
15-859(B) Machine Learning Theory

Homework # 3 Due: February 22, 2012

Groundrules: Same as before. You should work on the exercises by yourself but may work
with others on the problems (just write down who you worked with). Also if you use material
from outside sources, say where you got it.

Exercises:

1. [VC-dimension of MAJ(H)] Show that if hypothesis class H has VC-dimension d,
then the class MAJk(H) has VC-dimension O(kd log kd). Recall that MAJk(H) is the
class of functions achievable by taking majority votes over k functions in H . Note that
we are only asking for an upper bound here, not a lower bound.

Problems:

In problems 2-4, you will prove that the VC-dimension of the class Hn of halfspaces in n
dimensions is n + 1. (Hn is the set of functions a1x1 + . . . + anxn ≥ a0, where a0, . . . , an are
real-valued.) We will use the following definition: The convex hull of a set of points S is the
set of all convex combinations of points in S; this is the set of all points that can be written
as

∑
xi∈S λixi, where each λi ≥ 0, and

∑
i λi = 1. It is not hard to see that if a halfspace has

all points from a set S on one side, then it must have the entire convex hull of S on that
side as well. [Then problem 5 will relate this to the Perceptron bound]

2. [lower bound] Prove that VC-dim(Hn) ≥ n+1 by presenting a set of n+1 points in
n-dimensional space such that one can partition that set with halfspaces in all possible
ways. (And, show how one can partition the set in any desired way.)

3. [upper bound part 1] The following is “Radon’s Theorem,” from the 1920’s.

Theorem. Let S be a set of n+2 points in n dimensions. Then S can be partitioned
into two (disjoint) subsets S1 and S2 whose convex hulls intersect.

Show that Radon’s Theorem implies that the VC-dimension of halfspaces is at most
n + 1. Conclude that VC-dim(Hn) = n + 1.

4. [upper bound part 2] Now we prove Radon’s Theorem. We will need the following
standard fact from linear algebra. If x1, . . . , xn+1 are n + 1 points in n-dimensional
space, then they are linearly dependent. That is, there exist real values λ1, . . . , λn+1

not all zero such that λ1x1 + . . . + λn+1xn+1 = 0.

You may now prove Radon’s Theorem however you wish. However, as a suggested first
step, prove the following. For any set of n + 2 points x1, . . . , xn+2 in n-dimensional
space, there exist λ1, . . . , λn+2 not all zero such that

∑
i λixi = 0 and

∑
i λi = 0. (This

is called affine dependence.) Now, think about the lambdas...



5. [More on margins] Algorithms such as Perceptron and SVMs do especially well
when data is linearly separable by a large L2 margin γ.1 For example, the Perceptron
algorithm makes at most O(1/γ2) mistakes; so, if the margin γ is large compared to
1/
√

n, then the number of mistakes is small compared to the VC-dimension bound. On
the other hand, it is also possible for the margin bound to be much worse than the VC-
dimension bound. Give an example of O(n) points in {0, 1}n that are linearly separable
but where the Perceptron algorithm would make an exponential number of updates if
you cycled through the data until you have w ·x > 0 for every positive example in your
set S and w · x < 0 for every negative example in your set S. For concreteness, let us
consider a version of the Perceptron algorithm that does not normalize the examples
to all have Euclidean length 1: it just adds or subtracts the given positive/negative
example from the weight vector on a mistake (this will make things conceptually easier).
In particular, with this version the weights are always integral. So, it is sufficient to
come up with a set of O(n) linearly-separable examples in {0, 1}n such that the only
integral-weight linear separator has exponential-sized weights.2

Hint: your example will also prove that the Perceptron algorithm is not a legal solution
to problem 4 on hwk 1.

1As in Lecture 4, defining margin as the minimum distance of any example to the separator when examples

have been normalized to unit Euclidean length.
2This will also imply that the margin of separation for these examples is exponentially small. In particular,

since examples are in {0, 1}n, the mistake bound of the non-normalizing Perceptron algorithm becomes n/γ2,

and if this is exponentially large, then γ must be exponentially small.

2


