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ABSTRACT 1In situations where the avoidance of goto statements would be
inhibiting, programs can be methodically constr;:;;d by using transition
diagrams. The key requirement is that the relevant assertions must be
simple enough to permit exhaustive reasoning. The method is illustrated
by programs for fast exponentiation, merging, and path-finding in a

directed graph.
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Introduction

The goto controversy has generated more heat than light, &nd has
exaggeratégf;heimportance of control structures in programming
methodology. Yet hiding behind this controversy is a serious questionQ
It is not whether 5339'3 are good or bad, nor whether some nevw control
structure can provide a desireable balance between the flexibility of
5239'5 and the intelligibility of simple jteration and conditional
statements. The real question is how - in situations where their

flexibility is really needed - to use goto's methodically, reliably, and

Ao

clearly.

By means of three examples, I would like to suggest that the answer
is to use transition diagrams with assertions at their nodes, and to keep

these assertions simple enough that they can be reasoned about exhaustively.

Fast Exponentiation

As a first example, consider computing x* in time log n. We want a

program satisfying the specification
{n > 0} "Compute X" {y =x"} .

To construct this program in a top-down fashion, without using goto's, we
N

begin with the invariant

k

I yxz o =x"&k>0 .

Since this invariant embodies the essential idea behind the algorithm, one
would expect the rest of the program development to be straightforward.
The invariant can be attained by an obvious initialization, and it
implies the goal of the program when k = 0. Thus "Compute xn"_expands into
begin integer ki ¥sel 2
y :=1.0; 2z :=x; k :=nj;
"Achieve k = O while maintaining I";

end ,
Ve

vhere "Achieve k = 0 vhile maintaining I" obviously expands into

while k # O do_

"Decrease k while maintaining I" .



It would be correct to expand "Decrease k while maintaining I" into
the statement
STEP

begin k :=k - 1l;y :=y *x z end ,
: end

P —

which satisfies {I & k # O} STEP {I}. But using only STEP gives a slow
algorithm; for speed ve must also employ the statement

HALVE = begin k :=k ¢ 2; z :=2 X z end ,
L g Vo Y Vg
vhich satisfies {I & even(x)} HALVE {(I}.

Thus to complete the algorithm we must compose "Decrease k while
maintaining I" out of the slow STEP, which always works, and the fast
HALVE, which only works for even k. However, there are at least two

such compositions which are correct:

if odd(k) then STEP else HALVE (1)
Yo NN e,

begin if odd(k) then STEP; HALVE end . (11)
LV S VPN A, | Ve

Moreover, each of these versions is in some respect worse than the other.
Their limitations are more evident at the level of "Achieve k = 0

while maintaining I":

while k # O do
N rmpme -

(D)
if odd(kx) then STEP else HALVE
fv A A !
vhile k # O do ‘ (11)

begin if odd(k) then STEP; HALVE end .

WAL

In (I) there is redundant testing; each ‘execution of STEP will produce an
even number which will be subjected unnecessarily to the test odd(x).

In (II) the loop will conclude with a final execution of HALVE vhich will
not affect the result, but which can cause unnecessary overflow.

It is at this point that the prohibition of goto s seems to chafe.
To avoid the limitations of (I) and (II), we will collapse the structure
of our algorithm slightly, and express "Achieve k = O while maintaining I"
directly in terms of STEP and HALVE, using a transition diagram.

The nodes of this transition diagram will be the possible states of
knowledge about the condipions which are relevant to the program. Except
for the invariant, which is always true at this level of gbstraction, the
only relevant conditions are k = O and even(k). For one of these
conditions there are three staxes of knowledge: k = 0 k # O, and "don't

know". For the two cond1t1ons, there would be nine states if the



conditions were independent, but since k = O implies even(k) there are

only six states, described by the assertions:

true (i.e., don't know)
k=0

k#0

even(k)

odd(k)

k#0 & even(k) .

