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Abstract 
 

Cognitive assistants are computer-based interactive guides for complex activities such as 
emergency medical care. Recent advances in computing capability and edge computing make it 
possible to host such an assistant in a wearable device. We identify technical challenges facing the 
designer of a wearable cognitive assistant and describe pathways to solutions. We illustrate the 
solution space in the form of an automated end-to-end assistant to guide a novice through the 
application of an automatic external defibrillator (AED). Our results indicate that without such 
assistance, novices will fail, but technological barriers limit real-time success. Our work highlights 
challenges as well as new capabilities made possible by wearable technology in this domain. 
 
 
 
 
This work was supported by the National Science Foundation (NSF) under grant number CNS-
1518865. 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Empirical studies in ubiquitous and mobile computing, Ubiquitous and mobile 
computing systems and tools, Real-time system architecture, Edge computing 



 

 

1 Introduction 
There has been growing interest in instrumenting sensors to guide people in a variety of tasks. 

For example, a camera-based system can automatically detect, recognize and track exercises 
performed in a gym setting [18]. Motion and contact sensors have been integrated to pick up the 
location of a user and the current state of tools to help users with cognitive impairments in cooking 
activities [4]. An important domain of use for these sensor-based applications is cognitive 
assistants, that is, computer-based interactive guides for a complex human activity. The application 
domain is longstanding, but has been transformed by current technology, which provides sensors 
to closely monitor the user, supports interactions through voice or gesture that free the hands, takes 
advantage of machine learning techniques to analyze and interpret the environment, and capitalizes 
on low-latency transmission between the user and the computational algorithms.  

While the technical advances afford the design of more sophisticated assistants, it is still a 
challenge to conceive and implement a well-designed cognitive assistant. For example, how should 
a task be properly divided into action components such that each action is achievable by the user 
and their completion states can be detected by sensors? How should assistants handle latency in 
computation to create a smooth user experience? The purpose of the present paper is to identify 
these challenges and to propose solutions in the design of cognitive assistants. To illustrate our 
solutions, we provide an end-to-end example in the medical domain, using an automatic external 
defibrillator (AED), a device found in many public places. Although the intended use case may 
include guidance by phone contact with emergency medical technicians, time or situational 
constraints may lead untrained users to attempt implementation. A study reported here showed that 
contrary to these intentions, novices could not successfully use an AED without the guidance of a 
cognitive assistant. 

The contributions of this work are as follows: (1) We provide baseline evidence that a widely 
deployed commercial product cannot be successfully used by untrained users, without cognitive 
assistance. (2) We introduce the concept of proper chunking of instructions for wearable cognitive 
assistance applications, provide guidelines for instruction units, and demonstrate their impact. (3) 
We not only demonstrate what can be learned from designing an assistant for a specific device, 
but also generalize to a formal structure that can be used to guide the creation of future wearable 
cognitive assistants. (4) We confirm the critical importance of edge computing for this class of 
time-constrained applications on wearable devices and provide quantitative metrics for the cost of 
moving away from the edge of the cloud. 

2 Background and Related Work 
Cognitive assistants have been available for decades in various forms, ranging from checklists 

to full instruction under computer control. An early example is the project STEAMER [16], which 
reduced an extensive manual for running a steam propulsion system to procedures instructed by a 
GUI. More recent examples can be found in cognitive tutors developed over the last two decades 
or so, which embed a procedural model of a complex domain such as middle-school mathematics 
into an interactive interface that guides learners through problems according to their ongoing 
mastery [25].  

Considerable research has been directed to the development of cognitive assistants in broad 
application contexts, including health care. Indeed, whole research fields were developed to 
address major underlying problems. For example, where an assistant is modeled after a human 
expert, research has been dedicated to mechanisms for knowledge acquisition from experts [6,36]. 



 

Where tasks have many steps that may not be transparent, task analysis techniques have been 
developed to create the underlying model [2,3]. In error-prone domains such as medical 
procedures, there is extensive analysis of vulnerabilities to human judgment [5,32]. The generation 
of instructions by the computer has also been a topic of research [1,14,17]. 

While prior research continues to be highly useful in designing novel cognitive assistants, rapid 
developments in supporting technology offer new possibilities for implementation that have been 
less scrutinized. As described in [29], these developments span three broad tiers of new computing 
capability. The first is the immense computational power and storage capability of commercial 
cloud computing, which has the additional advantage of affordability to the typical user. The 
second tier is what is termed “edge” computing [28,31], comprising computing infrastructure near 
the user that affords very fast latency and high bandwidth to an application in need of dense, high-
speed data transmission. We use the term cloudlet to refer to an instance of such infrastructure. 
The third tier encompasses devices worn or carried by the user, including dedicated sensors, 
smartphones, and AR/VR devices. 

Fig. 1 uses three dimensions to represent the transformations in cognitive assistants made 
possible by these tiers. Computational capability indicates how well assistive systems handle 
problems of high demand in terms of compute resources. Latency is simply the duration of the 
entire chain from a user query to a system response, often called round-trip time. Device 
intrusiveness reflects a progression from sensors embedded in or worn by the user to detached 
ancillary devices like keyboards and mice. The figure indicates how increased capability, along 
with decreased latency and intrusiveness, have expanded the interaction platform of cognitive 
assistants, providing new avenues for communication with the user and monitoring of the 
environment. The emerging platform includes dense sensor input; form factors such as the Google 
Glass® that enable hands-free user interaction; deep learning algorithms that recognize objects, 
sounds or faces [20,30]; natural language communication; and fast round-trip-time from one task 
step to another. The culmination of these technical developments is a new type of cognitive 
assistant: an intelligent help system hosted in a device carried on or nearby the user that provides 
real-time guidance through a multi-step task. Chen [9] demonstrated the power of this approach 
by building assistants for moment-to-moment instruction in a range of applications, from Lego 
block building to the ball return in a game of ping-pong. The approach has also been applied to 
assisting trauma surgeons with repair of a broken rib by inserting a plate [35].  

