

Edge-Based Wearable Systems for Cognitive Assistance:
Design Challenges, Solution Framework, and

Application to Emergency Healthcare

Siyan Zhao, Junjue Wang, Hongkun Leng, Yuqi Liu, Haodong Liu,
Daniel P. Siewiorek, Mahadev Satyanarayanan, Roberta L. Klatzky

March 2020

CMU-CS-20-102

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Cognitive assistants are computer-based interactive guides for complex activities such as
emergency medical care. Recent advances in computing capability and edge computing make it
possible to host such an assistant in a wearable device. We identify technical challenges facing the
designer of a wearable cognitive assistant and describe pathways to solutions. We illustrate the
solution space in the form of an automated end-to-end assistant to guide a novice through the
application of an automatic external defibrillator (AED). Our results indicate that without such
assistance, novices will fail, but technological barriers limit real-time success. Our work highlights
challenges as well as new capabilities made possible by wearable technology in this domain.

This work was supported by the National Science Foundation (NSF) under grant number CNS-
1518865.

Keywords: Empirical studies in ubiquitous and mobile computing, Ubiquitous and mobile
computing systems and tools, Real-time system architecture, Edge computing

1 Introduction
There has been growing interest in instrumenting sensors to guide people in a variety of tasks.

For example, a camera-based system can automatically detect, recognize and track exercises
performed in a gym setting [18]. Motion and contact sensors have been integrated to pick up the
location of a user and the current state of tools to help users with cognitive impairments in cooking
activities [4]. An important domain of use for these sensor-based applications is cognitive
assistants, that is, computer-based interactive guides for a complex human activity. The application
domain is longstanding, but has been transformed by current technology, which provides sensors
to closely monitor the user, supports interactions through voice or gesture that free the hands, takes
advantage of machine learning techniques to analyze and interpret the environment, and capitalizes
on low-latency transmission between the user and the computational algorithms.

While the technical advances afford the design of more sophisticated assistants, it is still a
challenge to conceive and implement a well-designed cognitive assistant. For example, how should
a task be properly divided into action components such that each action is achievable by the user
and their completion states can be detected by sensors? How should assistants handle latency in
computation to create a smooth user experience? The purpose of the present paper is to identify
these challenges and to propose solutions in the design of cognitive assistants. To illustrate our
solutions, we provide an end-to-end example in the medical domain, using an automatic external
defibrillator (AED), a device found in many public places. Although the intended use case may
include guidance by phone contact with emergency medical technicians, time or situational
constraints may lead untrained users to attempt implementation. A study reported here showed that
contrary to these intentions, novices could not successfully use an AED without the guidance of a
cognitive assistant.

The contributions of this work are as follows: (1) We provide baseline evidence that a widely
deployed commercial product cannot be successfully used by untrained users, without cognitive
assistance. (2) We introduce the concept of proper chunking of instructions for wearable cognitive
assistance applications, provide guidelines for instruction units, and demonstrate their impact. (3)
We not only demonstrate what can be learned from designing an assistant for a specific device,
but also generalize to a formal structure that can be used to guide the creation of future wearable
cognitive assistants. (4) We confirm the critical importance of edge computing for this class of
time-constrained applications on wearable devices and provide quantitative metrics for the cost of
moving away from the edge of the cloud.

2 Background and Related Work
Cognitive assistants have been available for decades in various forms, ranging from checklists

to full instruction under computer control. An early example is the project STEAMER [16], which
reduced an extensive manual for running a steam propulsion system to procedures instructed by a
GUI. More recent examples can be found in cognitive tutors developed over the last two decades
or so, which embed a procedural model of a complex domain such as middle-school mathematics
into an interactive interface that guides learners through problems according to their ongoing
mastery [25].

Considerable research has been directed to the development of cognitive assistants in broad
application contexts, including health care. Indeed, whole research fields were developed to
address major underlying problems. For example, where an assistant is modeled after a human
expert, research has been dedicated to mechanisms for knowledge acquisition from experts [6,36].

Where tasks have many steps that may not be transparent, task analysis techniques have been
developed to create the underlying model [2,3]. In error-prone domains such as medical
procedures, there is extensive analysis of vulnerabilities to human judgment [5,32]. The generation
of instructions by the computer has also been a topic of research [1,14,17].

While prior research continues to be highly useful in designing novel cognitive assistants, rapid
developments in supporting technology offer new possibilities for implementation that have been
less scrutinized. As described in [29], these developments span three broad tiers of new computing
capability. The first is the immense computational power and storage capability of commercial
cloud computing, which has the additional advantage of affordability to the typical user. The
second tier is what is termed “edge” computing [28,31], comprising computing infrastructure near
the user that affords very fast latency and high bandwidth to an application in need of dense, high-
speed data transmission. We use the term cloudlet to refer to an instance of such infrastructure.
The third tier encompasses devices worn or carried by the user, including dedicated sensors,
smartphones, and AR/VR devices.

Fig. 1 uses three dimensions to represent the transformations in cognitive assistants made
possible by these tiers. Computational capability indicates how well assistive systems handle
problems of high demand in terms of compute resources. Latency is simply the duration of the
entire chain from a user query to a system response, often called round-trip time. Device
intrusiveness reflects a progression from sensors embedded in or worn by the user to detached
ancillary devices like keyboards and mice. The figure indicates how increased capability, along
with decreased latency and intrusiveness, have expanded the interaction platform of cognitive
assistants, providing new avenues for communication with the user and monitoring of the
environment. The emerging platform includes dense sensor input; form factors such as the Google
Glass® that enable hands-free user interaction; deep learning algorithms that recognize objects,
sounds or faces [20,30]; natural language communication; and fast round-trip-time from one task
step to another. The culmination of these technical developments is a new type of cognitive
assistant: an intelligent help system hosted in a device carried on or nearby the user that provides
real-time guidance through a multi-step task. Chen [9] demonstrated the power of this approach
by building assistants for moment-to-moment instruction in a range of applications, from Lego
block building to the ball return in a game of ping-pong. The approach has also been applied to
assisting trauma surgeons with repair of a broken rib by inserting a plate [35].

As a prototype, consider a task of guiding a novice through a wrist-mounted blood pressure
reading. The person wears a camera linked to a computer vision system that analyzes the visual
field for body parts, machine components, on-screen metric readings, and so on. The
computational power resides not in the wearable containing the camera, but rather in a cloudlet
interfaced to it. An auditory or visual interface conveys the next action to the user. Step by step,
the user is guided to mount the blood pressure device in the appropriate location on the arm (just
below the wrist), hold the arm at heart level, start the machine, and take the reading. There are
many potential error points; for example, mounting the device too close to the wrist or failing to
notice that the batteries are dead.

The initial portion of the present paper is intended to identify choice points in the design of the
type of assistant that is made possible with new technologies and to suggest constraints on the
solutions. This analysis is sufficiently general so that it applies to cognitive assistants in many
fields. In the second portion of the paper, we present one path through the solution space
specifically for an application to health care, in the form of an end-to-end cognitive assistant for
an automatic external defibrillator (AED). The resulting proof-of-concept is intended to illustrate

the challenges as well as the new capabilities made possible by computing and interface
technology.

Fig. 1. Design space for Cognitive Assistants: Decrease in latency (z axis) and device
intrusiveness (y axis) and increases in computational capability (x axis) have transformed

assistant applications, as examples illustrate. The open circle is the type of cognitive
assistant that the current paper will focus on.

