A Problematic Program

John C. Reynolds
Carnegie Mellon University
and
Microsoft Research Cambridge

5 February 2008 — Dagstunhl
(Joint work with Josh Berdine)

(Research partially supported by National Science Foundation Grant CCF-
054102l.)

A Problematic Program

It is widely believed that two concurrent processes
that both mutate the same location may cause a po-
tential race condition unless all mutations occur within
critical regions associated with the same resource.

In fact, the following program cannot cause a race
condition:

resource ¢ in resource m in
(with ¢ do ((with m do skip); [0] :=3))
| (with m do ((with ¢ do skip); [0] :=4)).

(although it can deadlock).

Interleavings as Paths

(with ¢ do ((with m do skip); [0] := 3))
| (with m do ((with ¢ do skip); [0] :=4)).

Py: acqf acqm relm st[0:—]fn[0:3] rel/?

PQZ
€]

acqm

acq ¢

rel ¢

t{0:—
st[] Races

fn[0:4]

rel m

All Possible Interleavings

P]_Z
PQZ

acqm

acq ¢

rel ¢

st[0:—]

fn[0:4]

rel m

acq { acqm relm st[0:—]fn[0:3] rel/

o

Ra

ces

Exclusion by ¢

P]_Z
PQZ

acqm

acq ¢

rel ¢

st[0:—]

fn[0:4]

rel m

acq { acqm relm st[0:—]fn[0:3] rel/

o

Ra

ces

Ye

Exclusion by m

P]_Z
PQZ

acqm

acq ¢

rel ¢

st[0:—]

fn[0:4]

rel m

acq { acqm relm st[0:—]fn[0:3] rel/

o

Ra

ces

The Combined Exclusion

P]_Z
PQZ

acqm

acq ¢

rel ¢

st[0:—]

fn[0:4]

rel m

acq { acqm relm st[0:—]fn[0:3] rel/

o

Ra

ces

Excluding Unreachable Nodes

P]_Z
PQZ

acqm

acq ¢

rel ¢

st[0:—]

fn[0:4]

rel m

acq { acqm relm st[0:—]fn[0:3] rel/

o

Races

How to Prove it: Use an Auxiliary Variable

{0— —}
resource ¢ in resource m in

(with £ do ((with m do p:=0);[0] :=3))

| (with m do ((with £dop:=1);[0] :=4))
{0— —}

T he Resource Invariants

Let
Ry = if p = 0 then O — — else emp
Ry, = if p = 0 then emp else O — —
Then
Ry *x Rm
iff if p=0 then O — — xemp else emp *x 0 — —
iffif p=0thenO+— — else O — —
iff O — —
and

Ryx(p=0Aemp) iff 0O+ —x (p =0 A emp)
Rn*(p#=0Aemp) iff 0O — —x (p =0 Aemp)

Thus
{Rp* Rm}
{0— —}
p:=0
{O— —x(p=0Aemp)}
{Ry* Ry, x (p = 0 Aemp)}

{ Ry}

with m do p :=0;

{Ry* (p=0Aemp)}
{O— —x(p=0Aemp)}
[0] ;=3

{0 —*(p=0Aemp)}
{Ry* (p=0Aemp)}
{Re}

{emp}
with ¢ do ((with m dop:=0) ; [0] :=3)

{emp}
and similarly
{emp}
with m do ((with/dop:=1);[0] :=4)
{emp}
So
{emp x emp}
with ¢ do ((with m dop:=0) ; [0] := 3)
| with m do ((with/dop:=1);[0] :=4)
{emp * emp}

and finally

{0— —}
{Rg* R}
resource ¢ in resource m in
(with ¢ do ((with m do p:=0);[0] :=3))
| (with m do ((with £do p:=1);[0] :=4))
{Ry* Rm}
{0——}
Note that the resources ¢ and m each have half per-
mission for the variable p (in the sense of Bornat).

