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Today's focus: sample complexity

+ We are given sample S = {(x.,y)}.

- Assume x's come from some fixed probability
distribution D over instance space.

- View labels y as being produced by some target
function f.

- Alg does optimization over S to produce
some hypothesis h. Want h to do well on
new examples also from D.

* How big does S have to be to get this kind
of guarantee?

Basic sample complexity bound recap

- If |S| > (1/g)[In(|C]) + In(1/8)], then with
probability > 1-5, all heC with erry(h)>¢
have errg(h)>0.

+ Argument: fix bad h. Prob of consistency at
most (1-¢)!SI. Set to /|C| and use union
bound.

* So, if the target concept is in C, and we have
an algorithm that can find consistent
functions, then we only need this many
examples to achieve the PAC guarantee.

Today: two issues

- If |S| > (1/&)[In(|C|) + In(1/8)], then with
probability > 1-5, all heC with erry(h)>e
have errg(h)>0.

1. Look at more general notions of “uniform

convergence”.

2. Replace In(|C|) with better measures of

complexity.

Uniform Convergence

* Our basic result only bounds the chance that
a bad hypothesis looks perfect on the data.
What if there is no perfect heC?

+ Without making any assumptions about the
target function, can we say that whp all heC
satisfy |erry(h) - errg(h)| < €?

- Called "uniform convergence”.
- Motivates optimizing over S, even if we can't find
a perfect function.

* To prove bounds like this, need some good

tail inequalities.

Tail inequalities

Tail inequality: bound probability mass in tail of
distribution.

+ Consider a hypothesis h with true error p.

- If we see m examples, then the expected fraction
of mistakes is p, and the standard deviation c is
(p(1-p)/m)v2,

+ A convenient rule for iid Bernoulli trials, in our
notation, is: Pr[|erry(h) - errg(h)| > 1.965] < 0.05.
- If we want 95% confidence that true and observed

errors differ by only ¢, only need (1.96)%p(1-p)/c? < 1/¢?
examples. [worst case is when p=1/2]

* Chernoff and Hoeffding bounds extend fo case
where we want to show something is really unlikely,
so can rule out lots of hypotheses.




Chernoff and Hoeffding bounds

Typical use of bounds

Consider coin of bias p flipped m times. Let #
be the observed # heads. Let ¢,a € [0,1].

Hoeffding bounds:

* Pr[#/m>p+e] < e2m? and

c Pr[#/m<p-¢]< g-2me?,

Chernoff bounds:

© Pr[#/m > p(1+a)] < ema?/3 and

- Pri#/m < p(1-0)] < empe?/2,

E.g.

- Pr[# > 2(expectation)] < e-(expectation)/3,
- Pr[# < (expectation)/2] < e-(expectation)/s,

Thm: If |S| > (1/(2e))[In(|C]) + In(2/5)],
then with probability > 1-3, all heC have
lerry(h)- errg(h)| < .

* Proof: Just apply Hoeffding.

- Chance of failure at most 2|C|e-2IsI?,
- Set to0 5. Solve.

+ So, whp, best on sample is e-best over D.

- Note: this is worse than previous bound (1/¢ has
become 1/¢2), because we are asking for
something stronger.

- Can also get bounds "between” these two.

Typical use of bounds

Thm: If |S| > (6/£)[In(|C]) + In(1/5)], then with
prob > 1-3, all heC with erry(h) > 2¢ have errg(h)
> ¢, and all heC with erry(h) < €/2 have errg(h) < &.

* Proof: apply Chernoff.

Next topic: improving the |C|

+ For convenience, let's go back fo the

question: how big does S have to be so
that whp, errs(h)=0 = erry(h)<e.

VC-dimension and effective size of C

- If many hypotheses in C are very
similar, we shouldn't have to pay so much

- E.g., consider the class € ={[0,a]: 0 < a < 1}.
- Define a, so Pr([a,,a])=¢, and a,' so Pr([a,a, ])=¢.

a, a’ L’
- Enough to get at least one example in each

interval. Just need (1-¢)s! < /2.
- (1/€)In(2/8) examples.
*+ How can we generalize this notion?

Effective number of hypotheses

Define: C[m] = maximum number of ways to
split m points using concepts in C. (Book
calls this T1.(m).)

- What is C[m] for “initial intervals"?
- How about linear separators in R??

+ Thm: For any class C, distribution D, if

|S| = m>(2/¢)[log,(2C[2m]) + log,(1/3)],
then with prob. 1-8, all heC with error > ¢
are inconsistent with data. [Will prove soon]

- I.e., can roughly replace "|C|" with "C[2m]".




Effective number of hypotheses

Define: C[m] = maximum number of ways fo
split m points using concepts in C. (Book
calls this T (m).)

- What is C[m] for “initial intervals"?
- How about linear separators in R??

- C[m] is sometimes hard to calculate exactly, but
can get a good bound using "VC-dimension"”.

- VC-dimension is roughly the point at which C
stops looking like it contains all functions.

Shattering
Defn: A set of points S is shattered by C if
there are concepts in C that split S in all of
the 215! possible ways.

- Inother words, all possible ways of classifying
points in S are achievable using concepts in C.

- E.g., any 3 non-collinear points can be

shattered by linear threshold functions in
2-D.

But no set of 4 points in R? can be shattered
by LTFs.

VC-dimension

*+ The VC-dimension of a concept class C is the
size of the largest set of points that can be
shattered by C.

+ So, if the VC-dimension is d, that means
there exists a set of d points that can be
shattered, but there is no set of d+1 points
that can be shattered.

- E.g., VC-dim(linear threshold fns in 2-D) = 3.
- Will later show VC-dim(LTFs in R") = n+1.

- What is the VC-dim of intervals on the real line?
- How about C = {all 0/1 functions on {0,1}"}?

Upper and lower bound theorems

+ Theorem 1: For any class C, distribution D, if

m=|S| > (2/¢)[log,(2C[2m]) + log,(1/5)], then
with prob. 1-8, all heC with error > € are
inconsistent with data.

+ Theorem 2 (Sauer's lemma):

Clm] < Z;;C(')dim(C) (T) — O(mVCdim(C))

+ Corollary 3: can replace bound in Thm 1 with

0 G [VCdim(C)log(1/e) + Iog(l/é)])

+ Theorem 4: For any alg A, there exists a

distrib D and target in C such that
|S| < (VCdim(C)-1)/(8¢) = E[errpy(A)]> «.




