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ABSTRACT

We describe a technique for attaining high-accuracy, small-
vocabulary speech recognition capability in resource-scarce
languages that requires minimal audio data collection and no
speech technology expertise. We start with an off-the-shelf
commercial speech recognizer that has been trained extensively
on a resource-rich language such as English. We then derive
phonemic representations for any desired word in any target
language, by a process of cross-language phonemic mapping. We
show that this results in high accuracy recognition of
vocabularies of up to several dozen words — enough for many
development-related applications such as information access, data
collection, and simple transactions.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces — Voice 1/0.

1.2.7 [Artificial Intelligence]: Natural Language Processing —
Speech recognition and synthesis 1/0.

General Terms
Algorithms, Human Factors, Languages.

Keywords
ICT4D, SLT4D, Small Vocabulary, Resource-Scarce Languages.

1. INTRODUCTION

Recent studies have pointed to potential benefits of developing
speech technologies for developing regions [7, 9, 15, 16]. In
particular, high-quality automatic speech recognition (ASR) is an
essential part of spoken dialog systems (SDS), which have
particularly high potential in telephone-based applications. Such
applications are particularly relevant for the ICTD community as
they leverage the high penetration rates of mobile phones, require
only the ability to make a phone call, and perhaps most
importantly, can be used by both literate as well as non-literate
users. However, among the approximately 7000 living languages
spoken in the world today, only a tiny fraction have been
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incorporated into speech recognizers, primarily due to market
forces, as well as the limited availability of experts in speech
recognition technology. Commercial packages like the Microsoft
Speech Server (MSS) provide high-quality recognition for a few
dozen languages and dialects most commonly used in the
developed world. Open source recognition engines like Carnegie
Mellon University’s Sphinx and open-platform tools like HTK
allow in principle the creation of speech recognizers in any
language, but require very significant amounts of recordings in
the target language to be collected and processed. To achieve
adequate accuracy, they also require significant speech
technology expertise for training and tuning the system. Thus the
process of creating ASR capability in a new language requires
significant time, money and expertise — daunting requirements in
developing regions with limited financial resources and
overstretched workers.

Recognizing this technological impediment to the otherwise large
potential of spoken dialog systems in the developing world, we
set out to develop a technique that will allow a low-cost, accurate
speech recognizer to be built for any language. Specifically, we
sought a technique that would:

e work for any language

e require very minimal data collection effort (on the order
of 3-5 repetitions of each word), which could be done
over the phone

e require no linguistic or speech technology expertise

e resultin a speech recognizer suitable for use by low-
literate users

e  provide high-accuracy (>95%) recognition over
vocabularies of up to a few dozen words

2. BACKGROUND

2.1 Speech Technologies for the Developing
World

Speech recognition technology is a few decades old. However,
serious studies of speech technology for development-related
applications began only recently. The notion that speech
technology can play a positive role in development is suggested
by the observation that illiteracy and low-literacy are major
roadblocks to the wider dissemination of information services in
the developing world. Despite the inability of many major
technologies to take hold, the cell phone has been a widespread
success, readily absorbed by virtually all developing communities
[7]. Thus telephone-based spoken dialog systems appear
promising for bridging the gap between low-literate populations
and the information society.



Experimentation with speech interfaces in developing countries
began with UC Berkley’s TIER group’s Tamil Market project [9],
and was soon followed by several other pilot experiments and
case studies [6, 8, 15, 16]. Some of these studies (e.g. [15])
demonstrated that speech interfaces can be effective for low-
literate users, while others (e.g. [9]) pointed to the need for high
recognition accuracy. These findings motivated the work we
report here. Both [4] and [15] discuss challenges to speaker
recruiting, audio collection and user testing caused by illiteracy.

2.2 Related Methods

We seek a technique for obtaining high accuracy speech
recognition in any language without relying on much data
collection or technological expertise. Experiments conducted at
Meraka Institute [1, 3] suggest that developing competent
general-purpose SR systems from scratch will require tens of
speakers and up to hundreds of training samples per speaker. For
a resource-strapped developing world NGO, this may be
unachievable. Instead, we seek methods that have fewer
requirements, even if they can only support very small
vocabularies.

