Semantics of the Domain of Flow Diagrams

JOHN C. REYNOLDS

Syracuse University, Syracuse, New York

ABSTRACT. A domain of flow diagrams similar to that proposed by Scott. a domain of linear flow diagrams
proposed by Goguen et al.. a domain of decision table diagrams involving infinitary branching, and a domain of
processes based on the ideas of Milner and Bekic are each provided with a direct semantics. closely related to
- partial-function semantics, and a continuation semantics similar to that developed by Morris and Wadsworth. It
is shown that there is a variety of meaning-preserving continuous functions among these language-like
domains, that every direct semantics possesses an “equivalent” continuation semantics, and that there is a
particular continuation semantics which always gives distinct meanings to distinct processes. The proofs utilize
the algebraic methods of Goguen et al., which are extended to continuous algebras with operations whose
arguments can be indexed by infinite sets or even domains.

KEY WORDS AND PHRASES: flow diagrams, lattices, domains, decision tables. processes, direct semantics.
partial-function semantics. continuations, equivalence, algebraic semantics

CR CATEGORIES: 5.24

Introduction

Scott [12] has shown that a simple language of flow diagrams, in which primitive
instructions are combined by composition and conditional operators, can be embedded
in a complete lattice containing infinite diagrams which include expansions of loops and
recursions. Goguen, Thatcher, Wagner, and Wright [4] have shown that this lattice can
be viewed as an initial algebra, so that algebraic methods [2] can be used to define and
relate its semantics. They have also proposed a distinct algebra of *linear” flow diagrams
with a more limited form of composition operator.

In this paper we consider both kinds of flow diagram, as well as a domain of decision
table diagrams involving infinitary branching, and a domain of processes suggested by the
ideas of Milner [7] and Bekic [1]. For each of these “languages.” we define a direct
semantics, similar to the partial-function semantics used in the theory of schemas, and a
continuation semantics. similar to that developed by Morris [8] and Wadsworth [15]. We
exhibit a variety of meaning-preserving functions among these languages. We also show
that every direct semantics possesses an ‘“‘equivalent” continuation semantics and that
there is a particular continuation semantics which always gives distinct meanings to
distinct processes.

Our proofs utilize and illustrate the algebraic methods of Goguen et al. To facilitate
the treatment of decision table diagrams and processes, we show that these methods can
be extended to continuous algebras with operations whose arguments can be indexed by
infinite sets or even domains.

Domains and Predomains

Our starting point is the so-called *lattice-theoretic approach™ to the theory of computa-
tion, originally developed by Scott [11, 13]. The heart of this approach is the assumption

Copyright © 1977, Association for Computing Machinery, Inc. General permission to republish, but not for
profit, all or part of this material is granted provided that ACM s copyright notice is given and that reference is
made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

This work was supported by the National Science Foundation under Grant GJ-41540.

Author's address: School of Computer and Information Science. Syracuse University . Syracuse. NY 13210.

Journal of the Association for C ing Machinery, Vol. 24, No. 3, July 1977, pp. 484-503.

P B

N

Semantics of the Domain of Flow Diagraris 485

that domains of data can be partially ordered by a relationship ¢ of approximation, in
terms of which one can formulate a completeness property satisfied by the domains, and
a continuity property satisfied by meaningful functions between domains. In Scott’s own
work [11-13] the completeness property is the existence of least upper bounds for all
subsets of a domain, so that a domain is a complete lattice. Other authors [3-6, 9],
however. have worked with a variety of weaker completeness properties such as the
existence of least upper bounds for directed sets.

After considerable experimentation, we have decided to work within the framework of
one of the weaker completeness properties. The use of complete lattices would introduce
so-called *‘overdefined” domain elements. which do not possess any obvious computa-
tional reality and which preclude the simple formulation of several intuitively reasonable
relationships, particularly the close connection between direct semantics and conven-
tional partial-function semantics.