3 Cognitive Assistant Framework
In general, essential components of a cognitive assistant are (i) a task model that incorporates

the components of the task, (ii) a task monitor, the version stored in a computer that leads the user
through a step-by-step procedure at a level of basic elements or primitives, and (iii) input/output
capability – the former to support task monitoring, and the latter to provide instructions that
communicate expected next steps or guide error correction. For the assistants considered here,
there is a fourth essential: (iv) the technologies that support these three components.

These components present a set of challenges for the system designer. The challenge associated
with the first component is to construct a model that is both necessary and sufficient with respect
to normative behaviors. Often, this takes the form of a hierarchy, with successive levels breaking
down the task to ultimate primitives. The challenge for the second component is to employ a
formalism that can be instantiated in a computer program that monitors the user’s progress through
the task. This formalism must expand the initial model to anticipate non-normative behaviors,
including repetitions and errors. The challenge for the third component is to select input and output
channels that enable the assistant to sense progress and communicate with the user. The challenges
for the technological devices used in implementation include adequate bandwidth, latency, and
sensitivity. Table 1, column 2, describes more specifically the issues presented to the designer with
respect to each component of the assistant. Our design solutions will target these challenges but
under a set of constraints on task features, which will be introduced below and summarized in
Table 2.

Table 1. Components of a cognitive assistant and major challenges they present, along with our
proposed solutions afforded by a set of task constraints (see Table 2).

Computational Capability high

low

Devic
e Intru

siv
eness

Implant

La
te

nc
y

low

AI Chess Assistant
ke

yb
oard

high

Real-time Cognitive
Assistant (e.g., Ribloc)

Cognitive Tutor
Program

Digital
Checklist

Body Sensor
(e.g., implanted
glucose monitor)

Phone Query Responder (e.g., Siri)

Cloudlet

Cloud

Components Issues for Design Our solutions afforded by task constraints
(numbers correspond to Table 2)

Task Model
Hierarchical Structure Defined by action sequence (1 and 2)
Terminal Elements
(primitives)

Actions that can be sensed and
labeled/depicted (2,3,4)

Task Monitor

Link to Task Model
Task monitor states are terminal actions in
mode; input is sensed change in
environment (2,3)

Augmentation for
Predictable Error

Errors are predicted observable actions (3)
or temporal anomalies (5)

Selecting output states Outputs are instructions to user to act (4)

I/O
Input form Wearable or nearby sensor for action

outcome (3)
Output form Verbal or image sufficient to instruct (2)

Technological
Implementation

Bandwidth, latency Edge computing sufficiency (3,5)
Sufficient Detection for
Task Boundary User can assist or bypass sensors (3)

While the challenges in Table 1 appear formidable, they are in fact mitigated by an important

feature of technologically advanced assistants, namely, they allow the human to be embedded into
the system in a deep way. In a sense, human perceptual and cognitive processing become part of
the system capability, and so part of the assistant itself. To capitalize on the embedding of the
human in the system, we focus on tasks that have the following constraints.

Table 2. Constraints on candidate tasks for cognitive assistance.

Constraint Description
1) Sufficient goal structure There exists at least one sequence of goals to solve the

problem requiring assistance.
2) Decomposable into actions Goals can be decomposed into discrete steps, corresponding

to user-executed actions.
3) Observable step transitions Boundaries between steps correspond to observable changes

in the environment that can be sensed.
4) Communicability Sensed changes enable instructions or corrective feedback

that comply with user’s processing capacity.
5) Normative time-course Step timing is predictable from sensori-motor or cognitive

norms.

These constraints point to critical features of a task that can be targeted for a cognitive assistant.

Availability of a solution means that the task is not open-ended; there are steps to complete it. The
feature that step transitions are observable implies that no modeling of changes in invisible internal

states of the user is necessary. This bounds the complexity of the task model in comparison, for
example, to a cognitive tutor. In the ideal task, all of the observable changes at step boundaries can
be recognized directly by external sensors. In actuality, sensors are not always adequate; however,
this weakness is mitigated, because the user can step in to expose data to a sensor or report changes
on the basis of his or her own perceptual experience. The requirement of communicable
instructions to the user can be met by language or images, as long as the user’s processing capacity
is not overloaded. The predictability of step timing means that excessive waiting times for user
action or implausibly impulsive actions can be detected.

To convey how these constraints operate to create a human-embedded assistant, consider again
how one might be devised to aid wrist-mounted blood pressure reading. Following constraint 1
above, an underlying model is created that divides the task into a series of goals sufficient for the
task to be completed. For example, goals might be to mount the display and take the reading.
Following constraint 2, each of these goals is decomposed further -- for example, taking the
reading begins with lifting the arm to the heart level -- until the ultimate decomposition ends at
readily understood steps for the user, such as placing the elbow on a surface and bending the arm
until the wrist is at the elevation of the heart. Following constraint 3, the assistant uses received
sensor data about environmental changes to identify task boundaries; for example, a camera
observes the device monitor and registers when the display is turned on. Some actions, like holding
the hand at heart level, cannot be directly monitored for success, so instead the system relies on
the user to report completion. Constraint 4 is represented at various points in the sequence of
actions, where the assistant instructs the user as to what to do next in the form of words (“press the
start button”) or pictures displayed onscreen. Throughout, constraint 5 leads to detection of time
delays not commensurate with the stage of the task; for example, there is more tolerance for delay
during fastening the strap than pressing the button.

4 Design Solutions in Detail
Under the present framework, solutions to the challenges raised above should capitalize on the

task constraints we have outlined and should exploit the human in the loop. Accordingly, the third
column of Table 1 indicates approaches to solving various challenges and indicates, by number,
which of the task constraints makes a particular solution possible. The following section essentially
expands on the table. It considers each component of the cognitive assistant, re-visits the
challenges in the context of the task constraints, and offers more specific details about approaches
to meeting them.

4.1 Task Model
The challenges of the first component is that it must capture the requisite behaviors in a

coherent structure, terminating in action specifications. The applicable constraints specify that our
tasks can successfully be organized into a series of steps that are monitored by sensors or input
from the user. To address the challenges, we adopt a commonly used representation for such tasks,
from the origins of cognitive science [21] and still widely used today, i.e., a modular hierarchy of
goals and subgoals, terminating in actions that, when executed successfully, lead to task
completion. Advantages of this structure for our purposes are that variations such as re-ordering
flexible actions or making use of new sensors can be accommodated by low-level restructuring of
the hierarchy, and errors in executing a branch of the hierarchy can be locally corrected without
disrupting the whole.

Our constraints (2, 3, 4) on the terminal nodes of the model is that they specify actions that can
be directly related to sensed states of the world, on the one hand, and can be labeled or depicted in
instructions, on the other. These demands lead us to propose that the nodes should conform to a
formal representation of meaning. One that we have found highly useful is inspired by predicate
logic, a structure that is used in computational semantics and forms the basis for contemporary
query languages like SQL [12,15,19,33]. Accordingly, in the task model as used here, terminal
nodes are expressed as [relation (argument_1, … argument_n)], where the relations are typically
expressed by verbs, and the arguments fill semantic roles such as agents and objects. For example,
a relation like “connect” has arguments of object (what is connected) and location (what it connects
to), as in “connect(blue_cord, red_plug).” Note that the particular relations used in a task model
will be domain-specific. Benefits of this semantic structure are described further below. One is to
facilitate linkage to the task monitor. Another is that the translation from a relation-argument
structure to the expected sensed consequence is relatively straightforward: Following the previous
example, the result should be to sense that a blue cord is connected to a red plug.