In the past two decades there have been many efforts to construct
multilingual phoneme databases. One line of work by Schultz et
al. is the GlobalPhone project [10, 11, 12, 13], where large
amounts of speech data were collected from various source
languages, so that only a limited amount of training data in the
target language would be required to create acoustic models for
that language. This approach still requires a moderate amount of
data recording and a fair amount of expertise, and is geared
towards creating unrestricted, large-vocabulary, moderate-
accuracy speech recognition capability. As such, it is not optimal
for the small-vocabulary, high-accuracy recognition capability we
believe is needed for development-oriented applications.

An earlier attempt employing both a cross-language pronunciation
transcription and a data-driven approach to automatically process
speech was reported by Constantine and Chollet [5]. Specifically,
they employ a relatively simple variation of Genetic Algorithms
to generate phoneme transcriptions based on a multilingual speech
database.

More recent work by Bansal, Nair, Singh and Raj [2] introduced a
joint decoding algorithm on the training audio of a target
language to automatically derive pronunciations. However,
modification of the decoding algorithm for audio has to be done at
a low level in the speech engine, which both requires technical
expertise and excludes the use of commercial recognizers that
employ highly-trained acoustic models.

2.3 The Salaam Method

One promising approach to our problem is the Speech-based
Automated Learning of Accent and Articulation Mapping
(Salaam) method [14], which is a refinement of the “Poor Man’s
Speech Recognizer" (PMSR) method described in [15, 16]. In the
PMSR method, a speech expert builds small-vocabulary
recognizers by transcribing the pronunciation of a word from the
target language into phonemes in the source language.
Specifically, by employing cross-language phoneme mapping
using existing acoustic models, one can avoid training new
acoustic models, often the costliest and most complex part of

training a speech recognizer. While PMSR required a speech
expert to manually define word pronunciations, in the Salaam
approach the speech recognizer was used to semi-automatically
decode a few recorded samples of each target word to obtain more
accurate pronunciations, improving upon those provided by a
human expert (and diminishing the need for such an expert).

The idea of representing foreign words by automatically derived
cross-language pronunciations is not new to Salaam. It has been
tried before by many researchers using so called “all-phone
decoding” in open speech recognition platforms such as Sphinx or
HTK. But anecdotal reports suggested that the accuracy of such
an approach is insufficient even for a vocabulary of as few as 10
words, which is the smallest vocabulary needed for all but the
most trivial applications. The gist of the Salaam idea is to use the
same approach but to also take advantage of the superior quality
and robustness of commercial recognition systems, which are
trained on hundreds of hours of speech recordings and are
carefully tuned by expert speech engineers. Since commercial
systems do not usually provide the rich interface needed to run
all-phone decoding, the Salaam method effectively achieves the
same result by heuristically querying the commercial recognition
engine through whatever interface it supports. Thus the Salaam
method is not a new modeling technique but rather a practical
method for enabling highly accurate spoken language interfaces
in new languages with very minimal training data and no
technological expertise.

The Salaam method was first tested anecdotally as part of a live
demonstration during the ICTD 2009 conference in Doha, and
yielded less than 10% word error rate (WER) on ten diverse
languages, with vocabulary sizes ranging from 3 to 10 words [14].
Using a similar technique, a comparative study on voice
interfaces using a prototype system by IBM Research in rural
India [8] has attained less than 6% WER with sentences/phrases
of the target language mapped to English phonemes, although the
effective vocabulary size was only 2--3. These studies suggest
that the Salaam method can yield good performance (though it
still falls short compared to recognizers trained directly using
significant resources from the target language).

Our proposed solution builds upon the Salaam method. We
review key details of that method in the next section.

3. INCORPORATING SALAAM’S
COMPONENTS

To take advantage of the potential shown by the Salaam method,
we pick up on two of its most important components: the cross-
language phoneme mapping and the data-driven optimization.

3.1 Cross-Language Phoneme Mapping

Using an existing, highly-trained speech recognition system in a
source language, cross-language phoneme mapping is done by
defining each word or phrase in the target language using a
sequence of source-language phonemes. An obvious problem with
this approach is that the phonemes of the source language and the
target language are different, sometimes dramatically so. For
instance, the Hebrew word for “one” has an uvular fricative
phoneme that sounds like a mix between the “H” and “K”
phonemes in English. In such cases, we pick the phoneme that



most closely matches the training samples. So with the MSS U.S.
English recognizer, the resulting pronunciation would be similar
to “E H AA D” or “E K AA D”, or both if multiple
pronunciations per word are allowed.