Two kinds of arcs will occur in the transition diagram. Tests will
be represented by complementary pairs of arcs indicated by dashed lines,
and operations will be represented by individual arcs indicated by solid
lines. The test arcs are obvious - we simply put in all possible tests
of the relevant conditions which provide increased information.

The next step is to determine the preconditions for performing the
various operations. If k = 0, exit should occur, since the goal of the
program has been achieved. If k # 0 & even(k), HALVE can be performed.
If odd(k), then STEP must be performed.

Finally, we must analyze STEP and HALVE to determine the information
about k = O and even{k) which will be known after execution. It is easily
seen that STEP and HALVE satisfy

{I & odd(x)} STEP {I & even(k)}
{I &k #0 & even(k)} HALVE {I & k # O}

{which are more stringent than the specifications given earlier). These
specifications directly determine the placement of the operation arcs.

Thus "Achieve k = O while maintaining I" is realized by the transition
diagram shown in Figure 1. Entrance 6ccurs at the node true since the
precondition of the program does not imply any information gbout k = O or
even(k).

The foregoing argument should convince the reader of conditional
correctness. For total correctness, one must also be sure that there are
no dead ends - which is obvious by inspection - and that no loops can run
on forever. To clarify the latter question, the geometry of Figure 1 has
been chosen so that, if true is taken as the origin, then increasing
distance represents increasing information. As a consequence, the only

arcs which do not increase distance from the origin - at least one
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Figure 1. A Transition Diagram for Fast Exponentiatioh.



of which must occur in every loop - are the operations STEP and HALVE.
Thus termination is assured since, when their specified preconditions are
true, both of these operations will always decrease k without making it
negative.

Emanating from the entrance node are two pairs of arcs denotlng
distinct tests, so that the transition diagram is nondeternunate.

However this is an advantage: we have shown that all possible executions
of the diagram will be correct s so that we are free to resolve the
nondeterminacy without regard to correctness. In this case, the decision
doesn't matter much, though a weak argument can be made that beginning
with the test odd(k) will usually be faster.

The result is a program which avoids the defects of both earlier
versions. Moreover, the program is still essential;y structured, since the
nature of the invariant I only affects the details of STEP and HALVE and
plays no role in the construction of the transition diagram. In effect,
the transition diagram is a program for a machine whose primitive
instructions, STEP and HALVE, are guaranteed by the machine designer to
preserve the integrity of the machine (i.e. the invariant) when used in
accordance with their specifications. Of course, it is precisely this
suppression of the invariant which permits us to limit our attention to
the conditions k = 0 and even(k), which are so simple that we can easily
deal with all possible states of knowledge.

On the other hand, our program is certainly less structured than
versions (I) or (II), and consequently more complicated. But the result
is not chaos. There is still enough structure that the program can be
constructed and understood methodically.

To represent a transition diagram in a conventlonal 1anguage, one
can use a block in which each node appears as a label with an attached
‘assertion, each operation is a sequence of statements beginning with a
label and ending with a %232 statement, and each test is a conditional
statement containing a pair of goto statements. The invariant, which
must hold at all labels, is stated at the beginning of the block. For

example, the program for fast exponentiation is:



{n .1 0}
begin integer k; real z;
y :=1.0; z := x3 k = nj

begin {invariant: y X &=k > 0}
N~ .

enter: {truel if odd(k) then goto od else goto ev;
nz: {k # 0} if odd(k) then goto od else goto nzev;
. N~ N —— NN A
Cev: {even(k)} if k = O then goto zr else goto nzev;
A% Ny - (W ST S
od: {odd(k)} k =k -1;y :=y x z; goto ev;
nzev: {k # 0 & even(k)} k :=k + 2; z := z x z; goto nz; '
zr: {k = 0} -
end
end
M n
{y=x1}.