4.2 Task Monitor
The task monitor must provide a linear path through the terminal nodes of the model,

describing the desired procedure to complete a task as well as anticipating predictable errors. Our
solution is to translate the terminal nodes of the task model, representing actions, into states of the
physical world that result from actions and that can be monitored by the sensors in the local device.
The relation-argument formalism described above for the task model is, in principle, sufficient to
translate its terminal nodes into “normative” states of the task monitor, i.e., what is expected in the
physical world after actions in the nodes are completed. However, the monitor must be expanded
to take into account the sensory capabilities of the user-borne device as well as potential errors.
This leads to the addition of “sensor-assistive” and “error-correcting” states. Sensor-assistive states
are needed to overcome limitations of the sensors hosted in the user-borne technology. For
example, users of a wrist-worn blood-pressure cuff might need to be queried as to whether their
arm is held at heart height, leading to a state that monitors the vocal response to the query. Error-
correcting states describe user and apparatus errors that occur frequently enough to be anticipated.
For example, a state might be added to detect that a user has plugged in a device or to check for
low battery power.

We adopted a structure for the task monitor that is formally a Finite State Machine [11]. It
consists of five components: states, next-state functions, input signals, output signals, and output
functions. A state is entered with an input signal from the sensors (possibly, the user’s response to
a query), representing the current status of the physical world. The next-state and output functions
compare the input against the normative status for that state translated from the task model. The
result of the comparison for the next-state function determines the transition to the following state:
either progression or error correction for predictable errors. The monitor may be unable to
transition, for example, when non-predictable errors occur or the user’s attention lapses. This
problem can be detected by long waiting times relative to expectations for that transition. For the
output function, the comparison results in an output signal.

The output signal for some states is simply null; that is, the state is passed through without
generating an observable result. Other states have an output in the form of an instruction to the
user. Each instruction must encompass all the actions that have accumulated, that is, all the

terminal nodes in the task model that have been completed, since the previous instruction. Our
approach to selecting the instruction states is described below.

Fig. 2 demonstrates the advantage of adopting formal structures for the task model and
monitor, in the form of a prototype software interface. The interface initially navigates the task-
model to the terminal nodes and converts the relation/argument structure of each node to a state in
the task monitor. The result is a finite state describing the status of the physical world, captured by
the sensors, that should result when the relation specified in the node is applied to the argument(s).
Although this initial step is automated in the current interface, the task monitor must be further
augmented with states that anticipate errors and accommodate for limited sensing capability, the
output of which will query and correct the user. This augmentation must currently be done by
hand, a capability the prototype interface allows with a GUI.

Fig. 2. Left: A task model used as the input of the automation to generate its corresponding
task monitor. Center: The output task monitor. Right: The graphical user interface where

users can insert additional error and sensor-assistive states.

4.3 Input/Output (I/O)
The I/O component must, of course, specify what sensors are used, but in addition, it must

provide instructions, in the form of step-by-step directions to users as they perform the task. As
was noted above, instructions are triggered at certain states of the task monitor, but not at all states.
Instructions describe a sequence of actions that will be executed in pursuit of a subgoal within the
task-model hierarchy, without interruption. We will refer to this sequence as an instructional
chunk. A new chunk is delivered at a state where the task monitor registers completion of the last
action in the previous chunk. At present there is not automation for determining these states where
instructions occur; this requires hand editing of the task monitor. Essentially, the problem
corresponds to identifying the boundaries where a chunk-able sequence of actions begins and ends.
We propose a set of heuristics for deciding on chunk boundaries, as follows.

(i) Assign chunks a “reasonable” quantity of content. One should avoid chopping up action
sequences into multiple short instructions. An isolated instruction cannot be too short or trivial, as
the users will become frustrated, and the task performance time will be extended by the switches
between listening and executing. Conversely, verbal instructional sequences should not have some

Start

Chest
exposed

Bra not
present

Bra
present

Chest wet
present

Chest wet
not present

Start
chest exposed
bra not present

bra present
chest wet not present

chest wet present
chest hair not present

chest hair present
medicine patch not present

Medicine patch present
AED located

pads for adults located

Change node name
confirm

Connect nodes

Update tree

many components that they exceed the capacity of working memory for words embedded in
sentences, which has been estimated to be as low as 2 units [8,13].

(ii) Avoid long execution times. Instructional chunks should avoid bundling so many actions
that execution time is lengthened to the point of memory failure due to time-dependent decay of
memory “strength” [22,23,34]. A general boundary in the literature on working memory loss
suggests that actions in a chunk should take less than 15 seconds to complete.

(iii) Combine steps appropriately. Steps that are encompassed by a single goal should be in a
common instruction; steps that embody different high-level goals should be separated. In addition,
instructions for motor output should combine actions that are efficient to execute as a motor unit,
such as grasp and twist [26,27]. If the user must report results of an action because sensor data are
lacking, the request for the report should be combined with the instruction to do the action (“do X
and tell me when X is done”).

As examples of how well instructions might match these heuristics, we re-visit the user being
guided to take their blood pressure. “Move the strap to an inch below your wrist” is likely to be a
useful instruction that should not be decomposed. “Move the strap to an inch below your wrist, set
your elbow on the table, and bend your arm until your wrist is as high as your heart” crosses
boundaries between multiple subtasks. Even a shorter instruction that combines moving the strap
and placing the elbow is vulnerable to a longer execution time than the decay of working memory.

4.4 Technological Implementation
The final component of the assistant, technology, must meet task demands for computational

capability, latency, and utility for sensing the observable action sequence. The use of cloudlets
offers a solution to the bandwidth and latency problem, but if it is necessary to use computations
resident in the cloud, there may be a cost in the form of increased latency. Deficiencies in sensor
capability can be compensated for by incorporating the human in the loop; however, the potential
addition to latency and error vulnerability makes this a less desirable solution than a direct sensor
reading. Clearly, the technological limitations greatly impact the utility of the assistant, as is
illustrated by the end-to-end application described next.

5 AED Application
In the remainder of this paper, we present the implementation details of a cognitive assistant

for an automated external defibrillator (AED), a device intended to enable the user to administer a
shock to a patient exhibiting sudden cardiac arrest, in order to restore normal rhythm. AED devices
are ubiquitously placed in institutional and marketing environments, with the expectation that
novice users, potentially guided by phone contact with emergency medical technicians, can operate
them. They are typically mounted in a box with instructions, augmented by electronic checkpoints
on the device itself.

Appendix A provides the task model for the AED, and Appendix B shows the task monitor.
To construct the model, we observed AED training sessions of novice users and interviewed
Emergency Medical Technician (EMT) experts for detailed accounts of the procedure and
common mistakes. In brief, the high-level task goals are: prepare patient (check for chest hair and
water, remove clothing); locate AED pads and controller (different pads for young and older
patients); mount AED pads on patient (across the heart from upper left to lower right); and apply
shock (first clearing area from contact). Common errors in using an AED include not choosing the
correct pads according to the patient’s age, which could lead to under-shocking adults and over-

shocking children. Another mistake is mounting the pads at the wrong location on the body; naive
users often think they should be at the same height, which would fail to activate the heart. Checks
are also needed to protect the operator from shock, which can pass through water or contact with
the patient. As the AED we used had a built-in check for contact, we only implemented the water
check.

