rule: w; « w;(1 —ec;).
* Fraction of wt removed from system is:
Qiwiec) /(i wy) = € X pi ¢; = €[our expected cost]
- Analysis very similar to case of {0,1}.

Connections to minimax optimality

World — life - opponent
(1-ec4?)(1-ec)1
(1-ec,2)(1-ec,)1 scalin
(1-ec5?)(1-ec5N)1 S0 cos'?s
. . i in [0,1]

(-s¢,2)(1-ec,)1
C2

If play RWM against a best-response oracle, p will
approach minimax optimality (most p will be close).

(If if didn't, wouldn't be getting promised guarantee)

A natural generalization

¢ A natural generalization of our regret goal (thinking of
driving) is: what if we also want that on rainy days, we do
nearly as well as the best route for rainy days.
And on Mondays, do nearly as well as best route for
Mondays.

More generally, have N “rules” (on Monday, use path P).
Goal: simultaneously, for each rule i, guarantee to do
nearly as well as it on the time steps in which it fires.

For all i, want E[cost;(alg)] - (1+€)cost;(i) + O(etlog N).

(cost(X) = cost of X on time steps where rule i fires.)

Can we get this?

RWM (multiplicative weights alg)

World - life - opponent
(1-ec®)(1-ec)1
(1-ec,?)(1-ec,N)1 scalin
(1—gc32)(1—zc31)i so cosgs

1 in[0,1]

(1-s¢,2)(1-s¢,1)1
c! c?

Guarantee: do nearly as well as fixed row in hindsight

Which implies doing nearly as well (or better)
than minimax optimal

Connections to minimax optimality

World life - opponent
(1-ec®)(1-ec)1
(1-ec,2)(1-ec,)1 scalin
9
(l-ac32)(1-sca1)i so costs

. in[0,1]

(1-sc,2)(1-sc,)1

c2

If play tfwo RWM against each other, then empirical

distributions must be near-minimax-optimal.

(Else, one or the other could & would take advantage)

A natural generalization

This generalization is esp natural in machine learning for
combining multiple if-then rules.
E.g., document classification. Rule: “if <word-X> appears
then predict <¥>". E.g., if has football then classify as
sports.
So, if 90% of documents with football are about sports,
we should have error - 11% on them.

“Specialists” or “sleeping experts” problem.

Assume we have N rules.
For all i, want E[cost;(alg)] - (1+€)cost(i) + O(ellog N).

(costi(X) = cost of X on time steps where rule i fires.)

A simple algorithm and analysis (il on one siide)

+ Start with all rules at weight 1.

* At each time step, of the rules i that fire,
select one with probability p; / wi.
¢ Update weights:
= If didn't fire, leave weight alone.
=« If did fire, raise or lower depending on performance
compared to weighted average:
o ;= [Z p; cost(j)]/(1+€) - cost(i)
o WA <« wl+e)i
= So, if rule i does exactly as well as weighted average,
its weight drops a little. Weight increases if does
better than weighted average by more than a (1+¢)

factor. This ensures sum of weights doesn't increase.

¢ Final w; = (L+g)Elcosti(ag)V/(l+e)-costil) So, exponent - ¢'llog N.
¢ So, E[costi(alg)] - (1+&)cost(i) + O(etlog N).

Application: adapting to change

What if we want to adapt to change - do nearly as well
as best recent expert?

For each expert, instantiate copy who wakes up on day t
foreach0 <t < T-1

Our cost in previous t days is at most (1+€)(best expert
in last t days) + O(e~* log(NT)).
(not best possible bound since extra log(T) but not bad).