A subset of a partially ordered set is said to be directed iff it contains an upper bound
for each of its finite subsets. A predomain is a partially ordered set in which every
directed subset X possesses a least upper bound, written UX. A domain is a predomain
which contains a least element, written .. A function f from a predomain § to a domain
D is continuous iff f(UX) = U{f(x)|x € X} for all directed subsets X of S. A function from
a domain to a domain is strict iff it preserves ..

There is a variety of ways in which we could alter these basic definitions with only
minor changes in the ensuing development. We might use chains or countable chains
instead of directed sets, or we might impose various topological restraints on domains,
such as lattice continuity, algebracity, or the existence of countable bases. But the above
definitions seem to provide the simplest adequate framework for our results.

In the terminology of [4], our domains are strict A-complete posets, and our continu-
ous functions are A-continuous. Perhaps the use of Scott’s own term “domain” with a
different definition is presumptuous. but we want to invoke the connotations of Scott’s
terminology.

The relatively unfamiliar concept of a predomain plays a central role in our develop-
ment. An interesting portion of the lattice-theoretic approach extends to predomains,
and they are useful intermediaries in the construction of domains. Most important, the
concept includes both domains and ordinary sets, which we consider to be predomains
partially ordered by their identity relations. The result is a significant unification. For
example, in defining semantics we will use an unspecified predomain S of states. In
conventional applications S will be an ordinary set, but the validity of Propositions 7 and
8 requires the use of an S which is a domain.

For a predomain S and a domain D, we write S — D to denote the set of continuous
functions from S to D, partially ordered by f cg iff (Vx € S) f(x) cg(x). It can be shown
that § — D is always a domain, in which (Us_p F)(x) = Up {f(x) |f € F} for directed f C
§— D, and «_5(x) = +p. When § is a domain, S — D is the usual domain of continuous
functions. At the other extreme, when S is a set (partially ordered by its identity
relation), $ — D is the domain of all functions from S to D.

For a predomain §, we write S. to denote the domain formed by adding a new least
element to S. i.e. the disjoint union {+} U S partially ordered by x cy iffx = +,x € S and
y € Sand x cg y. When S and S’ are sets, there is an obvious isomorphism between
S — S! and the domain of partial functions from S to S’ partially ordered by the subset
relation between the graphs of the partial functions.

We write Bool for the predomain {true, false}. Let S, §’, S" be predomains, D, D', D"
be domains.e €ES— S., fES' = S1,gES'">D, h€D—>D', i€D' > D", andg €
S — (S — S%). Let p be a strict function in D — D’. We define the following expressions:

I,=Xx.x€D— D,
h-g = \s". h(g(s") € "= D',
ext(g) = \x". if x" = + then « else g(x") € §1 — D,

486 JOHN C. REYNOLDS

Js=Ars.s €S> S,
gf=ext(g)-fES > D,

condp = Ap. Ax;. Ax,. if p = {true | then {x, € Bool. —» (D — (D — D)).
false X2

Each of these expressions is continuous in all variables. The reader may verify that

h‘ID = IDl‘h = h,

(-h)-g =i-(h-g),

ext(Js) = Is ,

e*Js = Jsl*é‘.= e,

(g*f)xe = gx(fre),

As. (g*(g()))s) = g*(As. q(s)(s)),

condg.p(p, 81, 82)(s") = condy(p, g,(s"), g2(s"),
plcondp(p, x,, x3)) = condy (p, p(x,), plxs)).

As illustrated by the last two equations, we often write f(x,, ..., x,) for f(x)---(x,).

Note that, under the isomorphism between S — S! and the domain of partial functions
from a set § to a set §’, the composition operator * mirrors the usual composition of
partial functions.

For predomains S, and S,, we write S; X S, to denote the predomain {(x,, x;)|x, € §;
- and x, € S,} partially ordered by (x,, x,) € (y;, y,) iff x; Cy, and x, Cy,. When both §,
and S, are domains, S, X S, is a domain with the least element (., +).