We first report an experiment testing the heuristics presented above for constructing
instructions, followed by a description of an end-to-end assistant for the task. The assistant was
hosted on Google Glass for the instruction experiment and on a smartphone for the end-to-end
implementation. The motivation for using different hardware is described in Section 4.2.

5.1 Instruction Experiment
As noted above, with the task monitor structured and fully expanded to cover sensor capability

and error cases, instructions must be generated to occur at appropriate points in task performance.
Within the task monitor, each individual state is associated with an instruction as an output
(including null). However, it would be non-optimal simply to read out those instructions in
sequence. Rather, the instructions should be grouped into chunks according to the heuristics
presented above, in order to conform to known constraints of human processing. In this section,
we describe an experiment which assesses the effects of violations of those heuristics on
performance with the AED. A group without any assistance was included to assess baseline
performance.

5.1.1 Participants. A total of 27 participants recruited from the university community
completed the study with signed consent (average age 26.22 years old, 12 males). Eleven and 12
people participated in chunked and mis-chunked conditions, respectively, with the remaining 4
assessed for the no-instruction baseline. When only native English speakers are considered, the
group Ns were 8, 8, and 3, respectively.

5.1.2 Task Conditions and Procedure. Participants performed the task with an AED training
device on a plastic model of a human upper body and head (Resusci Anne™; Fig. 3) laid on the
floor of the experimental room. To create a relatively complex scenario, a medication patch was
placed on the right chest above the heart level, and an implanted pacemaker was simulated with a
bulge on the patient’s chest. The procedure requires the rescuer to remove the medication before
applying the AED pads and to avoid placing the pads on top of the implanted device for a secure
skin-pad connection. Drops of water were placed on the chest before each session, necessitating
the step of drying the chest.

The participants were briefly introduced to the AED and its purpose. They were asked to follow
the instructions as closely as possible. Upon completing a step, the participants verbally reported
“yes.” At any step, the participants were allowed to ask for a repeat of the current instructions.
Although the task monitor specified 25 instructed actions, the AED device issued its own
instructions and provided visual signals for the last 8. We found that issuing redundant instructions
from the cognitive assistant confused users, so at the point where the AED was activated, we
yielded instructions to the device. This left the assisted instructions to 17 actions.

Two versions of the instructions were implemented: For the chunked condition, the 17 actions
were combined into 13 instructional units corresponding to boundaries at high-level goals,
following heuristics of low memory load and combining sensor queries with resulting commands.
For the mis-chunked condition, the instructions were rephrased so that they violated heuristics by
crossing hierarchical boundaries, using longer sentences or separating actions that would otherwise
be combined by motor compatibility. Instructions for the two conditions are given in Appendix C.

Note that for every action performed under chunked instructions, the same action was performed
under mis-chunked instructions allowing step-by-step comparison of accuracy and speed of
performance under the two conditions. In the baseline condition (denoted AED), participants were
instructed by the experimenter to open the AED carrier, turn on the machine, and follow the verbal
instructions on the AED. This condition is comparable to a real-life emergency situation when
there are no trained personnel in the vicinity and the user receives guidance from a 911 operator
over the phone.

Fig. 3. Left: The medical mannequin used for the user study. Water, a medication patch
and a “bulge”, representing an implanted device, on the chest to simulate various

conditions of the patient. Center: The correct placment of the AED pads. Right: An
incorrect placement of the AED pads in the AED condition.

The experiment was conducted with a “Wizard-of-Oz,” idealized cognitive assistant
represented by an experimenter, who played the role of the sensors and delivered appropriate
instructions based on the participant’s action. The experimenter also gave error-correcting
feedback for predictable errors; if errors were not predicted a priori, the instruction was repeated.
The instructions and feedback were pre-recorded.

After completing the task, the participants filled out an evaluation survey with 7-point Likert
scales assessing the instructions in terms of understandability, pace, amount of information and
mental effort required. They also rated their emotional state during the task as to annoyance,
irritation, stress, discouragement, and confusion, using a binary scale (yes/no) followed by a 7-
point Likert rating. The entire experiment was video recorded for purposes of time measurements.

5.1.3 Results. Performance was assessed with multiple measures: completion rate, step-wise
task completion time, frequency of requests to repeat instructions, and errors. As participants
sometimes anticipated the end of an instruction, time for a step began at the participant’s first
action or the end of the instruction, whichever preceded. As the user sometimes forgot to verbally
report completion, the time for a step was ended at the terminal action or the user’s “yes,”
whichever preceded. Errors were categorized into two types: Objective errors occurred when
participants attempted to follow the instructions but failed, such as removing and repositioning an
AED pad (which impedes a secure skin-pad connection). Instruction errors were failures to
comply, such as applying the pads to the wrong location of the chest.

Completion Rate. None of the participants in the AED condition (no assistance beyond the
instructions from the device) successfully completed the full procedure. The two principal errors
were objective: using the wrong set of AED pads and placing the pads incorrectly. All four

participants reached for the pads that were placed on top, which were designed for children. Most
AED-condition participants failed to peel off the sticker sheet and placed the pads upside down on
the patient’s chest (Fig. 3 right). In comparison, all participants in the assisted groups successfully
completed the task.

Step-wise task Completion Time. As native-English participants worked considerably faster
than non-native English speakers (2 min, 11 sec vs. 3 min, 42 sec, respectively, for total time), we
isolated the native speakers for analysis of this measure. The analysis uses the 13 instructional
steps as the units of observation, capitalizing on the design feature that the same instruction was
embedded in well- and miss-chunked versions across the two groups of participants. Fig. 4 shows
the mean time to complete each step (y-axis) when given in the mis-chunked vs. well-chunked
conditions (x-axis), averaged across the native-English participants only. The dashed line indicates
the expected completion time if the two conditions were equivalent for each chunk. The mis-
chunked steps tended to exceed the chunked in duration, particularly as the steps themselves took
longer. A linear regression showed that, for each second taken to complete the task under the
chunked instructions, an average of 9% more time was needed for mis-chunked instructions. A
paired t-test with steps as the unit of analysis found the average completion time to be significantly
greater for the mis-chunked condition (Mean = 9.9 sec, SD = 4.6) than the chunked (Mean 8.9 sec,
SD = 5.2), t(13) = 2.99, p = .04.

Fig. 4. Average completion time by chunk for the mischunked condition compared to the
chunked condition. Dashed line represents expectation for equal times.

Other measures. Requests to repeat instructions were rare, particularly for native speakers.
While no native speaker in the chunked condition made an instruction error, 37.5% of the native
speakers in the mis-chunked group made at least one such error, with an average of 1 error per
subject. Non-native speakers tended to make more instruction errors (average of 2 errors out of 14
chunks and with 2/3 of subjects making at least one error). Of the survey responses, the averages
for non-emotional scales tended to be near midpoint, whereas the emotional arousal ratings were
low, with one exception: Participants in the mis-chunked condition (native and non-native speakers
combined) reported higher stress than those in the chunked condition (Mean chunk = 0.45, SD =
0.82; Mean mis-chunk = 1.33, SD = 1.50 -- given the high variability in the mis-chunk ratings, the
effect reached significance by a 1-tailed test, t(21) = 1.76, p = .049).