3.2 Data-Driven Approach in Salaam

In the original Salaam method, a data-driven approach is
leveraged to aid the human expert with the task of generating a
pronunciation for a new word — the aforementioned cross-
language transcription. The idea is largely reliant on the scoring
of recognition results returned by the baseline recognizer which is
run in an “all-phone-decoding” mode, namely allowing it to
return any sequence of phonemes, rather than regular vocabulary
words. Since most commercial recognizers do not expose their
“all-phone-decoding” capabilities, we simulate this mode by
defining artificial words that consists of one, two or three
phonemes. If the recognizer is given an exhaustive set of these
“words”, it would pick out the ones that best match the audio
samples, and provide acoustic and/or confidence scores that we
can then use to select target pronunciations. However, with a
typical phoneme set of, say, 37 phonemes, trying to match a
sequence of even only 5 phonemes creates a search space of 37°
distinct sequences, making the task computationally impractical.

The design described by the Salaam method is a semi-automatic
pronunciation generation technique that also addresses the
computational complexity issue by having a linguistic expert fix
down a number of phonemes that humans are more certain of (e.g.
the consonants), and then create artificial word boundaries inside
the word. The former action reduces the search space by relying
on human expert knowledge, and the latter effectively partitions
the problem into a set of smaller, separable and more tractable
search problems. For example, if a word has 2 phonemes that the
expert is uncertain of (e.g. S ? L ? M), one can place the artificial
word boundary somewhere between the two unknown phonemes
(e.g. S? /L ? M), and the Salaam method will match each
separate word with a set of pronunciation possibilities, whose size
is equal to or less than the total number of phonemes in the
baseline recognizer. In general, if there are N phonemes in the
language and n uncertain phonemes in the target word or phrase,
the complexity of the search can be reduced to O(nN).

3.3 Means for Automated Learning

The original Salaam method for cross-language phoneme
mapping required a language expert with deep knowledge of both
the source and the target language, as well as a certain level of
understanding of how phonology is used in speech technologies.
But in the developing world setting, finding or training such an
expert can be difficult.

To eliminate the need for human linguistic experts, Salaam
introduced a further improvement: heuristic letter-to-sound rules
are used to generate initial candidate pronunciations, starting from
a written transliteration of the target word as typed by a native
speaker of the target language, using a source language (e.g.
English) alphabet (e.g. Indian cell phone users often Romanize
Hindi in SMS text messages). This moved much of the burden in
pronunciation generation away from reliance on human expertise.

4. OUR IMPROVED METHOD

The improved method we present here adopts cross-language
phoneme mapping directly from Salaam. But we go further in
relying only on minimal amounts of recorded data, and nothing
else. Specifically, we attempt to overcome the limitations of
Salaam in the following areas:

1. Salaam’s reliance on the phonemes fixed by the expert
or letter-to-sound rules, and on a pre-determined fixed
number of phonemes in the target pronunciation.

2. Salaam’s reliance on artificial word boundaries to
reduce computational complexity. These boundaries are
undesirable because modern speech recognizers use
approximate acoustic matching at word boundaries,
which degrades the acoustic match and results in
suboptimal pronunciations.

Eliminating the reliance on hints provides by human experts or
heuristic letter-to-sound rules means that the baseline recognizer
must be used to generate the phoneme sequences from scratch,
without any prior knowledge of the word to be recognized. To
do this, we must look at some subsets of all possible phoneme
sequences, and take the ones that the recognizer matches best
given the audio samples of the target word. But as pointed out
before, the set of potential phoneme sequences grows
exponentially with the number of phonemes in the sequence. So
due to computing limitations, we still leverage artificial word
boundaries to cut down on the size of the search space, albeit in a
different manner.