For predomains S, and S,, we write S, + S, to denote the domain {+} U
{1, x)|x; € 8} U {(2, x5)|x; € §,} partially ordered by x C y iff x = «, or x =
(i, x'Yandy = (i, y') and x’' £ S, y'. This usage is equivalent to defining S, + S, = (5, ®
S;)1, where © denotes a conventional disjoint union of sets (with the obvious partial
ordering).

We will need to generalize this kind of sum to an iterative construct. Suppose OP is a
set and, for each ¢ € OP, S, is a predomain. We write 3 ,cor S, to denote the domain
{+}U{{o,x")jc EOPand x' € S,} partially ordered by x cy iffx = +, orx = (o, x’) and
y ={o,y’) and x’cg_y’'. When their operands are domains, + and 3 denote the usual
notion of a separated sum of domains.

If f, € S, —» D’ for each o € OP, we write Y teop fo t0 denote the function g €
(S ocor S;) = D’ such that g(+) = + and g({o, x")) = f,(x").

Algebras and Homomorphisms

We use a notion of algebra which is similar to the continuous algebras of Goguen,
Thatcher, Wagner, and Wright [4]; however, we generalize this notion to permit
operations whose arguments can be indexed by arbitrary, perhaps infinite, predomains.
On the other hand, we do not explore the many-sorted case treated in [4] since the
conventional one-sorted case is notationally simpler and adequate for our needs.

A signature 3. consists of a set OP of operators and a mapping rank which assigns a
predomain to each operator in OP. For a predomain S, we write 24 to denote {o|c € OP
and rank(o) = S}. We will normally specify a signature by listing each nonempty Z5. A 3.-
algebra 3X consists of a domain X, called the carrier of 2X ., and an interpretation which
assigns to each o € X an operation 2X, € (§ = X) — X.

In this formulation, conventional algebraic operations such as constant, unary, and
binary operations are provided by the ranks S = { }, {1}, {1, 2}, Strictly speaking, we
should write

gi{”;g)))’) instead of the conven- gj‘\:"(’)
o\ /), tional notation o\X1)s
zX(r((xl ’ xz» 2Xfr(xl > x2)1

Semantics of the Domain of Flow Diagrams 487

where (x,, ... , X,) denotes the function from {1, ... , n} to X which maps i into x;.
However, we will frequently use the less cumbersome conventional notation. Since we
regard X, (x;, xo) as an abbreviation for TX,(x;)(x,), this usage is tantamount to
identifying

{1=-X—-X with X,

-Xx-X with X - X,

{1,2}—= X)—» X with X->(X-X).

Algebras will usually be named by giving their signature and carrier. One must
remember, however, that two algebras with the same signature and carrier can still have
different interpretations. We use 2 for an arbitrary signature, and , A, T, and A for
specific signatures. Similarly, we use X (with occasional superscripts) for an arbitrary
carrier and other symbols for specific carriers.

Let 3.X and S.X' be 3-algebras and p be a strict continuous function from X to X'. If,
for all ¢ € S and x € § — X, p satisfies the homomorphic equation p(ZX/x)) =
S.X.(p-x), then p is said to be a homomorphism from 32X to 2X'. We write 3X — X’
for the set of such homomorphisms. When S = {1, ... , n}, the identifications given above
reduce the homomorphic equation to the conventional form p(EX(x1, --- » Xa)) =

X (p(xy), ... , plxa))-
As usual, algebras and homomorphisms form a category., ie.

Iy EZX—2X,
pESX—3X andp’ EXX'—> X" implypp € X — ZX".

An algebra X is said to be initial (key) if, for each algebra %X’ with the same
signature, there is exactly one (at most one) homomorphism from %X to SX'. Asis
shown in [4], all initial algebras with the same signature are isomorphic; so we can speak
of the initial algebra for 3.. We denote this algebra by 3 In%, its carrier by In3, and the |
unique homomorphism from it to X' by pex-

Although these definitions of algebras and homomorphisms are unorthodox, one can
still prove the following theorem, which is the sine qua non of algebraic semantics:

TueoreM 1. There is an initial algebra 2InZ for any signature 3.