As a prototype, consider a task of guiding a novice through a wrist-mounted blood pressure 
reading. The person wears a camera linked to a computer vision system that analyzes the visual 
field for body parts, machine components, on-screen metric readings, and so on. The 
computational power resides not in the wearable containing the camera, but rather in a cloudlet 
interfaced to it. An auditory or visual interface conveys the next action to the user. Step by step, 
the user is guided to mount the blood pressure device in the appropriate location on the arm (just 
below the wrist), hold the arm at heart level, start the machine, and take the reading. There are 
many potential error points; for example, mounting the device too close to the wrist or failing to 
notice that the batteries are dead.  

The initial portion of the present paper is intended to identify choice points in the design of the 
type of assistant that is made possible with new technologies and to suggest constraints on the 
solutions. This analysis is sufficiently general so that it applies to cognitive assistants in many 
fields. In the second portion of the paper, we present one path through the solution space 
specifically for an application to health care, in the form of an end-to-end cognitive assistant for 
an automatic external defibrillator (AED). The resulting proof-of-concept is intended to illustrate 



 

 

the challenges as well as the new capabilities made possible by computing and interface 
technology. 

 

Fig. 1. Design space for Cognitive Assistants: Decrease in latency (z axis) and device 
intrusiveness (y axis) and increases in computational capability (x axis) have transformed 

assistant applications, as examples illustrate. The open circle is the type of cognitive 
assistant that the current paper will focus on. 

3 Cognitive Assistant Framework 
In general, essential components of a cognitive assistant are (i) a task model that incorporates 

the components of the task, (ii) a task monitor, the version stored in a computer that leads the user 
through a step-by-step procedure at a level of basic elements or primitives, and (iii) input/output 
capability – the former to support task monitoring, and the latter to provide instructions that 
communicate expected next steps or guide error correction. For the assistants considered here, 
there is a fourth essential: (iv) the technologies that support these three components.  

These components present a set of challenges for the system designer. The challenge associated 
with the first component is to construct a model that is both necessary and sufficient with respect 
to normative behaviors. Often, this takes the form of a hierarchy, with successive levels breaking 
down the task to ultimate primitives. The challenge for the second component is to employ a 
formalism that can be instantiated in a computer program that monitors the user’s progress through 
the task. This formalism must expand the initial model to anticipate non-normative behaviors, 
including repetitions and errors. The challenge for the third component is to select input and output 
channels that enable the assistant to sense progress and communicate with the user. The challenges 
for the technological devices used in implementation include adequate bandwidth, latency, and 
sensitivity. Table 1, column 2, describes more specifically the issues presented to the designer with 
respect to each component of the assistant. Our design solutions will target these challenges but 
under a set of constraints on task features, which will be introduced below and summarized in 
Table 2. 

Table 1. Components of a cognitive assistant and major challenges they present, along with our 
proposed solutions afforded by a set of task constraints (see Table 2).  
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Components Issues for Design  Our solutions afforded by task constraints 
(numbers correspond to Table 2)  

Task Model 
Hierarchical Structure Defined by action sequence (1 and 2) 
Terminal Elements 
(primitives) 

Actions that can be sensed and 
labeled/depicted (2,3,4) 

Task Monitor 

Link to Task Model 
Task monitor states are terminal actions in 
mode; input is sensed change in 
environment (2,3) 

Augmentation for 
Predictable Error 

Errors are predicted observable actions (3) 
or temporal anomalies (5) 

Selecting output states Outputs are instructions to user to act (4) 

I/O 
Input form Wearable or nearby sensor for action 

outcome (3) 
Output form  Verbal or image sufficient to instruct (2) 

Technological 
Implementation 

Bandwidth, latency Edge computing sufficiency (3,5) 
Sufficient Detection for 
Task Boundary User can assist or bypass sensors (3) 

 
While the challenges in Table 1 appear formidable, they are in fact mitigated by an important 

feature of technologically advanced assistants, namely, they allow the human to be embedded into 
the system in a deep way. In a sense, human perceptual and cognitive processing become part of 
the system capability, and so part of the assistant itself. To capitalize on the embedding of the 
human in the system, we focus on tasks that have the following constraints. 

 

Table 2. Constraints on candidate tasks for cognitive assistance.  

Constraint Description 
1) Sufficient goal structure There exists at least one sequence of goals to solve the 

problem requiring assistance.  
2) Decomposable into actions Goals can be decomposed into discrete steps, corresponding 

to user-executed actions.  
3) Observable step transitions Boundaries between steps correspond to observable changes 

in the environment that can be sensed.  
4) Communicability  Sensed changes enable instructions or corrective feedback 

that comply with user’s processing capacity. 
5) Normative time-course Step timing is predictable from sensori-motor or cognitive 

norms. 
 
These constraints point to critical features of a task that can be targeted for a cognitive assistant. 

Availability of a solution means that the task is not open-ended; there are steps to complete it. The 
feature that step transitions are observable implies that no modeling of changes in invisible internal 



 

 

states of the user is necessary. This bounds the complexity of the task model in comparison, for 
example, to a cognitive tutor. In the ideal task, all of the observable changes at step boundaries can 
be recognized directly by external sensors. In actuality, sensors are not always adequate; however, 
this weakness is mitigated, because the user can step in to expose data to a sensor or report changes 
on the basis of his or her own perceptual experience. The requirement of communicable 
instructions to the user can be met by language or images, as long as the user’s processing capacity 
is not overloaded. The predictability of step timing means that excessive waiting times for user 
action or implausibly impulsive actions can be detected.  