4.1 Details of the Improved Method

We designed an iterative algorithm that, for each desired word in
the target language, uses a small number (between one and five)
of recorded samples, and progressively generates phonemes
resulting in a decoded phoneme sequence that has been given a
relatively high score by the underlying recognizer. The speech
recognition grammar used in this method hinges on one critical
grammar element, which we call the super-wildcard. This super-
wildcard can be described in the following shorthand:

RX X

10

{X} represents a phoneme wildcard — namely, it can represent any
phoneme in the speech recognizer’s phonetic vocabulary. The
subscript and superscript denote that all permutations of between
1 and 3 phonemes are being represented, while the / represents an
artificial word boundary. This super-wildcard consists of 10 such
“words”, with each word consisting of all permutations of
between 1 and 3 phonemes. It should be kept in mind that this
super-wildcard is used to represent the pronunciation for a single
word, and we use these artificial word boundaries only to reduce
the computational complexity of the search task, and not to imply
that the word itself is composed of multiple subwords.

We will describe the algorithm with reference to a concrete
example. Specifically, we demonstrate here how our technique
generates pronunciations for the Hebrew word for “one”, roughly
pronounced “EH-HUD”, using the English recognizer from the
Microsoft Speech Server.



In the first pass, the super-wildcard grammar is used on its own,
and recognition is performed on a word’s audio using this
grammar. The recognition results from this pass are then parsed
to determine what phonemes to consider for the final
pronunciation. For the ith pass, we accept up to i phonemes, and
so for the first pass, we accept only the first phoneme as the
potential first phoneme in the final pronunciation. We keep a list
of “competing” first phonemes, and we do not just take the
sequence with the highest score, as the nature of artificial word
boundaries makes the intermediate step a heuristic recognition
result; so a phoneme from a recognition result with low score may
in fact be a part of a high-score pronunciation once it is tried
without word boundaries.

In the first iteration, the super-wildcard is used on its own, with
each “word” unit comprising all the sequences of length 1 through
3 of MSS’s English recognizer’s phonemes, repeated from 0 up to
10 times across each sample. Concretely, each “word” unit
consists of the following sequences:

AA
AE
AH
4
ZH
AA AA
AA AE
ZHZH
AA AA AA
AA AA AE

ZH ZH ZH
We allow the recognizer to treat each audio sample as consisting
of from 0 up to 10 words, and match each word to one of the
above sequences. Thus, the upper bound on the number of
phonemes in a word that our system can recognize is 30
phonemes — large enough to adequately capture any word or short
phrase.

Continuing with this particular example, the recognition results
pooled from all samples from the first run consist of the
following:

KAAD
TAAD
HAAD
KAOD
TAOD
HAOD

As this is the first iteration, we accept the very first phoneme from
each result as the potential first phoneme in our final sequence. In
this case, we record K, H, and T, and move to the next iteration.

In the second iteration, we again build a grammar that leverages
the super-wildcard construct; however, we prepend the phonemes
under consideration to the grammar. Thus, the complete form of
the grammar may be represented as:

PIGX X

10

Here, {P} represents the set of phonemes under consideration till
the current iteration — namely, K, H and T. Thus, the grammar for
the first “word” in the second iteration consists of the following
phoneme sequences:

K
K AA
K AE

KZH ZH ZH
T
TAA

TZHZH ZH
H
HAA

HZH ZH zH

Based on the top scoring results of the second iteration of
recognition, we now fix the first two phonemes.

The algorithm then repeats as in the previous iteration, Thus,
we iteratively fix one more phoneme in every iteration, and then
append the super-wildcard construct to help identify the next best
phoneme. We continue this until we arrive at iteration four, and
obtain K AA D as the best recognition result, which consists of
only 3 phonemes. The stopping condition for the algorithm is to
check if there are fewer than i phonemes discovered on iteration i,
or if there are no i-length phoneme sequences with as high a score
as the best pronunciation from the previous pass (“K AA D” in
this case). In our example, this is exactly what has happened, and
so we output the best single-word recognition results from the
current pass as the pronunciation for “ehad” to the lexicon of our
new Hebrew recognizer. The top three results consist of:

KAAD
KAAAAD
KOAAD

Using this technique, we are able to create pronunciation
definitions for words or phrases without any a priori knowledge
of the words’ phonetics or length. In the next section, we
describe evaluation of our method.