Proor. We first construct 3InS and then show that it possess a unique homomor-
phism to any Z-algebra. The carrier is obtained by using Scott’s inverse limit construction
to obtain a domain satisfying the isomorphism :

IS ~ X (rank(o) — In), 1)
gE0P

where OP and rank are the operator set and rank mapping of the signature 2. The
inverse limit construction is described in detail in {10} and, more abstractly, in [16].
Although these descriptions use the framework of complete lattices, the construction

carries over without significant change to the present definitions.
In general an isomorphism such as (1) can have many solutions. The particular
solution In3, produced by the inverse limit construction (starting with the one-point

domain as D,) is uniquely characterized within an isomorphism by the following property
[10): The identity function /,s is the least solution of the equation

1= 2" 0x. (o, I-x). (2)

ogeopP
Here the parenthesized expression denotes a function from rank(c) — InZ to
3 cop (rank(o) — InZ). Strictly speaking, (2) should be written as

2* (\x. (o, l-x))) -d,

agor

1=<1>—'-(

where @ is the isomorphic function from the left side of (1) to the right side, but we adapt
the practice of eliding ® and its inverse.

488 JOHN C. REYNOLDS

To make In2, into a 3-algebra, we provide the following interpretation of the opera-
tors: Forallg € 35and x € § — In3, ZInZ,(x) = (o, X).

Now suppose X is any S-algebra. Let Iy, I,, ... € In% — InZ and po, €
InZ — X be the functions such that .

10="‘9

Iy, = E* (Ax. (o, I,- X)),

oEQP
"'0 — .L, .)
Hns1 = 2* (Ax EXO'("L)I.X))‘

ageoPr

By Scott’s least fixed point theorem, the 7, and pu, are directed sequences such that
U=_, 1, is the least solution of eq. (2) and is therefore the identity function for InZ,while
Uz, u, is the least solution of

*
p= 2 Ox ZX(p0).
gEOP
This equation shows that u satisfies w(ZInZ,(x)) = (o, x) = 3X,(u-x) for each
operator o, while the definition of 3 * ensures that u is strict. Thus p € £In% — 2X.
On the other hand, suppose p € 3In3 — 3.X. We show thatp-I, = u, by induction on
n.Forn = 0 we have p-+ = . since p(+) = +. The induction step is

plii= 3% Ax plo, 1o %) = 3* (Ax. p(EInZ,(/,- X))

aocor oE0r

= 2* (RX. EXa(p'In'x)) = 2* (Ax. 2Xa'(l"n'x)) = Hns1y

aeor oeor
where the first equality uses the strictness of p. But then the continuity of composition
givesp =p-lps=p-(Usol) =Upeo p-ln = UZig g = . O

When every operator has a rank of the form {1, ... , n}, Theorem 1 coincides with [4,
Cor. 4.10], and despite its very different construction, ZInX is isomorphic to the initial
algebra CT; of [4].

The idea behind algebraic semantics is to regard a language as an initial algebra and its
semantic function, i.e. the function which maps each element of the language into its
meaning, as the homomorphism into some target algebra with the same signature.
Indeed, since this homomorphism is unique, the semantic function is fixed by the
specification of the target algebra itself. : .

In the framework of continuous algebras, however, an initial algebra is far richer than
a conventional word algebra—our “languages” contain partially defined and (most
mysteriously) infinite elements. But the imposition of strictness and continuity upon
homomorphisms forces these elements to behave themselves. while their presence
provides a profound capability explored by Scott: Concepts such as iteration and
recursion can be viewed as purely syntactic mechanisms which permit finite language
elements to abbreviate infinite ones.