0

5

10

15

20

25

0 5 10 15 20 25

A
ve
ra
ge
ch
un
k
co
m
pl
et
io
n
tim
e
fo
rm
is
ch
un
ke
d
co
nd
iti
on
(s
ec
)

Average chunk completion time for chunked condition (sec)

Summary. The key results of the instruction study are (i) cognitive assistance is necessary,
because no unassisted participant succeeded in using the AED properly; (ii) violation of chunking
heuristics increases processing time; and (iii) mis-chunked instructions result in greater stress for
the participant.

5.2 End-to-End Implementation: AED Cognitive Assistant
We implemented a fully automated cognitive assistant guided by the AED task model and task

monitor described in the Appendices. The application divided the operation of the AED into
subgoals of preparing the patient, detecting age, locating components, mounting the AED, and
applying shock. The system relied extensively on existing image-processing software. Where
necessary, the initial task model was augmented with states to assist the sensors, and user report
was used as the default when no visual recognition system was found to be adequate.

The complete software pipeline is shown in Fig. 5. The experimenter who had served as a
surrogate for the sensor and pattern recognition component in the previous experiment was now
replaced with computer vision input from a camera. Instructions were either shown on a display
or spoken by a speaker. Throughout the entire procedure, the user could say “repeat” to request
hearing the previous instruction again; this review was controlled entirely by voice recognition
software.

Fig. 5. Software pipeline for the cognitive assistant. Four components represent subgoals in
the task model with overt instructions to the user. Detect(age) is an additional sensor-
assistive state in the task monitor. Each component is associated with an algorithm.

We initially pilot-tested the AED procedure using a Google Glass. However, the narrow field
of view and limited processing capacity of the device, together with its tendency to overheat,
ultimately led us to substitute a phone (Motorola Nexus 6), which has greater computational power
and a camera with a wider view, allowing us to capture the user’s hands when operating the AED.
The program was implemented on Android 5.0. However, it is fully compatible with any Android
platform (including a Google Glass).

From an implementation perspective, the cognitive assistant software was divided into two
parts, a locally resident client processor and a back-end processor on a cloudlet. The client side
used the Android phone to capture the visual scene and deliver verbal and visual instructions by
speaker. The camera stream was sent from the client to the cloudlet, where image processing was
done by the back-end program, which analyzed users’ progress and triggered the client to deliver
instructions. The communication between the client and the server was done through the Gabriel
Platform [37].

5.2.1 Implementation. We next describe the implementation of each component in Fig. 5
and our observation of the factors that affected completion time.

Prepare Patient. This subgoal included instructions to remove clothes, wipe chest if wet,
remove chest hair, and check for other implanted devices. The next instruction was issued

DETECT(AGE)

Algorithm:
Microsoft Face API

PREPARE (PATIENT)

Algorithm:
Google Speech API

Instruction 1 - 4

LOCATE (COMPONENTS)

Algorithm:
Fiducial marker detection

Instruction 5 - 6

MOUNT (AED)

Algorithm:
Faster-RCNN

Instruction 7 - 14

APPLY (SHOCK)

Algorithm:
Faster-RCNN

Instruction
(on AED machine)

following the user’s verbal report of completion of the previous one, as recognized by Google’s
Speech API. The completion time for this stage was dominated by user action, as the speech API
operated with short latency.

Detect Age. This sensor-assistive state instructed the user to test whether the user should select
child or adult pads from the AED box. The pad selection was determined by uploading camera
frames from the mobile device to a cloudlet, which invoked the Microsoft Face API to detect the
presence of a face and decide whether it belonged to a child or an adult. The completion time was
API-dependent and varied with the input image, ranging from a few seconds to on the order of a
minute.

Locate Components. If the previous state output that the patient was an adult, the local client
instructed the user to take the adult pads from the AED carrier; if a child, the child pads were to
be taken. In the current AED product, the two pads differed in size (adult was larger), packaging
color and warning label color (blue for child, red for adult). However, the cues available from the
product were found insufficient for computer vision algorithms to reliably differentiate the two
types of pads. Size could be ambiguous because it varied depending on the camera distance, and
color perception depended on lighting and colors of objects in the background. To improve the
robustness of pad detection, fiducial markers were developed and added to the sticker side of the
pads (Fig. 6). For consistency, the markers were in the same color as the warning labels that came
with the AED.

To complete this subgoal of the task, the user first located and opened the package containing
the correct pads, which they then held in front of the camera. When the markers on the pads were
recognized, the next instruction was delivered. If the user had selected the wrong pad, the monitor
entered an error state, and the instruction was to correct the error and hold the new pads up to the
camera. The completion time for this stage was dominated by user action, as the fiducial
recognition operated in the millisecond range.

Fig. 6 Left to right, fiducial markers for pads on child’s right, child’s left, adult’s right,
adult’s left chest.

Mount AED. The first instructions in this subgoal, check for a bulge and peel the stickers, relied
on user reports of success. The next instruction was to actually mount the pads. The fiducial
markers used for age-appropriate pad selection also enabled the cognitive assistant to distinguish
between the left and the right pad. Because the terms left and right are intrinsically ambiguous (the
reference frame can be either the patient or the user), the instruction referred to the shapes of the
fiducials. Pads with square markers were to be placed on the right side of the patient’s body and
pads with circle markers on the left side. If the placement was reversed, an error state was entered,
and a correction instruction was delivered.

Critical to the procedure is that the left pad is placed above the heart and the right pad below
it, so that the electrical pulse passes through the heart. In order to check for correct placement, the
assistant needed to locate the patient’s heart position. Because the exact location of the heart cannot

a) Marker on the Child’s Right Pad b) Marker on the Child’s Left Pad d) Marker on the Adult’s Left Pad c) Marker on the Adult’s Right Pad

be determined precisely from external cues, it was estimated from the shape of the upper body.
This proved challenging to computer vision, because the position of the patient was not
predictable, the camera allowed only a narrow field of view, and viewing angles could vary. We
devised a procedure that attempted to deal with these impediments to machine recognition. The
cognitive assistant first constrained how the user viewed the patient by providing an assistive body
frame overlay on the screen (Fig. 7). Using the image of the body at the back-end server, it applied
Faster-RCNN object detection to detect the patient’s body position. Faster-RCNN is a publicly
available, state-of-the-art object detection algorithm that combines object detection with
hypothesized localization, with demonstrated benefits in terms of processing speed [24]. Our
version of the algorithm detected critical joints of the patient, such as shoulders, head, and hips,
and used these points to first estimate the position of the patient’s body. It then estimated the heart
position to be above the body’s mid-line between the shoulders and the hips on the patient’s left
side. The location of the left pad was designated to be on the patient’s left side, above the midpoint
of the body and below the shoulder joint. The right pad was to be placed below the body’s
midpoint, on the right side, and above the right hip joint. A benefit of using this detection method
was that the cognitive assistant could customize the error messages, e.g., “The pad is placed on the
wrong side of the body,” or “The pad should be placed on the left side of the body,” to better guide
the user. The pad position check was performed after the users placed each pad, allowing for timely
correction of errors.