To convey how these constraints operate to create a human-embedded assistant, consider again 
how one might be devised to aid wrist-mounted blood pressure reading. Following constraint 1 
above, an underlying model is created that divides the task into a series of goals sufficient for the 
task to be completed. For example, goals might be to mount the display and take the reading. 
Following constraint 2, each of these goals is decomposed further -- for example, taking the 
reading begins with lifting the arm to the heart level -- until the ultimate decomposition ends at 
readily understood steps for the user, such as placing the elbow on a surface and bending the arm 
until the wrist is at the elevation of the heart. Following constraint 3, the assistant uses received 
sensor data about environmental changes to identify task boundaries; for example, a camera 
observes the device monitor and registers when the display is turned on. Some actions, like holding 
the hand at heart level, cannot be directly monitored for success, so instead the system relies on 
the user to report completion. Constraint 4 is represented at various points in the sequence of 
actions, where the assistant instructs the user as to what to do next in the form of words (“press the 
start button”) or pictures displayed onscreen. Throughout, constraint 5 leads to detection of time 
delays not commensurate with the stage of the task; for example, there is more tolerance for delay 
during fastening the strap than pressing the button. 

4 Design Solutions in Detail 
Under the present framework, solutions to the challenges raised above should capitalize on the 

task constraints we have outlined and should exploit the human in the loop. Accordingly, the third 
column of Table 1 indicates approaches to solving various challenges and indicates, by number, 
which of the task constraints makes a particular solution possible. The following section essentially 
expands on the table. It considers each component of the cognitive assistant, re-visits the 
challenges in the context of the task constraints, and offers more specific details about approaches 
to meeting them.  

4.1 Task Model 
The challenges of the first component is that it must capture the requisite behaviors in a 

coherent structure, terminating in action specifications. The applicable constraints specify that our 
tasks can successfully be organized into a series of steps that are monitored by sensors or input 
from the user. To address the challenges, we adopt a commonly used representation for such tasks, 
from the origins of cognitive science [21] and still widely used today, i.e., a modular hierarchy of 
goals and subgoals, terminating in actions that, when executed successfully, lead to task 
completion. Advantages of this structure for our purposes are that variations such as re-ordering 
flexible actions or making use of new sensors can be accommodated by low-level restructuring of 
the hierarchy, and errors in executing a branch of the hierarchy can be locally corrected without 
disrupting the whole.  



 

Our constraints (2, 3, 4) on the terminal nodes of the model is that they specify actions that can 
be directly related to sensed states of the world, on the one hand, and can be labeled or depicted in 
instructions, on the other. These demands lead us to propose that the nodes should conform to a 
formal representation of meaning. One that we have found highly useful is inspired by predicate 
logic, a structure that is used in computational semantics and forms the basis for contemporary 
query languages like SQL [12,15,19,33]. Accordingly, in the task model as used here, terminal 
nodes are expressed as [relation (argument_1, … argument_n)], where the relations are typically 
expressed by verbs, and the arguments fill semantic roles such as agents and objects. For example, 
a relation like “connect” has arguments of object (what is connected) and location (what it connects 
to), as in “connect(blue_cord, red_plug).” Note that the particular relations used in a task model 
will be domain-specific. Benefits of this semantic structure are described further below. One is to 
facilitate linkage to the task monitor. Another is that the translation from a relation-argument 
structure to the expected sensed consequence is relatively straightforward: Following the previous 
example, the result should be to sense that a blue cord is connected to a red plug.  

4.2 Task Monitor 
The task monitor must provide a linear path through the terminal nodes of the model, 

describing the desired procedure to complete a task as well as anticipating predictable errors. Our 
solution is to translate the terminal nodes of the task model, representing actions, into states of the 
physical world that result from actions and that can be monitored by the sensors in the local device. 
The relation-argument formalism described above for the task model is, in principle, sufficient to 
translate its terminal nodes into “normative” states of the task monitor, i.e., what is expected in the 
physical world after actions in the nodes are completed. However, the monitor must be expanded 
to take into account the sensory capabilities of the user-borne device as well as potential errors. 
This leads to the addition of “sensor-assistive” and “error-correcting” states. Sensor-assistive states 
are needed to overcome limitations of the sensors hosted in the user-borne technology. For 
example, users of a wrist-worn blood-pressure cuff might need to be queried as to whether their 
arm is held at heart height, leading to a state that monitors the vocal response to the query. Error-
correcting states describe user and apparatus errors that occur frequently enough to be anticipated. 
For example, a state might be added to detect that a user has plugged in a device or to check for 
low battery power.  

We adopted a structure for the task monitor that is formally a Finite State Machine [11]. It 
consists of five components: states, next-state functions, input signals, output signals, and output 
functions. A state is entered with an input signal from the sensors (possibly, the user’s response to 
a query), representing the current status of the physical world. The next-state and output functions 
compare the input against the normative status for that state translated from the task model. The 
result of the comparison for the next-state function determines the transition to the following state: 
either progression or error correction for predictable errors. The monitor may be unable to 
transition, for example, when non-predictable errors occur or the user’s attention lapses. This 
problem can be detected by long waiting times relative to expectations for that transition. For the 
output function, the comparison results in an output signal. 

The output signal for some states is simply null; that is, the state is passed through without 
generating an observable result. Other states have an output in the form of an instruction to the 
user. Each instruction must encompass all the actions that have accumulated, that is, all the 



 

 

terminal nodes in the task model that have been completed, since the previous instruction. Our 
approach to selecting the instruction states is described below.  