Direct Semantics of General Flow Diagrams

We now embark on a tour of several closely related languages and semantics. The initial
view is informal; we provide a reasonable concrete syntax for the initial algebras and
describe semantics in the style of Scott and Strachey [14]. which., as illustrated in [4. Sec.
3.2]. is equivalent to substituting target algebra operations into the homomorphic
equations. .

Let F be some set of primitive instructions and B be some set of Boolean expressions.
Then the language of general flow diagrams is the initial algebra QInQ for the signature
Q such that Q, , = {{} U F, Q.5 = {;} U B. Using the concrete syntax provided by Scott,

-we write:

N

Semantics of the Domain of Flow Diagrams ' 489

1 for QIn(),,
f for QInQl,,
X15X, for QInQ).(x,, x,),

b—x;,x, for QInQ(x,, x,).

This initial algebra is isomorphic to CTs. in [4, Sec. 5.2, pt. 1I]. Except for the omission
of overdefined elements, it is similar to Scott’s lattice of flow diagrams [12]. (Albeit with
other minor differences: Our formulation causes us to distinguish +; » from . and to
disallow elements of the form - — x,, x,.)

Let S be some predomain of states. Then the direct semantics of general flow diagrams
is provided by the semantic function ugy € Inf) — H into the “semantic domain™ H =
S — S. such that:

Ilnu([) = Js»

I"nﬂ(ﬂ = g(f)’ .

Man(X15X2) = pan(xa) * pan(x,),

tau(b = X1, X3) = As. conds (B(b, 5), pan(x:, s), maulxs, 5)).

Here ¥ € F— H and 8 € B — (S — Bool.) are unspecified functions which provide the
meaning of primitive instructions and Boolean expressions. Informally, these equations
can be regarded as a language definition in the style of Scott and Strachey [14]. But from
the algebraic viewpoint, they are simply the homomorphic equations which assert that
Moy is the unique homomorphism from QIn{} into a certain target algebra OH with -
carrier H. The structure of target algebras such as O H will be given more abstractly later.

When S is a set, H = § — S, is isomorphic to the set of partial functions from S to S,
and * mirrors the usual composition of partial functions. In this case direct semantics
reduces to the usual kind of partial-function semantics encountered in the treatment of
schemas. :

On the other hand, our direct semantics is intentionally more restrictive than the
semantics suggested by Scott [12], in which the semantic domain is § — S for an
unspecified complete lattice S, and * is replaced by conventional functional composition.
Scott’s semantics becomes unnatural when one does not require #(f) to be strict. For
example, let 8 be a flow diagram whose meaning is +, presumably a diagram whose
execution never terminates. Then §; f could have a meaning different from ., which
would suggest that the statement following a nonterminating statement could affect the
computation. The obvious solution is to replace § — § and § — Bool. by domains of
strict functions. Our direct semantics is basically similar to imposing this strictness
requirement, but it emphasizes that + in S. is not really a ‘‘state.”

Direct semantics is capable of describing schema-like languages involving assignment
and side-effect-free expressions. But is is inadequate for a variety of primitive instruc-
tions occurring in real programming languages. Let 8 be a flow diagram whose meaning
is « (in the domain § — S.). Then for any primitive instruction f, the meaning pou(f; 6)
of f; & will also be +. (Note that in contrast to the previous paragraph, we are now
examining the effect of a primitive instruction which precedes a nonterminating diagram
and can sensibly affect the computation.) This is clearly inadequate to accommodate
primitive instructions such as stop or print(n). The introduction of such instructions
precludes the assumption. made in direct semantics, that the meaning of an instruction is
a function which accepts the state existing immediately prior to execution of the
instruction and produces the state existing immediately after execution of the instruction.
To avoid this assumption we turn to continuation semantics.

