
A Problematic Program

John C. Reynolds

Carnegie Mellon University

and

Microsoft Research Cambridge

5 February 2008 — Dagstuhl

(Joint work with Josh Berdine)

(Research partially supported by National Science Foundation Grant CCF-
054102l.)



A Problematic Program

It is widely believed that two concurrent processes

that both mutate the same location may cause a po-

tential race condition unless all mutations occur within

critical regions associated with the same resource.

In fact, the following program cannot cause a race

condition:

resource ` in resource m in

(with ` do ((with m do skip); [0] := 3))

‖ (with m do ((with ` do skip); [0] := 4)).

(although it can deadlock).



Interleavings as Paths

(with ` do ((with m do skip); [0] := 3))

‖ (with m do ((with ` do skip); [0] := 4)).

acq ` acq m rel m st[0:−] fn[0:3] rel `

acq m

acq `

rel `

st[0:−]

fn[0:4]

rel m

P1:

P2:
- - -

? -

? -

?

? -

?

?

?

?

? - -

?

? - -

-

? -

?

?

?

? -

?

?

? - - - - -

◦

◦

Races



All Possible Interleavings

acq ` acq m rel m st[0:−] fn[0:3] rel `

acq m

acq `

rel `

st[0:−]

fn[0:4]

rel m

P1:

P2:
- - - - - -

? ? ? ? ? ? ?- - - - - -

? ? ? ? ? ? ?- - - - - -

? ? ? ? ? ? ?- - - - - -

? ? ? ? ? ? ?- - - - - -

? ? ? ? ? ? ?- - - - - -

? ? ? ? ? ? ?- - - - - -

◦

◦

Races



Exclusion by `

acq ` acq m rel m st[0:−] fn[0:3] rel `

acq m

acq `

rel `

st[0:−]

fn[0:4]

rel m

P1:

P2:
- - - - - -

? ? ? ? ? ? ?- - - - - -

? ?

? ?- - - - - -

? ? ? ? ? ? ?- - - - - -

? ? ? ? ? ? ?- - - - - -

? ? ? ? ? ? ?- - - - - -

◦

◦

Races



Exclusion by m

acq ` acq m rel m st[0:−] fn[0:3] rel `

acq m

acq `

rel `

st[0:−]

fn[0:4]

rel m

P1:

P2:
- - - - - -

? ? ? ? ? ?- - - -

? ? ? ? ? ?- - - -

? ? ? ? ? ?- - - -

? ? ? ? ? ?- - - -

? ? ? ? ? ?- - - -

? ? ? ? ? ?- - - - - -

◦

◦

Races



The Combined Exclusion

acq ` acq m rel m st[0:−] fn[0:3] rel `

acq m

acq `

rel `

st[0:−]

fn[0:4]

rel m

P1:

P2:
- - - - - -

? ? ? ? ? ?- - - -

? ?

? ?- - - -

? ? ? ? ? ?- - - -

? ? ? ? ? ?- - - -

? ? ? ? ? ?- - - - - -

◦

◦

◦

Races



Excluding Unreachable Nodes

acq ` acq m rel m st[0:−] fn[0:3] rel `

acq m

acq `

rel `

st[0:−]

fn[0:4]

rel m

P1:

P2:
- - - - - -

? ? ? ? ? ?- - - -

? ?

? ?-

? ? ?-

? ? ?-

? ? ?- - - - - -

◦

◦

◦

Races



How to Prove it: Use an Auxiliary Variable

{0 7→ −}
resource ` in resource m in

(with ` do ((with m do p := 0); [0] := 3))

‖ (with m do ((with ` do p := 1); [0] := 4))

{0 7→ −}



The Resource Invariants

Let

R` = if p = 0 then 0 7→ − else emp

Rm = if p = 0 then emp else 0 7→ −
Then

R` ∗Rm

iff if p = 0 then 0 7→ − ∗ emp else emp ∗ 0 7→ −
iff if p = 0 then 0 7→ − else 0 7→ −
iff 0 7→ −

and

R` ∗ (p = 0 ∧ emp) iff 0 7→ − ∗ (p = 0 ∧ emp)

Rm ∗ (p 6= 0 ∧ emp) iff 0 7→ − ∗ (p 6= 0 ∧ emp)



Thus

{R` ∗Rm}
{0 7→ −}
p := 0

{0 7→ − ∗ (p = 0 ∧ emp)}
{R` ∗Rm ∗ (p = 0 ∧ emp)}

{R`}
with m do p := 0;

{R` ∗ (p = 0 ∧ emp)}
{0 7→ − ∗ (p = 0 ∧ emp)}
[0] := 3

{0 7→ − ∗ (p = 0 ∧ emp)}
{R` ∗ (p = 0 ∧ emp)}
{R`}



{emp}
with ` do ((with m do p := 0) ; [0] := 3)

{emp}
and similarly

{emp}
with m do ((with ` do p := 1) ; [0] := 4)

{emp}
So

{emp ∗ emp}
with ` do ((with m do p := 0) ; [0] := 3)

‖with m do ((with ` do p := 1) ; [0] := 4)

{emp ∗ emp}



and finally

{0 7→ −}
{R` ∗Rm}
resource ` in resource m in

(with ` do ((with m do p := 0); [0] := 3))

‖ (with m do ((with ` do p := 1); [0] := 4))

{R` ∗Rm}
{0 7→ −}

Note that the resources ` and m each have half per-

mission for the variable p (in the sense of Bornat).