Fig. 2 demonstrates the advantage of adopting formal structures for the task model and 
monitor, in the form of a prototype software interface. The interface initially navigates the task-
model to the terminal nodes and converts the relation/argument structure of each node to a state in 
the task monitor. The result is a finite state describing the status of the physical world, captured by 
the sensors, that should result when the relation specified in the node is applied to the argument(s). 
Although this initial step is automated in the current interface, the task monitor must be further 
augmented with states that anticipate errors and accommodate for limited sensing capability, the 
output of which will query and correct the user. This augmentation must currently be done by 
hand, a capability the prototype interface allows with a GUI.  

 

 

Fig. 2. Left: A task model used as the input of the automation to generate its corresponding 
task monitor. Center: The output task monitor. Right: The graphical user interface where 

users can insert additional error and sensor-assistive states. 

4.3 Input/Output (I/O) 
The I/O component must, of course, specify what sensors are used, but in addition, it must 

provide instructions, in the form of step-by-step directions to users as they perform the task. As 
was noted above, instructions are triggered at certain states of the task monitor, but not at all states. 
Instructions describe a sequence of actions that will be executed in pursuit of a subgoal within the 
task-model hierarchy, without interruption. We will refer to this sequence as an instructional 
chunk. A new chunk is delivered at a state where the task monitor registers completion of the last 
action in the previous chunk. At present there is not automation for determining these states where 
instructions occur; this requires hand editing of the task monitor. Essentially, the problem 
corresponds to identifying the boundaries where a chunk-able sequence of actions begins and ends. 
We propose a set of heuristics for deciding on chunk boundaries, as follows.  

(i) Assign chunks a “reasonable” quantity of content. One should avoid chopping up action 
sequences into multiple short instructions. An isolated instruction cannot be too short or trivial, as 
the users will become frustrated, and the task performance time will be extended by the switches 
between listening and executing. Conversely, verbal instructional sequences should not have some 
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many components that they exceed the capacity of working memory for words embedded in 
sentences, which has been estimated to be as low as 2 units [8,13]. 

(ii) Avoid long execution times. Instructional chunks should avoid bundling so many actions 
that execution time is lengthened to the point of memory failure due to time-dependent decay of 
memory “strength” [22,23,34]. A general boundary in the literature on working memory loss 
suggests that actions in a chunk should take less than 15 seconds to complete.  

(iii) Combine steps appropriately. Steps that are encompassed by a single goal should be in a 
common instruction; steps that embody different high-level goals should be separated. In addition, 
instructions for motor output should combine actions that are efficient to execute as a motor unit, 
such as grasp and twist [26,27]. If the user must report results of an action because sensor data are 
lacking, the request for the report should be combined with the instruction to do the action (“do X 
and tell me when X is done”).  

As examples of how well instructions might match these heuristics, we re-visit the user being 
guided to take their blood pressure. “Move the strap to an inch below your wrist” is likely to be a 
useful instruction that should not be decomposed. “Move the strap to an inch below your wrist, set 
your elbow on the table, and bend your arm until your wrist is as high as your heart” crosses 
boundaries between multiple subtasks. Even a shorter instruction that combines moving the strap 
and placing the elbow is vulnerable to a longer execution time than the decay of working memory. 

4.4  Technological Implementation 
The final component of the assistant, technology, must meet task demands for computational 

capability, latency, and utility for sensing the observable action sequence. The use of cloudlets 
offers a solution to the bandwidth and latency problem, but if it is necessary to use computations 
resident in the cloud, there may be a cost in the form of increased latency. Deficiencies in sensor 
capability can be compensated for by incorporating the human in the loop; however, the potential 
addition to latency and error vulnerability makes this a less desirable solution than a direct sensor 
reading. Clearly, the technological limitations greatly impact the utility of the assistant, as is 
illustrated by the end-to-end application described next. 

5 AED Application 
In the remainder of this paper, we present the implementation details of a cognitive assistant 

for an automated external defibrillator (AED), a device intended to enable the user to administer a 
shock to a patient exhibiting sudden cardiac arrest, in order to restore normal rhythm. AED devices 
are ubiquitously placed in institutional and marketing environments, with the expectation that 
novice users, potentially guided by phone contact with emergency medical technicians, can operate 
them. They are typically mounted in a box with instructions, augmented by electronic checkpoints 
on the device itself.  

Appendix A provides the task model for the AED, and Appendix B shows the task monitor. 
To construct the model, we observed AED training sessions of novice users and interviewed 
Emergency Medical Technician (EMT) experts for detailed accounts of the procedure and 
common mistakes. In brief, the high-level task goals are: prepare patient (check for chest hair and 
water, remove clothing); locate AED pads and controller (different pads for young and older 
patients); mount AED pads on patient (across the heart from upper left to lower right); and apply 
shock (first clearing area from contact). Common errors in using an AED include not choosing the 
correct pads according to the patient’s age, which could lead to under-shocking adults and over-



 

 

shocking children. Another mistake is mounting the pads at the wrong location on the body; naive 
users often think they should be at the same height, which would fail to activate the heart. Checks 
are also needed to protect the operator from shock, which can pass through water or contact with 
the patient. As the AED we used had a built-in check for contact, we only implemented the water 
check. 

We first report an experiment testing the heuristics presented above for constructing 
instructions, followed by a description of an end-to-end assistant for the task. The assistant was 
hosted on Google Glass for the instruction experiment and on a smartphone for the end-to-end 
implementation. The motivation for using different hardware is described in Section 4.2. 