For clarity, we have avoided passing through a label from the
preceding statement. The labels have been ordered to make termination
evident: Each backward jump is preceded by a statement which decreases
k. |

To the author's surprise, D. Gries has found a égﬁg-free program
(using only ";", conditional, and qbi}g constructions to combine
statements) which is schematically equivelent to the above. Its
construction, and the question of whether ;t is more natural than the

use of transition diagrams, is left as an exercise for the reader.

Merging

As a second example, consider merging two ordered afrays, X, with
subscripts from ax to bx, and Y, with subscripts from ay to by, into an
array 2, with subscripts from az to bz, which is just the right size to

receive the result. A precise specification is

{ax < bx+l & ay < by+l & az < bz+l
% (bx - ax +1) + (by - ay +1) = (bz - az + 1)
& ordered(X, ax, bx) & ordered(Y, ay, by)} .
"Merge"
{ordered(Z, az, bz) & merged(X, ax, bx, Y, ay, by, Z, az, bz)l ,

where ' . .
ordered(X, a, b) = (¥i, j) a <i < j < b implies x(i) < x(3) ,



_and merged( ... ) asserts that Z is a rearrangement of the concatenation

of X and Y, i.e.,

merged(X, ax, bx, Y, ay, by, 2, d_z, bz) =
(@P) P ¢ perm({i, | az < i < bz}) &
(vi) az < i < bz implies Z(P(i)) =
if i - sz + ax < bx then X(i - az + ax)

else Y(i - az - (bx ~ ax + 1) + ay) ,
[y _— — —_— ——

where perm(S) is the set of permutations (one-to-one functions) from the
set S onto iiself.

Since all three arrays will be scanned from left to right, each array
will be partitioned into a processed and an unprbcessed part, as shown in
Figure 2. The invariant describes this partitioning and asserts that the
unprocessed part of Z is the right size, that the processed part of Z
is ordered and is a rearrangement of the concatenation of the processed
parts of X and Y, and that all processed values are smaller or equal to
all unprocessed values: |

I =

& (bx - kx +1) + (by -~ ky +1) = (bz - kz +1)
& ordered(Z, az, kz-1)
& merged(X, ax, kx-1, Y, ay, ky-1, 2, az, kz-1)
& a11<(Z, az, kz-1, X, kx, bx)
& a11<(2, az, kz-1, Y, ky, by) »
where

ali<(X, a, b, ¥, c, d)

(vi, j) a<i<b &ec <j<dimplies x(i) < ¥(3) .

This invariant can be attained by making the processed array parts
empty, and it implies the goal of the program when the unprocessed parts.
of both X and Y (and therefore of Z) are empty. Thus "Merge" expands into:

begin integer kx, ky, kz;

kx := ax; ky := &Y; kz := az;

"Achieve kx > bx and ky > by while maintaining I"
end -

A



X: [ processed | unprocessed | 'Y: [ processed | unprocessed |
ax ' kx bx ay ky by

Z: [ processed [ unprocessed ]

az kz bz

Figure 2. Arrays for Merging.
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The rest of the program will be built out of two operations:

COPYX = begin Z(kz) := X(kx); kx := kx+1; kz := kz+l end
G ) - - L
COPYY = begin Z(kz) := Y(ky); ky := ky+l; k2 := kz+l end .

Roughly speaking, either COPYX or COPYY will preserve the invariant,
depending upon whether X(kx) or Y(ky) is the smallest unprocessed value.
However, a precise specification must take into account the possibility

that the unprocessed part of X or Y may be empty:
{1 & kx < bx & (ky > by or (ky < by & X(kx) < Y(ky)))} copyXx {I}
{I &ky <by & (l_:l>_"9_35_g§_(l_§15935&‘1(1_<[) < X(kx)))} copyy {I} .

At this stage we may suppress the rather formidable invariant, and
focus on the remaining conditions kx < bx, ky < by, and X(kx) < Y(ky).
The first two conditions are independent, and therefore lead to 3 x 3 =9
states, but X(kx) < Y(ky) is only meaningful when both kx < bx and ky < by
are true (i.e. when both unprocessed array parts are nonempty), and
therefore leads to only two additional states.