5. EVALUATION
5.1 Data Collection

To evaluate our method, a list of 50 words/short phrases in
English was compiled, consisting of numbers, commands to a
typical information-access applications, and disease names. Each
entry was selected because it is either a single word or a short
phrase, and it pertains to the topic of a service that could be
provided by a Spoken Dialog System (SDS). Given our goal of
high accuracy, small-vocabulary speech recognition, the
vocabulary size was kept to a maximum of 50 words. Three target
languages were chosen: Yoruba, Hindi, and Hebrew. The first
recorded speaker for each target language provided the translation
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Figure 1. Same-speaker leave-one-out recognition accuracy for Yoruba and Hebrew for both manual and automatically

generated pronunciations with varying vocabulary size.

of the 50 words into that language (written in that language’s
native writing system), and we adhered to that translation for all
subsequent recordings in that language.

The source language we used was US English, using the
Microsoft Speech Server bundled with Microsoft Unified
Communications Managed API 2.0 SDK.

We recorded sample audio using both analog and digital
landlines, as well as cellular telephones, since these are prevalent
in developing regions and are what we expect the SDS
applications to be used with. All recordings were done at 8kHz
sampling rate. We have not addressed general dissimilarities
between the sets of recordings we collected, such as possible
differences in speech coding and compression used by different
cellular carriers, or any difference in quality between digital and
analog landline telephones.

We built an SDS for collecting audio data, using VoiceXML and
hosted on Voxeo®. During each recording session, participants
were prompted to read each of the 50 words one at a time. To
obtain more than one sample per word, we had participants iterate
over the entire set multiple times, collecting one sample of each
word per iteration, rather than recording all samples of each word
all at once, to minimize the effect of repeating the same word
multiple times in quick succession, as this can drastically change
the way a particular word is pronounced.

For the results presented below, we have used data from two
speakers each for Yoruba and Hindi, and from three speakers for
Hebrew?. Each speaker provided five samples for each word.

1www.voxeo.c0m.

2Although Hebrew is not a developing world language, we chose
it out of convenience and to demonstrate that our technique works
across very different language families.

5.2 Results

5.2.1 Expert-Produced vs. Automatically-
Generated Pronunciations (same-speaker)

The first set of results for the method described here is a same-
speaker five-fold cross-validation test on pronunciations
generated from four samples/words of single speakers, for Yoruba
and Hebrew (See Figure 1). Alongside the results from our
improved Salaam method, we have also shown recognition results
based on expert-supplied pronunciations, from the older PMSR
method.

As expected, word recognition accuracy generally degrades as
vocabulary size increases. Most importantly, pronunciations
generated automatically by our method result in recognition
accuracy that is consistently, substantially, and statistically
significantly better than that achieved with pronunciations
generated by linguistic experts. The automatically generated
pronunciation result for Hebrew is especially noteworthy, in that
the few recognition failures were all due to failure of our method
to produce any pronunciations (this happens when no vocabulary
choice provides reasonable match to the recording, as might
happen if there is excessive noise during the recording or
particularly unusual pronunciation). In other words, for those
words for which our method did produce a pronunciation,
subsequent recognition accuracy was 100%. This is significant
because a failure to produce a pronunciation can be detected at
training time and corrective action can be taken: collecting more
samples, using expert-selected pronunciations, or suggesting to
the developer that they use alternative wording.
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Figure 2. Cross-Speaker recognition accuracy for pronunciations trained on single speakers.

5.2.2  Cross-Speaker Accuracy (single-speaker
training)

Next, we tested cross-speaker recognition accuracy:
pronunciations trained on each speaker were tested on the two
other speakers (Figure 2). Recognition accuracy varies
noticeably based on the specific speakers used. While
pronunciations trained on speaker gxt worked extremely well, and
those trained with data from speaker rxr also performed
satisfactorily, those from speaker nxb did not always do very
well. Similarly, recognition accuracy on test speaker gxt’s voice
was consistently lower than that on the other two speakers.
Speaker variations are a known phenomenon in speech
recognition, and highlight the need to create robust pronunciations
based on multiple speakers.

5.2.3 Multiple Pronunciations per Word (cross-
speaker, single-speaker training)

Next, we probed the potential benefit of providing the recognizer
with more than one pronunciation for each target word (Figure 3).
Our pronunciation-generation method routinely generates a
ranked list of pronunciations for each target word. In the
experiments reported above we used only the top-ranked
pronunciation in each such list. In this experiment, we compared
this with giving the recognizer the top three alternatives for each
target word. Even though this is an extremely simple method for
selecting the number of pronunciations, Figure 3 shows that it
does result in some further improvement in recognition accuracy
when the vocabulary size is relatively large. This suggests that
further improvement may be possible if we choose the number of

Multiple Speakers and Multiple Pronunciations
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Figure 3. Recognition results for Hindi of a recognizer with a single pronunciation for each word, vs. one with
multiple pronunciations per word.