5.1  Instruction Experiment 
As noted above, with the task monitor structured and fully expanded to cover sensor capability 

and error cases, instructions must be generated to occur at appropriate points in task performance. 
Within the task monitor, each individual state is associated with an instruction as an output 
(including null). However, it would be non-optimal simply to read out those instructions in 
sequence. Rather, the instructions should be grouped into chunks according to the heuristics 
presented above, in order to conform to known constraints of human processing. In this section, 
we describe an experiment which assesses the effects of violations of those heuristics on 
performance with the AED. A group without any assistance was included to assess baseline 
performance.  

5.1.1 Participants.  A total of 27 participants recruited from the university community 
completed the study with signed consent (average age 26.22 years old, 12 males). Eleven and 12 
people participated in chunked and mis-chunked conditions, respectively, with the remaining 4 
assessed for the no-instruction baseline. When only native English speakers are considered, the 
group Ns were 8, 8, and 3, respectively.  

5.1.2 Task Conditions and Procedure.  Participants performed the task with an AED training 
device on a plastic model of a human upper body and head (Resusci Anne™; Fig. 3) laid on the 
floor of the experimental room. To create a relatively complex scenario, a medication patch was 
placed on the right chest above the heart level, and an implanted pacemaker was simulated with a 
bulge on the patient’s chest. The procedure requires the rescuer to remove the medication before 
applying the AED pads and to avoid placing the pads on top of the implanted device for a secure 
skin-pad connection. Drops of water were placed on the chest before each session, necessitating 
the step of drying the chest. 

The participants were briefly introduced to the AED and its purpose. They were asked to follow 
the instructions as closely as possible. Upon completing a step, the participants verbally reported 
“yes.” At any step, the participants were allowed to ask for a repeat of the current instructions. 
Although the task monitor specified 25 instructed actions, the AED device issued its own 
instructions and provided visual signals for the last 8. We found that issuing redundant instructions 
from the cognitive assistant confused users, so at the point where the AED was activated, we 
yielded instructions to the device. This left the assisted instructions to 17 actions.  

Two versions of the instructions were implemented: For the chunked condition, the 17 actions 
were combined into 13 instructional units corresponding to boundaries at high-level goals, 
following heuristics of low memory load and combining sensor queries with resulting commands. 
For the mis-chunked condition, the instructions were rephrased so that they violated heuristics by 
crossing hierarchical boundaries, using longer sentences or separating actions that would otherwise 
be combined by motor compatibility. Instructions for the two conditions are given in Appendix C. 



 

Note that for every action performed under chunked instructions, the same action was performed 
under mis-chunked instructions allowing step-by-step comparison of accuracy and speed of 
performance under the two conditions. In the baseline condition (denoted AED), participants were 
instructed by the experimenter to open the AED carrier, turn on the machine, and follow the verbal 
instructions on the AED. This condition is comparable to a real-life emergency situation when 
there are no trained personnel in the vicinity and the user receives guidance from a 911 operator 
over the phone. 

 

 

Fig. 3. Left: The medical mannequin used for the user study. Water, a medication patch 
and a “bulge”, representing an implanted device, on the chest to simulate various 

conditions of the patient. Center: The correct placment of the AED pads. Right: An 
incorrect placement of the AED pads in the AED condition. 

The experiment was conducted with a “Wizard-of-Oz,” idealized cognitive assistant 
represented by an experimenter, who played the role of the sensors and delivered appropriate 
instructions based on the participant’s action. The experimenter also gave error-correcting 
feedback for predictable errors; if errors were not predicted a priori, the instruction was repeated. 
The instructions and feedback were pre-recorded.  

After completing the task, the participants filled out an evaluation survey with 7-point Likert 
scales assessing the instructions in terms of understandability, pace, amount of information and 
mental effort required. They also rated their emotional state during the task as to annoyance, 
irritation, stress, discouragement, and confusion, using a binary scale (yes/no) followed by a 7-
point Likert rating. The entire experiment was video recorded for purposes of time measurements.  

5.1.3 Results.  Performance was assessed with multiple measures: completion rate, step-wise 
task completion time, frequency of requests to repeat instructions, and errors. As participants 
sometimes anticipated the end of an instruction, time for a step began at the participant’s first 
action or the end of the instruction, whichever preceded. As the user sometimes forgot to verbally 
report completion, the time for a step was ended at the terminal action or the user’s “yes,” 
whichever preceded. Errors were categorized into two types: Objective errors occurred when 
participants attempted to follow the instructions but failed, such as removing and repositioning an 
AED pad (which impedes a secure skin-pad connection). Instruction errors were failures to 
comply, such as applying the pads to the wrong location of the chest.  

Completion Rate. None of the participants in the AED condition (no assistance beyond the 
instructions from the device) successfully completed the full procedure. The two principal errors 
were objective: using the wrong set of AED pads and placing the pads incorrectly. All four 



 

 

participants reached for the pads that were placed on top, which were designed for children. Most 
AED-condition participants failed to peel off the sticker sheet and placed the pads upside down on 
the patient’s chest (Fig. 3 right). In comparison, all participants in the assisted groups successfully 
completed the task. 

Step-wise task Completion Time. As native-English participants worked considerably faster 
than non-native English speakers (2 min, 11 sec vs. 3 min, 42 sec, respectively, for total time), we 
isolated the native speakers for analysis of this measure. The analysis uses the 13 instructional 
steps as the units of observation, capitalizing on the design feature that the same instruction was 
embedded in well- and miss-chunked versions across the two groups of participants. Fig. 4 shows 
the mean time to complete each step (y-axis) when given in the mis-chunked vs. well-chunked 
conditions (x-axis), averaged across the native-English participants only. The dashed line indicates 
the expected completion time if the two conditions were equivalent for each chunk. The mis-
chunked steps tended to exceed the chunked in duration, particularly as the steps themselves took 
longer. A linear regression showed that, for each second taken to complete the task under the 
chunked instructions, an average of 9% more time was needed for mis-chunked instructions. A 
paired t-test with steps as the unit of analysis found the average completion time to be significantly 
greater for the mis-chunked condition (Mean = 9.9 sec, SD = 4.6) than the chunked (Mean 8.9 sec, 
SD = 5.2), t(13) = 2.99, p = .04.  