Exit can occur when kx > bx & ky > by, and the conditions when COPYX
and COPYY can occur are shown clearly by their specifications. Finally,
if we examine the effect of COPYX(separately for the two nodes at which it

will occur, we can deduce the more stringent specification
{I & kx < bx & ky > by} COPYX {I & ky > by}

{I & kx<bx&ky <by & X(kx) < Y(ky)} COPYX {I & ky < by}

since COPYX does not affect the emptyness of the unprocessed part of Y.
Similarly,
{I &ky < by & kx > bx} COPYY {I & kx > bx}

{1 _&Hig&kx<yg&x(l_:g)gx(§y_)} COPYY {I & kx < bx} .

Thus "Achieve kx > bx and ky > by while maintaining I" can be
realized by the transition diagram shown in Figure 3.

In compﬁrison with most merging programs, this version has the virtue
of avoiding redundant testing of the emptyness of unprocessed array parts.
Moreover, in the nondeterministic version, the program preserves the
symmetry between X and Y which characterized the original problem.
However, this symmetry must be broken to resolve the nondeterminacy

(which occurs at the entrance node and at kx < bx & ky < by when X(kx) = Y(ky
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Path-Finding in a Directed Graph

The final example shows the use of transition diagrams in an abstract,
rather than a concrete program, and it also illustrates the utility of
%332'5 which jump out of blocks and procedures. We will construct a
program which, given a finite directed graph and two sets X and Y of
nodes, will determine whether a path exists from some member of X to some
member of Y. The program will be abstract in the sense that Egég and
nodeset will be used as primitive data types, with appropriate primitive
operations.

For a node set S, let I'(S) (P (s), T (S), * (s)) stand for the set
of immediate successors (successors, immediateé predecessors, predecessors)
of S, i.e., the nodes which can be reached in one step forward (zero or
more steps forward, one step backward, zero or more steps backward) from
pembers of S. This notation can be used to describe the existence of a

sath from X to ¥ in three equivalent ways:
*
nonempty (T (X) N Y)

T am
nonempty (X nrt (1))

: % +*
nonempty (I (X) A T' (Y))

G

The program will send control to the label success if G is true, or to
the label failure if G is false.

The basic method of computation is to maintain two disjoint sets:
TX contalnlng successors of X, and TY containing predecessors of Y.
There will also be a subset SX of TX containing nodes vhose immediate
successors are known to belong to TX, and a subset 5Y bearing the

. analogous relation to TY. The situation can be described by the two

invariants:

’ * * :
I & SKCTCT (X) £SYCTYCT (Y) & empty(TX TY)
I, = X?_TX&I‘(SX)C_'-'_TX&YSTY&I‘T(SY)STY.

The first of these invariant plays a special role. Although we will
not carry the development of our program to the point of designing a
concrete data representation, it is important to realize that Il provides
a constraint which could be used at the concretelevel to permit a more
efficient choice of data representation than would otherwise be possible.

But to take advantage of this constraint, we must insure that I1 holds,
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not just at certain points, but at all points in the abstract program.
We begin by devising operations for adding elements to the sets TX

and TY while maintaining I.. It is easily seen that

1
{z¢TY eI &z e_r_*(x)} TX := TX L {z} {1} .

*
On the other hand, z € TY & I. & z € I (X) implies G, which permits a

1
jump to the label success. Thus

*
{Il &z eT (X)} if z € TY then goto success else TX := TX U {z} {Il}-

In effect, we have an operation which behaves like TX := TX U {z}, yet is
miraculously guaranteed to keep TX and TY disjoint, since any program
vhich pe;forms the operation with 2z € TY will cease to be executed.