Multiple Speakers and Multiple Pronunciations
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pronunciations intelligently and individually for each target word.
This has indeed shown to be the case in subsequent work (in
preparation).

5.2.4  Multiple Pronunciations per Word (cross-
speaker, multi-speaker training)

In this final experiment, we generated multiple pronunciations for
each word by training on audio samples from two speakers, and
tested their accuracy on the third speaker. We compared the
results to those of pronunciations trained on single speakers, and
also to recognition runs restricted to a single pronunciation per
target word (Figure 4). These comparisons reveal that training on
multiple speakers’ voices result in more robust pronunciations,
and re-confirm that allowing multiple pronunciations further
improves accuracy (this time, across all vocabulary sizes).

6. CONCLUSION

The results from the last section present empirical confirmation
that our method achieves high recognition accuracy for small
vocabulary sizes without the involvement of any human experts,
and with extremely meager language resource requirements.
Modern, general-purpose speech recognition systems require
hundreds of hours of net speech data — while our method requires
only 10 minutes worth (~1 second per word, with 50 words, 5
repetitions per word, and 2 speakers per word, which gives 500
seconds). The clock time required to record the two speakers was
an hour each. We know of no other techniques that yield that
level of accuracy in speech recognition for resource-scarce
languages. Moreover, our method yields pronunciations that
consistently outperform those provided by linguistic experts.
While other methods exist to create small vocabulary recognition
capability, ours is the only one we know of that can achieve
greater than 90% accuracy with such trivial resource requirements
— and our experience in working with developing world NGOs
shows that there are real limits on the amount of resources that
can be allocated for such initiatives. Many spoken dialog
applications become usable when the error rate drops below 5% --
this is already the case with our method when the number of input
choices at any point in the application is limited to about 10 -

typical of many useful information access applications.
Furthermore, we have also shown that one can improve upon the
quality of recognition achieved with our technique by expanding
the training set size and the number of speakers for training, or
mapping multiple pronunciations to a single word. Further studies
can help discover other strategies to use in junction with this
technique.

Although we only have results from three different languages,
these languages come from three different areas and belong to
distinct language families: the Afro-asiatic languages (Hebrew),
the Niger-Congo languages (Yoruba), and the Indo-Aryan
languages (Hindi); and the method yielded satisfactory results for
all. There is a greater implication for the Yoruba and the Hindi
test sets — these languages are used in developing regions of the
world, and little deployable speech technology has been
developed for them so far. It would be very useful to study this
technique using other languages, especially ones from regions
with low literacy levels. We also plan to field-test recognizers
built with our method in developing regions.

As per our description of the method’s design in section 4,
implementation of our method should not entail low-level
modifications to a speech recognition engine of the source
language - our design could be used with any recognition engine,
including commercial, proprietary ones. An interesting future
direction would be to test this method’s effectiveness on different
recognition engines.

We hope that other groups build on our work to improve
recognition accuracy, and we welcome collaboration to create
toolkits that could enable a completely turnkey solution for
organizations in the developing world to create and use speech
recognition capabilities for languages of their interest. We
envision that this would enable the creation of speech-based
applications that can target the needs of those with the least
amount of resources available to them — low literate individuals
for whom such technology may be their only option to interact
with the digital world.



7. CORPORA STANDARDIZATION AND
DATAAVAILABILITY

As part of our ongoing research we continue to collect small
vocabulary, isolated-phrase, telephone-bandwidth multiple-
speaker speech samples in a variety of languages. As of
November 2010 we have collected recordings of 50-100 phrase
standardized vocabularies in Mandarin, Yoruba, Hebrew, Hindi
and Urdu, with 2-3 speakers per language and 5 samples per
phrase per speaker. We plan to increase the breath and depth of
this collection, and to record more South Asian and African
languages in the near future. To encourage standardization of
speech corpora for developing-world languages, we will make all
our data available upon request to interested parties for research
and development.
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