 

 

Fig. 4. Average completion time by chunk for the mischunked condition compared to the 
chunked condition. Dashed line represents expectation for equal times. 

Other measures. Requests to repeat instructions were rare, particularly for native speakers. 
While no native speaker in the chunked condition made an instruction error, 37.5% of the native 
speakers in the mis-chunked group made at least one such error, with an average of 1 error per 
subject. Non-native speakers tended to make more instruction errors (average of 2 errors out of 14 
chunks and with 2/3 of subjects making at least one error). Of the survey responses, the averages 
for non-emotional scales tended to be near midpoint, whereas the emotional arousal ratings were 
low, with one exception: Participants in the mis-chunked condition (native and non-native speakers 
combined) reported higher stress than those in the chunked condition (Mean chunk = 0.45, SD = 
0.82; Mean mis-chunk = 1.33, SD = 1.50 -- given the high variability in the mis-chunk ratings, the 
effect reached significance by a 1-tailed test, t(21) = 1.76, p = .049). 
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Summary. The key results of the instruction study are (i) cognitive assistance is necessary, 
because no unassisted participant succeeded in using the AED properly; (ii) violation of chunking 
heuristics increases processing time; and (iii) mis-chunked instructions result in greater stress for 
the participant.  

5.2  End-to-End Implementation: AED Cognitive Assistant 
We implemented a fully automated cognitive assistant guided by the AED task model and task 

monitor described in the Appendices. The application divided the operation of the AED into 
subgoals of preparing the patient, detecting age, locating components, mounting the AED, and 
applying shock. The system relied extensively on existing image-processing software. Where 
necessary, the initial task model was augmented with states to assist the sensors, and user report 
was used as the default when no visual recognition system was found to be adequate.  

The complete software pipeline is shown in Fig. 5. The experimenter who had served as a 
surrogate for the sensor and pattern recognition component in the previous experiment was now 
replaced with computer vision input from a camera. Instructions were either shown on a display 
or spoken by a speaker. Throughout the entire procedure, the user could say “repeat” to request 
hearing the previous instruction again; this review was controlled entirely by voice recognition 
software.  

 

 

Fig. 5. Software pipeline for the cognitive assistant. Four components represent subgoals in 
the task model with overt instructions to the user. Detect(age) is an additional sensor-
assistive state in the task monitor. Each component is associated with an algorithm. 

We initially pilot-tested the AED procedure using a Google Glass. However, the narrow field 
of view and limited processing capacity of the device, together with its tendency to overheat, 
ultimately led us to substitute a phone (Motorola Nexus 6), which has greater computational power 
and a camera with a wider view, allowing us to capture the user’s hands when operating the AED. 
The program was implemented on Android 5.0. However, it is fully compatible with any Android 
platform (including a Google Glass).  

From an implementation perspective, the cognitive assistant software was divided into two 
parts, a locally resident client processor and a back-end processor on a cloudlet. The client side 
used the Android phone to capture the visual scene and deliver verbal and visual instructions by 
speaker. The camera stream was sent from the client to the cloudlet, where image processing was 
done by the back-end program, which analyzed users’ progress and triggered the client to deliver 
instructions. The communication between the client and the server was done through the Gabriel 
Platform [37].  

5.2.1  Implementation.  We next describe the implementation of each component in Fig. 5 
and our observation of the factors that affected completion time. 

Prepare Patient. This subgoal included instructions to remove clothes, wipe chest if wet, 
remove chest hair, and check for other implanted devices. The next instruction was issued 
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following the user’s verbal report of completion of the previous one, as recognized by Google’s 
Speech API. The completion time for this stage was dominated by user action, as the speech API 
operated with short latency. 

Detect Age. This sensor-assistive state instructed the user to test whether the user should select 
child or adult pads from the AED box. The pad selection was determined by uploading camera 
frames from the mobile device to a cloudlet, which invoked the Microsoft Face API to detect the 
presence of a face and decide whether it belonged to a child or an adult. The completion time was 
API-dependent and varied with the input image, ranging from a few seconds to on the order of a 
minute. 

Locate Components. If the previous state output that the patient was an adult, the local client 
instructed the user to take the adult pads from the AED carrier; if a child, the child pads were to 
be taken. In the current AED product, the two pads differed in size (adult was larger), packaging 
color and warning label color (blue for child, red for adult). However, the cues available from the 
product were found insufficient for computer vision algorithms to reliably differentiate the two 
types of pads. Size could be ambiguous because it varied depending on the camera distance, and 
color perception depended on lighting and colors of objects in the background. To improve the 
robustness of pad detection, fiducial markers were developed and added to the sticker side of the 
pads (Fig. 6). For consistency, the markers were in the same color as the warning labels that came 
with the AED.  

To complete this subgoal of the task, the user first located and opened the package containing 
the correct pads, which they then held in front of the camera. When the markers on the pads were 
recognized, the next instruction was delivered. If the user had selected the wrong pad, the monitor 
entered an error state, and the instruction was to correct the error and hold the new pads up to the 
camera. The completion time for this stage was dominated by user action, as the fiducial 
recognition operated in the millisecond range.  

 

 

Fig. 6 Left to right, fiducial markers for pads on child’s right, child’s left, adult’s right, 
adult’s left chest. 