With the body-position algorithm running simultaneously on CPU and GPU, the end-to-end
latency, including processing and network time, for processing a single camera image was as fast
as 33 ms. This was reduced from the 500 ms obtained for an unassisted pose detection algorithm
[7] tried initially. However, inadequate viewpoint and low camera resolution could cause failures
for multiple frames, extending the processing time. As a result, the latency between aiming the
camera and receiving a determination that the pad was correctly or wrongly placed could be on the
order of a minute.

Fig. 7. The assistive body frame overlay derived from patient (right) presented to the user
on the phone screen. This helps the user to correctly position the body for joint detection.

The assistant-generated instructions concluded with activating the AED machine, at which
point the machine began to issue its own instructions and provided visual signals to guide each
step. The assistant still checked user actions for errors. The machine instructed the user to attach a
yellow connector to it. In order to check this outcome, an internal tool was employed that
automatically creates deep neural-network based object detectors using the core of Faster-RCNN
to recognize the connector and the machine. The algorithm achieved 90% accuracy for the machine
itself, but only 50% accuracy from a single image of the connector, because the connector lacked

a distinctive visual feature. However, this level of accuracy was not an issue in usage, because the
algorithm could process 100 – 200 frames/sec. If the AED machine was present and the yellow
connector was detected in multiple frames among the 100-200 frames, the algorithm determined
that the user had plugged it into the slot on the machine.

The completion time for the entire mount-AED subgoal depended primarily on the latency for
pose recognition and the user’s actions of placing the pad and attaching the connector, which lasted
multiple seconds.

Apply Shock. Once the machine was activated and the connector was placed, an orange button
began to blink, indicating it was ready to apply shock. To recognize the orange flash, the same
Faster-RCNN-based algorithm was used as devised for the connector in the previous subgoal, but
combined with the change in light intensity across time. The algorithm first used canny edge
detection to find the location of the orange button. The centroid location of the button was used to
build a predicted rectangle, within which the algorithm calculated the light intensity (0-255). The
change in light intensity was monitored over time, to determine if the button was flashing or not.
Evaluation tests showed that even under strong ambient lighting, there remained a detectable
variation between when the button was lit and turned off. The accuracy rate for single flash
recognition was approximately 70%, but repeated tests yielded accurate recognition. The rate of
flash of the machine constrained the speed with which the algorithm could operate, but typically
recognizing the device was ready to shock, once it was activated and connected, took no more than
2 sec.

5.2.2 Usability Test. To test the usability of the AED implementation, 8 naive participants
were asked to follow the assistant, in order to complete the procedure of mounting the AED
machine on the dummy. The devices were the same ones used in the instruction experiment, and
the well-chunked instructions were implemented. The participants were recruited from a local
participant pool (average age 31.5 years; 3 males, 2 non-native English speakers). All participants
were given the Android phone with the cognitive assistant software and access to a cloudlet. After
a short introduction to the AED, the participants were told to follow the instructions from the
cognitive assistant and complete the procedures without assistance from the experimenter. After
completion, they were asked to rate annoyance, irritation, stress, discouragement, and confusion,
using the same 7-point Likert scale as the previous study.

All 8 participants successfully completed the procedure. The average completion time was 7
min, 52 sec (SD = 2 min, 18 sec), far longer than the completion time in the instruction experiment.
The disadvantage arises because unlike the human perception used in the Wizard-of-Oz version,
the automated cognitive assistant relies on non-optimized or non-dedicated machine classification
algorithms. As Chen et al. [10] noted, the computations required by the application, and not the
communication between the local device and the cloudlet, have the greatest impact on latency. A
salient problem was the relatively long latency for the Microsoft Face API and pad location
detection; most users had to hold the phone for up to a minute before the algorithms returned
results. The slow response with the Face API reflects its being a proprietary cloud service that is
responding at any time to a large user population. Similarly, latencies were lengthened by reliance
on the Google Speech API, which has a set timeout, after which the user has to press a button to
restart the speech recognition.

Participants’ average ratings for negative emotion experiences of irritation, discouragement,
annoyance, and confusion ranged from 1-3, higher than in the previous experiment where the
human played an idealized assistant, but still below the midpoint of the scale. Two participants
specifically expressed irritation and annoyance with the speech-recognition timeout. Despite the

delays and the demands of aiming the camera, the stress ratings with the cognitive assistant (Mean
= 1.50, SD = 1.60), were essentially the same as ratings for the mis-chunked human instructions
in the instruction study (Mean = 1.33).

While the user study points to limitations of the current implementation, it is important to note
the fundamental outcome, namely, that the end-to-end version of the AED assistant enabled all
assisted users to complete the task. This is in direct contrast with the failure of the unassisted
novice participants tested in the instruction study. Moreover, the users reported dissatisfaction
particularly with latencies that seem most likely to be improved with future technological
advances. Recognizing the age of the face, for example, could be efficiently implemented on a
cloudlet. Speech recognition failures could be addressed with a more advanced implementation.
Latencies during pad position detection could be reduced by using a multi-algorithm approach,
similar to [10].

6 General Discussion
Despite the rising popularity of cognitive assistants enabled by new technologies, many

challenges still remain. The first section of this report identified challenges facing the designer of
a technologically advanced cognitive assistant hosted in an on-board device, capable of real-time
guidance including error correction, and exhibiting self-contained sufficiency to guide the user
through a complex task, such as assisting non-professionals in a health-care related task. In order
to address these challenges, we suggested constraints on the kinds of tasks that are candidates for
cognitive assistants. A critical assumption is that the human user could be not only a target of, but
also embedded into, the solutions. We further described formal approaches that would be useful
in constructing the assistant. Among these were guidelines for instructional units optimized for
task-related coherence and comprehension.

While our solutions are applicable to constructing cognitive assistants for various purposes and
domains (under the proposed task constraints), in the remainder of the paper, we illustrated this
approach by user testing and implementation, culminating in an end-to-end, fully automated
cognitive assistant for AED usage. Notably, “full automation” here includes extensive use of the
human in the loop. An initial study demonstrated that novice users relying only on the on-board
instructions provided with the AED could not perform the task. An idealized assistant, in the form
of a human experimenter, could guide them through, even with non-ideal (mis-chunked)
instructions that deliberately violated heuristics tailored to human cognitive constraints (though at
some cost). The subsequent demonstration with the automated system found that novice users
could follow the assistant to mount an AED machine on a dummy patient. However, the study also
showed that current technology, even using state-of-the-art machine learning algorithms and
augmenting the basic device with fiducial markers, produced latencies that caused significant
delays and user dissatisfaction.

End-to-end latencies are a challenge exposed by the work that seems likely to improve rapidly
with new hardware and software technology. Chen has explored some methods to reduce this
latency, such as using a multi-algorithm approach or adding a GPU [10]. Another challenge lies
with the user interface, which must enable the rigorous and responsive sensor checks necessary
for the cognitive assistant to monitor normative progress and detect errors or time-outs. We found
that the small field of view in the Google Glass limited how well computer vision algorithms work
on the images captured. Moreover, it lacked even the minimal processing capacity for seamless
communication with cloudlet resources, often timing out due to overheating. The smartphone was

superior in these respects, but holding mobile phones in the hands restrains users’ manual
operations, while mounting it on a helmet can impede communication by voice or button press. It
is our hope that further implementation of cognitive assistants will develop in tandem with
advanced wearable sensor technology.