Next, using an obvious notation for iterating over a set (in an
unspecified order), we can build an operation for adding an entire set
to TX:

procedure putx(gggggst W)

for z € W do if z € TY then goto success else TX := TX U{z} ,
B = W A, N

Al

which behaves like TX := TX U W, yet satisfies
*
{1, «WCT (X)} putx(W) {1} .
Applying similar reasoning to TY gives

procedure puty(nodeset W);
Ve, A

&)’:: z ew\gee.i Z € TXthen@:.g success else TY := TY U {z} ,
which behaves like TY := TY U W, yet satisfies
»*
{Il ¢wcC rt (Y)} puty(w) {Il} .

Having developed these basic operations, we can return to the
overall program, and proceed from the top downwards. By induction on
path length, it can be shown that I, & SX = TX implies r*(x) C TX and °
that 12 &ESY =TY implieS»l"f*(Y)g TY. Thus Il & 12 & (SX = TX or SY = TY)
implies that G is false. This suggests the program:

begln nodeset TX, TY, SX, SY;

"Achieve Il";

"Achieve I, while maintaining I ",

"Achieve SX = TX or SY = TY while maintaining I, & 12";
goto failure

AW 22N

end .
Vs
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It is straightforward to fill in the first two operations:

begin nodeset TX, TY, SX, SY;

S— v

TX := TY := SX := 8Y := {};

putx(X); puty(Y); :

"achieve SX = TX or SY = TY vhile maintaining I, &,12";
goto failure

end .

A
(However, note that TX := X; TY := Y would be an incorrect second operation,
since Il would not be preserved if X and Y had members in common.)

To develop the rest of the program, we will construct a transition

diagram using the following pair of operations:

STEPX £ begin node uj;
\ S Ny .
u := choose(TX - 8X); 8X := 8X U {u};
putx(T{u))
end
A e )
STEPY = begin node uj;
N A

u := choose(TY - SY); SY := SY U {ul;
puty(rT(u)) '
end ,

V—

which increase SX or SY while preserving both invariants:

{Il & I, & SX # Tx} STEPX {Il & 12}

{I1 & 12 & SY # TY} STEPY {;1 & 12} .

Here choose(S) is a primitive operation which accepts a nonempty set and
produces anq#mspeéified member. It is vital to leave this operation
nondeterministic at the abstract level in order to provide an adequate
degree of freedom for the design of a data representation. (Indeed, this
is probably the most vital role of nondeterminism in programming. )

The relevant conditions for the transition diagram are SX = TX and
SY = TY, which are independen% and therefore lead to a transition diagram
vith nine states. Exit can occur in any state in which either SX = TX or
SY = TY. On the other hand, STEPX and STEPY should only be performed in
states where there is no possibility of exiting or of performing a test
which might lead to an exit. The only such state is SX # TX & SY # T¥,
vhich permits either STEPX or STEPY. Moreover, in this state STEPX will
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maintain SY # TY, since it does not change SY or TY, and STEPY will
similarly maintain SX # TX. Thus we have the transition diagram shown
in Figure b.

Most of the nondeterminism .can be resolved by exiting whenever
possible and by arbitrarily choosing the test 5X = TX at the initial
state. (As a consequence, the two states SX = TX & SY = TY and
SY = TY become disconnected, and vanish from the transition diagram.)
However, the remaining nondeterminism is more problematical. Dropping
STEPX or STEPY would give a correct but inefficient program which only
searches forward from X or backward from Y. For most g}aphs, it is
better to search in both directions so that, if a path exists, TX and
TY will intersect at an intermediate point. The simplest way of
accomplishing this is to alternate STEPX and STEFY, which can be done by
spliting the node SX # TX & SY # TY as shown in Figure 5.

An Afterthought

After devising these ideas, I have had the experience of teaching
them, and my enthusiasm has been tempered by a significant minority of
students who have employed them both incorféctly and unnecessarily.
Transition diagrams are a tool for constructing complicated programs
systematically, but they do not justify the use of such programs when
simpler ones would do the job. They are unlikely to be useful in the
hands of programmers who habitually underestimate the limitations of
their own intellects. ' '
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A Transition Diagram for Path Finding.
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Figure 5. A Determinate Transition Diagram for Path Finding.