Mount AED. The first instructions in this subgoal, check for a bulge and peel the stickers, relied 
on user reports of success. The next instruction was to actually mount the pads. The fiducial 
markers used for age-appropriate pad selection also enabled the cognitive assistant to distinguish 
between the left and the right pad. Because the terms left and right are intrinsically ambiguous (the 
reference frame can be either the patient or the user), the instruction referred to the shapes of the 
fiducials. Pads with square markers were to be placed on the right side of the patient’s body and 
pads with circle markers on the left side. If the placement was reversed, an error state was entered, 
and a correction instruction was delivered.  

Critical to the procedure is that the left pad is placed above the heart and the right pad below 
it, so that the electrical pulse passes through the heart. In order to check for correct placement, the 
assistant needed to locate the patient’s heart position. Because the exact location of the heart cannot 

a) Marker on the Child’s Right Pad b) Marker on the Child’s Left Pad d) Marker on the Adult’s Left Pad c) Marker on the Adult’s Right Pad 



 

be determined precisely from external cues, it was estimated from the shape of the upper body. 
This proved challenging to computer vision, because the position of the patient was not 
predictable, the camera allowed only a narrow field of view, and viewing angles could vary. We 
devised a procedure that attempted to deal with these impediments to machine recognition. The 
cognitive assistant first constrained how the user viewed the patient by providing an assistive body 
frame overlay on the screen (Fig. 7). Using the image of the body at the back-end server, it applied 
Faster-RCNN object detection to detect the patient’s body position. Faster-RCNN is a publicly 
available, state-of-the-art object detection algorithm that combines object detection with 
hypothesized localization, with demonstrated benefits in terms of processing speed [24]. Our 
version of the algorithm detected critical joints of the patient, such as shoulders, head, and hips, 
and used these points to first estimate the position of the patient’s body. It then estimated the heart 
position to be above the body’s mid-line between the shoulders and the hips on the patient’s left 
side. The location of the left pad was designated to be on the patient’s left side, above the midpoint 
of the body and below the shoulder joint. The right pad was to be placed below the body’s 
midpoint, on the right side, and above the right hip joint. A benefit of using this detection method 
was that the cognitive assistant could customize the error messages, e.g., “The pad is placed on the 
wrong side of the body,” or “The pad should be placed on the left side of the body,” to better guide 
the user. The pad position check was performed after the users placed each pad, allowing for timely 
correction of errors.  

With the body-position algorithm running simultaneously on CPU and GPU, the end-to-end 
latency, including processing and network time, for processing a single camera image was as fast 
as 33 ms. This was reduced from the 500 ms obtained for an unassisted pose detection algorithm 
[7] tried initially. However, inadequate viewpoint and low camera resolution could cause failures 
for multiple frames, extending the processing time. As a result, the latency between aiming the 
camera and receiving a determination that the pad was correctly or wrongly placed could be on the 
order of a minute. 

 

Fig. 7. The assistive body frame overlay derived from patient (right) presented to the user 
on the phone screen. This helps the user to correctly position the body for joint detection. 

The assistant-generated instructions concluded with activating the AED machine, at which 
point the machine began to issue its own instructions and provided visual signals to guide each 
step. The assistant still checked user actions for errors. The machine instructed the user to attach a 
yellow connector to it. In order to check this outcome, an internal tool was employed that 
automatically creates deep neural-network based object detectors using the core of Faster-RCNN 
to recognize the connector and the machine. The algorithm achieved 90% accuracy for the machine 
itself, but only 50% accuracy from a single image of the connector, because the connector lacked 



 

 

a distinctive visual feature. However, this level of accuracy was not an issue in usage, because the 
algorithm could process 100 – 200 frames/sec. If the AED machine was present and the yellow 
connector was detected in multiple frames among the 100-200 frames, the algorithm determined 
that the user had plugged it into the slot on the machine.  

The completion time for the entire mount-AED subgoal depended primarily on the latency for 
pose recognition and the user’s actions of placing the pad and attaching the connector, which lasted 
multiple seconds.  

Apply Shock. Once the machine was activated and the connector was placed, an orange button 
began to blink, indicating it was ready to apply shock. To recognize the orange flash, the same 
Faster-RCNN-based algorithm was used as devised for the connector in the previous subgoal, but 
combined with the change in light intensity across time. The algorithm first used canny edge 
detection to find the location of the orange button. The centroid location of the button was used to 
build a predicted rectangle, within which the algorithm calculated the light intensity (0-255). The 
change in light intensity was monitored over time, to determine if the button was flashing or not. 
Evaluation tests showed that even under strong ambient lighting, there remained a detectable 
variation between when the button was lit and turned off. The accuracy rate for single flash 
recognition was approximately 70%, but repeated tests yielded accurate recognition. The rate of 
flash of the machine constrained the speed with which the algorithm could operate, but typically 
recognizing the device was ready to shock, once it was activated and connected, took no more than 
2 sec. 

5.2.2 Usability Test.  To test the usability of the AED implementation, 8 naive participants 
were asked to follow the assistant, in order to complete the procedure of mounting the AED 
machine on the dummy. The devices were the same ones used in the instruction experiment, and 
the well-chunked instructions were implemented. The participants were recruited from a local 
participant pool (average age 31.5 years; 3 males, 2 non-native English speakers). All participants 
were given the Android phone with the cognitive assistant software and access to a cloudlet. After 
a short introduction to the AED, the participants were told to follow the instructions from the 
cognitive assistant and complete the procedures without assistance from the experimenter. After 
completion, they were asked to rate annoyance, irritation, stress, discouragement, and confusion, 
using the same 7-point Likert scale as the previous study. 