Other challenges are to construct the essential components of the task model and task monitor.
In contrast to the current hands-on approach, it would be preferable to extract the basic task
structure automatically from available sources such as on-line demonstrations and tutorials. We
described preliminary efforts towards automatically generating a task monitor from a task model.
A further goal is to use the model and monitor for purposes of automated instruction generation.
Progress could be made by exploiting the semantic representation underlying the task model.

Despite these limitations, the success of our preliminary efforts and other demonstrations from
our group [10] is encouraging for further development of cognitive assistants in time-constrained
application domains. In this regard, the inability of novices to perform the task of administering
the AED without assistance is striking, as these devices are commonly mounted in work
environments with the expectation of by-passer intervention. In our scenario for the future, the
ubiquitous AED wall-mounted enclosure will contain a cognitive assistant enabled with local
edge-computing access and appropriate wearable hardware.

7 Acknowledgements
This work was supported by the National Science Foundation (NSF) under grant number CNS-
1518865.

8 Appendix

8.1 Task Model for the AED Task
For space reasons, the first-level subgoals and subsequent nodes are presented separately from

the main goals. Terminal nodes are in bold.

Use (AED, on
patient)

Prepare (patient) Locate
(components) Mount (AED) Apply (shock) Conduct

(CPR)
Remove (AED

pad)

Prepare (patient)

Expose (chest) If (bra,
remove (bra))

If (chest wet,
wipe (chest))

If (chest hair,
remove (chest

hair))

If (medicine patch,
remove (medicine

patch))

Locate (AED) Locate (pads)

Locate
(components)

Locate (pads
for adults)

If (packaging, remove
(packaging))

Mount (AED)

Apply (pad, on
chest)

Check (pad-
skin

connection)
Turn on (AED) Plug in

(connector)

Apply (left pad) Apply (right
pad)

If ((bulge, on left
side), avoid place

(pad on bulge))

Peel (left
sticker)

Look at
(instructional

diagram)

Stick (left pad,
on chest) Peel (sticker) Look at (instructional

diagram)
Stick (pad, on

chest)

Apply (shock)

Check (self,
not touching

patient)

If ((people, present),
warn (people))

Wait (charge
(machine))

Press (orange
button)

Shout (clear) Check (people, not in
contact with patient)

Goal and
first-level subgoals:

Subgoals and
terminal nodes:

Use (AED, on
patient)

Prepare (patient) Locate
(components) Mount (AED) Apply (shock) Conduct

(CPR)
Remove (AED

pad)

Prepare (patient)

Expose (chest) If (bra,
remove (bra))

If (chest wet,
wipe (chest))

If (chest hair,
remove (chest

hair))

If (medicine patch,
remove (medicine

patch))

Locate (AED) Locate (pads)

Locate
(components)

Locate (pads
for adults)

If (packaging, remove
(packaging))

Mount (AED)

Apply (pad, on
chest)

Check (pad-
skin

connection)
Turn on (AED) Plug in

(connector)

Apply (left pad) Apply (right
pad)

If ((bulge, on left
side), avoid place

(pad on bulge))

Peel (left
sticker)

Look at
(instructional

diagram)

Stick (left pad,
on chest) Peel (sticker) Look at (instructional

diagram)
Stick (pad, on

chest)

Apply (shock)

Check (self,
not touching

patient)

If ((people, present),
warn (people))

Wait (charge
(machine))

Press (orange
button)

Shout (clear) Check (people, not in
contact with patient)

Goal and
first-level subgoals:

Subgoals and
terminal nodes:

8.2 Task Monitor for the AED Task

Start Chest
exposed

Bra not
present

Bra
present

Chest
not dry

Chest
dry

Medication
patch

No
medication

patch

Pads for
adult

located

No
bulge
on left
side

Bulge on
left side

Left
sticker
peeled

Packaging

No
packaging

No chest
hair

Pads are
not in

camera
view

AED
located

Instruction 1 Instruction 2 Instruction 3 Instruction 4 Instruction 5

Instruction 7

Adult
patient

Child
patient

Chest
hair

Instruction 6

Locate
diagram

Left pad
at right
position

Left pad
at wrong
position

Right pad
sticker
peeled

Instruction 8

Instruction 9 Instruction 10

On-
indicator
present

Locate
diagram

Right pad
at right
position

Right pad
is at

wrong
positon

Good pad-
skin

connection

No
connector

light

Self not
touching
patient

No
orange

indicator
on

orange
indicator

on

No
orange

indicator
on

Start
CPR

End

Instruction 11 Instruction 12

Instruction 13 Instruction 14

Remaining
procedures are
same as adult

condition

Normative and Sensor-Assistive State Error-Correcting State

8.3 Instructions for Chunked and Mis-chunked Conditions of the Instruction-
Experiment

9 References
1. Maneesh Agrawala, Doantam Phan, Julie Heiser, John Haymaker, Jeff Klingner, Pat Hanrahan, and Barbara

Tversky. 2003. Designing effective step-by-step assembly instructions. ACM Transactions on Graphics 22,
3: 828. https://doi.org/10.1145/882262.882352

2. John Annett and Neville Stanton. 2008. Task Analysis. In International Review of Industrial and
Organizational Psychology 2006. https://doi.org/10.1002/9780470696378.ch2

3. Davide Anzalone, Marco Manca, Fabio Paternò, and Carmen Santoro. 2015. Responsive task modelling.
https://doi.org/10.1145/2774225.2775079

4. Farah Arab, Jérémy Bauchet, Hélène Pigot, Anaïs Giroux, and Sylvain Giroux. 2014. Design and assessment
of enabling environments for cooking activities. In UbiComp 2014 - Adjunct Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing.
https://doi.org/10.1145/2638728.2641329

5. Chris Baber and Neville A. Stanton. 1994. Task analysis for error identification: A methodology for designing
error-tolerant consumer products. Ergonomics 37, 11: 1923–1941.

Chunked Condition Mischunked Condition
1 Remove the clothes to expose the patient's chest. Remove
the bra if present

1 Remove the clothes to expose the patient’s chest.

2 If there is water on the chest, wipe it dry. 2 Remove the bra if present.
3 If there is a medication patch on the chest, remove it. 3 If there is water on the chest, wipe it dry. If there is a

medication patch on the chest, remove it. (Cross hierarchical
boundaries)4 If there is thick chest hair on the upper chest opposite the

patient’s heart, remove it with scissors or tape.
4 If there is thick chest hair on the upper chest opposite the
patient’s heart, remove it with scissors or tape.

5 Look for pads for adults in the AED carrier. 5 Look for the type of pads that are designed for adults, which
you should find somewhere inside the AED carrier after you
open up the carrier. (Long sentence)

6 If the pads are inside a pouch, take them out. 6 If the pads are inside a pouch take them out. The patient may
have a pacemaker implanted on the side of the body below the
heart. Look at the side of the body below the heart. (Cross
hierarchical boundaries & long sentence)

7 The patient may have a pacemaker implanted on the side of
the body below the heart. Look at the side of the body below
the heart. If you see a bulge there, say “yes”. Otherwise, say
“no”.

7 If you see a bulge there, say “yes”. Otherwise, say “no”.

8 Take the pad with the blue cord and peel the sticker from the
back. Hold the pad in camera view.

8 Take the pad with the blue cord and peel the sticker from the
back. Hold the pad in camera view.

9 Look at the picture on the front of the pad. Firmly stick the
pad as indicated, below the patient’s heart and on the side of
the body.

