
15-859(B) Machine Learning Theory

Homework # 1 Due: February 1, 2012

Groundrules:

• Homeworks will generally consist of exercises, easier problems designed to give you
practice, and problems, that may be harder, and/or somewhat open-ended. You should
do the exercises by yourself, but you may work with a friend on the harder problems
if you want. (Working together doesn’t mean “splitting up the problems” though.) If
you work with a friend, then write down who you are working with.

• If you’ve seen a problem before (sometimes I’ll give problems that are “famous”), then
say that in your solution. It won’t affect your score, I just want to know. Also, if you
use any sources other than the textbook, write that down too. It’s fine to look up a
complicated sum or inequality or whatever, but don’t look up an entire solution.

Exercises:

1. Compression and learning. In class we showed that so long as the number of
examples m satisfies m > 1

ǫ
[s ln 2 + ln(1/δ)], then with probability at least 1 − δ, all

consistent hypotheses h with size(h) < s have error at most ǫ. Equivalently, to learn
well it suffices to have s < 1

ln 2
[ǫm − ln(1/δ)]; i.e., to compress the data by roughly a

factor of 1/ǫ.

Suppose you have an algorithm that guarantees on any set of m examples consistent
with some target function f ∈ C to find a hypothesis of size at most size(f)3m2/3.
How large a value of m would be sufficient for this algorithm to achieve error ≤ ǫ with
probability ≥ 1 − δ. (You may look at the proof of Thm 2.1 in the book, but please
don’t just plug into the theorem. Also, don’t worry about being tight with constant
factors.)

2. Expressivity of LTFs. It is easy to see that conjunctions (like x1 ∧ x̄2 ∧ x3) and
disjunctions (like x1 ∨ x̄2 ∨ x3) are special cases of decisions lists. Show that decisions
lists are a special case of linear threshold functions. That is, any function that can
be expressed as a decision list can also be expressed as a linear threshold function
“f(x) = + iff w1x1 + . . . wnxn ≥ w0”.

3. Decision tree rank. The rank of a decision tree is defined as follows. If the tree is
a single leaf then the rank is 0. Otherwise, let rL and rR be the ranks of the left and
right subtrees of the root, respectively. If rL = rR then the rank of the tree is rL + 1.
Otherwise, the rank is the maximum of rL and rR.

Prove that a decision tree with ℓ leaves has rank at most log2(ℓ).



Problems:

4. Decision List mistake bound. Give an algorithm that learns the class of decision
lists in the mistake-bound model, with mistake bound O(nL) where n is the number
of variables and L is the length of the shortest decision list consistent with the data.
The algorithm should run in polynomial time per example. Briefly explain how your
algorithm can be extended to learn the class of k-decision lists with mistake bound
O(nkL) (a k-decision list is a decision list in which each test is over a conjunction of k
variables rather than just over a single variable).

Hint: think of using some kind of “lazy” version of decision lists as hypotheses.

Note: there is a solution to this problem in the survey article handed out in the second
lecture, but please do this yoursel{f,ves}.

5. Expressivity of decision lists, contd. Show that the class of rank-k decision trees
is a subclass of k-decision lists. (There are several different ways of proving this.)

Thus, we conclude that we can learn constant rank decision trees in polynomial time,
and using Exercise 3 we can learn arbitrary decision trees of size s in time and number
of examples nO(log s). (So this is “almost” a PAC-learning algorithm for decision trees.)

6. Halving is not always optimal. Describe a class C where the halving algorithm is
not optimal: that is, where you would get a better worst-case mistake bound by not

always going with the majority vote of the available concepts.

Note: it’s OK if your class is a bit contrived.

Hint: The key issue here is: what if on the current example x, 80% of the functions
say “positive” and 20% say “negative”, but the larger set of functions has a smaller
mistake bound than the smaller set of functions? And how can a large set of functions
have a small mistake bound anyway?
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