All 8 participants successfully completed the procedure. The average completion time was 7 
min, 52 sec (SD = 2 min, 18 sec), far longer than the completion time in the instruction experiment. 
The disadvantage arises because unlike the human perception used in the Wizard-of-Oz version, 
the automated cognitive assistant relies on non-optimized or non-dedicated machine classification 
algorithms. As Chen et al. [10] noted, the computations required by the application, and not the 
communication between the local device and the cloudlet, have the greatest impact on latency. A 
salient problem was the relatively long latency for the Microsoft Face API and pad location 
detection; most users had to hold the phone for up to a minute before the algorithms returned 
results. The slow response with the Face API reflects its being a proprietary cloud service that is 
responding at any time to a large user population. Similarly, latencies were lengthened by reliance 
on the Google Speech API, which has a set timeout, after which the user has to press a button to 
restart the speech recognition.  

Participants’ average ratings for negative emotion experiences of irritation, discouragement, 
annoyance, and confusion ranged from 1-3, higher than in the previous experiment where the 
human played an idealized assistant, but still below the midpoint of the scale. Two participants 
specifically expressed irritation and annoyance with the speech-recognition timeout. Despite the 



 

delays and the demands of aiming the camera, the stress ratings with the cognitive assistant (Mean 
= 1.50, SD = 1.60), were essentially the same as ratings for the mis-chunked human instructions 
in the instruction study (Mean = 1.33). 

While the user study points to limitations of the current implementation, it is important to note 
the fundamental outcome, namely, that the end-to-end version of the AED assistant enabled all 
assisted users to complete the task. This is in direct contrast with the failure of the unassisted 
novice participants tested in the instruction study. Moreover, the users reported dissatisfaction 
particularly with latencies that seem most likely to be improved with future technological 
advances. Recognizing the age of the face, for example, could be efficiently implemented on a 
cloudlet. Speech recognition failures could be addressed with a more advanced implementation. 
Latencies during pad position detection could be reduced by using a multi-algorithm approach, 
similar to [10]. 

6 General Discussion 
Despite the rising popularity of cognitive assistants enabled by new technologies, many 

challenges still remain. The first section of this report identified challenges facing the designer of 
a technologically advanced cognitive assistant hosted in an on-board device, capable of real-time 
guidance including error correction, and exhibiting self-contained sufficiency to guide the user 
through a complex task, such as assisting non-professionals in a health-care related task. In order 
to address these challenges, we suggested constraints on the kinds of tasks that are candidates for 
cognitive assistants. A critical assumption is that the human user could be not only a target of, but 
also embedded into, the solutions. We further described formal approaches that would be useful 
in constructing the assistant. Among these were guidelines for instructional units optimized for 
task-related coherence and comprehension. 

While our solutions are applicable to constructing cognitive assistants for various purposes and 
domains (under the proposed task constraints), in the remainder of the paper, we illustrated this 
approach by user testing and implementation, culminating in an end-to-end, fully automated 
cognitive assistant for AED usage. Notably, “full automation” here includes extensive use of the 
human in the loop. An initial study demonstrated that novice users relying only on the on-board 
instructions provided with the AED could not perform the task. An idealized assistant, in the form 
of a human experimenter, could guide them through, even with non-ideal (mis-chunked) 
instructions that deliberately violated heuristics tailored to human cognitive constraints (though at 
some cost). The subsequent demonstration with the automated system found that novice users 
could follow the assistant to mount an AED machine on a dummy patient. However, the study also 
showed that current technology, even using state-of-the-art machine learning algorithms and 
augmenting the basic device with fiducial markers, produced latencies that caused significant 
delays and user dissatisfaction.  

End-to-end latencies are a challenge exposed by the work that seems likely to improve rapidly 
with new hardware and software technology. Chen has explored some methods to reduce this 
latency, such as using a multi-algorithm approach or adding a GPU [10]. Another challenge lies 
with the user interface, which must enable the rigorous and responsive sensor checks necessary 
for the cognitive assistant to monitor normative progress and detect errors or time-outs. We found 
that the small field of view in the Google Glass limited how well computer vision algorithms work 
on the images captured. Moreover, it lacked even the minimal processing capacity for seamless 
communication with cloudlet resources, often timing out due to overheating. The smartphone was 



 

 

superior in these respects, but holding mobile phones in the hands restrains users’ manual 
operations, while mounting it on a helmet can impede communication by voice or button press. It 
is our hope that further implementation of cognitive assistants will develop in tandem with 
advanced wearable sensor technology. 

Other challenges are to construct the essential components of the task model and task monitor. 
In contrast to the current hands-on approach, it would be preferable to extract the basic task 
structure automatically from available sources such as on-line demonstrations and tutorials. We 
described preliminary efforts towards automatically generating a task monitor from a task model. 
A further goal is to use the model and monitor for purposes of automated instruction generation. 
Progress could be made by exploiting the semantic representation underlying the task model. 

Despite these limitations, the success of our preliminary efforts and other demonstrations from 
our group [10] is encouraging for further development of cognitive assistants in time-constrained 
application domains. In this regard, the inability of novices to perform the task of administering 
the AED without assistance is striking, as these devices are commonly mounted in work 
environments with the expectation of by-passer intervention. In our scenario for the future, the 
ubiquitous AED wall-mounted enclosure will contain a cognitive assistant enabled with local 
edge-computing access and appropriate wearable hardware.  
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8 Appendix 

8.1  Task Model for the AED Task 
For space reasons, the first-level subgoals and subsequent nodes are presented separately from 

the main goals. Terminal nodes are in bold. 
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8.2  Task Monitor for the AED Task 
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8.3  Instructions for Chunked and Mis-chunked Conditions of the Instruction-
Experiment 
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