9 Look at the picture on the front of the pad.

10 Take the pad with the white cord and peel the sticker from
the back. Hold the pad in camera view.

10 Firmly stick the pad as indicated, below the patient’s heart
and on the side of the body.

11 Look at the picture on the front of the pad. Firmly stick the
pad as indicated, opposite the heart and above heart level.

11 Take the pad with the white cord and peel the sticker from
the back. Hold the pad in camera view. Look at the picture on
the front of the pad. (Separated actions that should be
combined)12 Press the pads against the skin to make sure they are firmly

attached.
12 Firmly stick the pad as indicated in the picture on the front of
the pad, opposite the patient’s heart and above the patient’s
heart level. (Long sentence)

13 Press the green button to turn on the machine. 13 Press the pads against the skin to make sure they are firmly
attached. Press the green button to turn on the machine. (Cross
hierarchical boundaries)

14 Follow the instructions from the AED. 14 Follow the instructions from the AED.

https://doi.org/10.1080/00140139408964958
6. Robert Benfer, Edward Brent, and Louanna Furbee. 2012. Knowledge Acquisition. In Expert Systems.

https://doi.org/10.4135/9781412984225.n3
7. Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2016. Realtime Multi-Person 2D Pose Estimation

using Part Affinity Fields. Retrieved December 11, 2017 from http://arxiv.org/abs/1611.08050
8. William G. Chase and Herbert A. Simon. 1973. Perception in chess. Cognitive Psychology 4, 1: 55–81.

https://doi.org/http://dx.doi.org/10.1016/0010-0285(73)90004-2
9. Zhuo Chen, Lu Jiang, Wenlu Hu, Kiryong Ha, Brandon Amos, Padmanabhan Pillai, Alex Hauptmann, and

Mahadev Satyanarayanan. 2015. Early Implementation Experience with Wearable Cognitive Assistance
Applications. Proceedings of the 2015 Workshop on Wearable Systems and Applications: 33–38.
https://doi.org/10.1145/2753509.2753517

10. Zhuo Chen, Roberta Klatzky, Daniel Siewiorek, Mahadev Satyanarayanan, Wenlu Hu, Junjue Wang, Siyan
Zhao, Brandon Amos, Guanhang Wu, Kiryong Ha, Khalid Elgazzar, and Padmanabhan Pillai. 2017. An
empirical study of latency in an emerging class of edge computing applications for wearable cognitive
assistance. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing - SEC ’17, 1–14.
https://doi.org/10.1145/3132211.3134458

11. Pong P. Chu. 2006. Finite State Machine: Principle and Practice. . John Wiley & Sons, Inc., 313–371.
Retrieved from http://dx.doi.org/10.1002/0471786411.ch10

12. Edgar Frank Codd. 1970. A relational model of data for large shared data banks. Communications of the ACM.
https://doi.org/10.1145/362384.362685

13. Meredyth Daneman and Patricia A Carpenter. 1980. Individual differences in working memory and reading.
Journal of verbal learning and verbal behavior 19, 4: 450–466.

14. Marie-Paule Daniel and Barbara Tversky. 2012. How to put things together. Cognitive processing 13, 4: 303–
19. https://doi.org/10.1007/s10339-012-0521-5

15. Charles J Fillmore. 1967. The case for case.
16. James D Hollan, Edwin L Hutchins, and Louis Weitzman. 1984. STEAMER: An interactive inspectable

simulation-based training system. AI magazine 5, 2: 15.
17. Krishnanand Kaipa, Carlos Morato, Boxuan Zhao, and Satyandra K. Gupta. 2013. Instruction Generation for

Assembly Operations Performed by Humans. https://doi.org/10.1115/detc2012-71266
18. Rushil Khurana, Karan Ahuja, Zac Yu, Jennifer Mankoff, Chris Harrison, and Mayank Goel. 2018. GymCam:

Detecting, Recognizing and Tracking Simultaneous Exercises in Unconstrained Scenes. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. https://doi.org/10.1145/3287063

19. Walter Kintsch. 1974. The representation of meaning in memory.
20. Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature.

https://doi.org/10.1038/nature14539
21. George A. Miller, Eugene Galanter, and Karl H. Pribram. 1960. Plans and the structure of behavior.

https://doi.org/10.1037/10039-000
22. Lloyd Peterson and Margaret Jean Peterson. 1959. Short-Term Retention of Individual Verbal Items. Journal

of Experimental Psychology 58, 3: 193.
23. Judith S. Reitman. 1974. Without surreptitious rehearsal, information in short-term memory decay. Journal

of Verbal Learning and Verbal Behavior 13, 4: 365–377. https://doi.org/http://dx.doi.org/10.1016/S0022-
5371(74)80015-0

24. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6: 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

25. Steven Ritter, John R. Anderson, Kenneth R. Koedinger, and Albert Corbett. 2007. Cognitive tutor: applied
research in mathematics education. Psychon Bull Rev 14, 2: 249–255. https://doi.org/10.3758/BF03194060

26. David A Rosenbaum. 2009. Human motor control. Academic press.
27. David A. Rosenbaum, Caroline M. van Heugten, and Graham E. Caldwell. 1996. From cognition to

biomechanics and back: The end-state comfort effect and the middle-is-faster effect. Acta Psychologica 94,
1: 59–85. https://doi.org/http://dx.doi.org/10.1016/0001-6918(95)00062-3

28. Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolfgang Richter, and Padmanabhan Pillai.
2014. Cloudlets: at the Leading Edge of Mobile-Cloud Convergence. Proceedings of the 6th International
Conference on Mobile Computing, Applications and Services: 1–9.
https://doi.org/10.4108/icst.mobicase.2014.257757

29. Mahadev Satyanarayanan, Wei Gao, and Brandon Lucia. 2019. The Computing Landscape of the 21st

Century. In Proceedings of the 20th International Workshop on Mobile Computing Systems and Applications
(HotMobile ’19), 45–50. https://doi.org/10.1145/3301293.3302357

30. Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. https://doi.org/10.1109/CVPR.2015.7298682

31. Rags Srinivasan and Agnieszka Zielinksa. 2019. Data at the edge: Managing and activating information in a
distributed world. Retrieved from https://www.stateoftheedge.com/reports/data-at-the-edge-2019/

32. Neville A. Stanton and Christopher Baber. 2005. Validating task analysis for error identification: Reliability
and validity of a human error prediction technique. Ergonomics. https://doi.org/10.1080/00140130500219726

33. Lucien Tesnière. 1959. Eléments de syntaxe structurale. Librairie C. Klincksieck.
34. John N. Towse and Graham J. Hitch. 1995. Is there a Relationship between Task Demand and Storage Space

in Tests of Working Memory Capacity? The Quarterly Journal of Experimental Psychology Section A 48, 1:
108–124. https://doi.org/10.1080/14640749508401379

35. VIZRTech. 2017. Angel On Your Shoulder: Google Glass, virtual screens, and cloudlet computing. Retrieved
from https://www.youtube.com/watch?v=DANM2W1gVEI

36. Bob J. Wielinga, B. Bredeweg, and Joost A. Breuker. 1988. Knowledge acquisition for expert systems. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). https://doi.org/10.1007/3-540-50676-4_11

37. 2013. Gabriel: Platform for Wearable Cognitive Assistance Applications. Retrieved from
https://github.com/cmusatyalab/gabriel