Continuation Semantics of General Flow Diagrams

In continuation semantics. originally developed by Morris {8] and Wadsworth [15], the
meaning of an instruction (or flow diagram) is a function which accepts the state existing
 immediately prior to execution, plus an additional argument called the continuation . and

490 JOHN C. REYNOLDS

produces the final output of the entire program. The continuation which is provided as
an additional argument is a function from the state existing after instruction execution to
the final program output, which gives the semantics of the “rest of the computation™ to
be performed if the current instruction “‘terminates normally.” Thus an instruction with
normal behavior will produce its output by applying the continuation to the state
following execution. But an ‘‘abnormal’’ instruction can produce the final output in some
other manner — possibly ignoring the continuation.

Let S again be some predomain of states, and let O be some domain of outputs, whose
least element - denotes the “‘output” of a nonterminating computation. The domain of
continuations is C = § — O, and the semantic domainis W= C—>(S—»0) = C— C.
(Somewhat counterintuitively, we have made continuations the first argument and states
the second argument of the meanings of flow diagrams; this arrangement will eventually
simplify our semantic equations.) Then the continuation semantics of general flow
diagrams is provided by the semantic function ugy € InQ - W such that:

maw(l) = Ac. As. c(s),

kaw(f) = 4(f),

teaw(X 13 X9) = Ac. As. pawlxy, As". pawlxs, €, 5'),5),

pawlb = x,, x3) = Ac. As. condo(B(b, 5), mawlxy, €, s), pawlxs, c, 5)),

where ¢ € F—- W and 8 € B — (S — Bool.) are unspecified functions providing the
semantics of primitive instructions and Boolean expressions.

The essence of continuation semantics is revealed by the third equation. Intuitively, to
execute x,; x, with an initial state s and a continuation ¢, we execute x, with the state s
and a continuation As’. paul{xs, ¢, s'), which picks up the state s’ after execution of x, and
then executes x, with s’ and the continuation ¢. which in turn picks up the state after
execution of x, and then executes the rest of the program. But more generally, the
equation shows that it is the meaning pqu{x,) of x, which determines how the final output
will be affected by the meaning pqw(x,) of x,, which in turn determines how the final
output will be affected by the “‘meaning of the rest of the program” c.

Further insight is provided by a brief digression on the semantics of some ‘‘abnormal”
primitive instructions. To handle stop € F, we can take O = S. and §(stop) = Ac. As.s =
Ac. Js. This choice makes it clear that the final output caused by a stop instruction will be
the state existing immediately before its execution, regardless of the rest of the program.

To handle intermediate output of integers, let Int be the set of integers, N be some set
of integer expressions, and /' € N — (S — Int.) be a function giving the semantics of
integer expressions. Let O be a domain satisfying the isomorphism O = § + Int X O and
let

G(printn) = Ac. As. ext(\i € Int. py(i, c6))Nn, 5)),
G(stop) = Xc. As. py(s),

where p, and p, are the obvious in jection functions from § and Int X O, respectively, into
O . The elements of O-can be classified into three distinct kinds of output:

(1) paliys -.. , palin, p1(s)) ...), which would be the output of a program which prints the

integers i,, ... , i, and then terminates in the state s;

(2) paliy, ... , palix, +) ...), which would be the output of a program which prints the
integers iy, ... , i, and then runs forever without further printing;

(3) poliy, polis, -..)) —a limit point in the domain O —which would be the output of a
program which prints the endless sequence of integers iy, iy,

In this situation, *final™" output is a misnomer since a program can continue to generate
output forever. A better term would be irreversible output since the semantics ensures
that the rest of the program cannot rescind the effect of a print instruction.

Returning to general flow diagrams, where the interpretation of primitive instructions
is left unspecified, we can simplify our equations for ugy by using eta-reduction.

N

Semantics of the Domain of Flow Diagrams 491

Specifically, As. c(s) = ¢, As'. pawlx,, €, 8') = pawdxs, ¢}, and As. poud... ,s) = maud...).
Thus

sawl) = Ac.c = I,

maulf) = %4(f),

Kaw(ry; xXs) = Ac. pmawlxy, mawlxs, €)) = paulxy) - maulxs),

Hawlb — x4, x3) = Ac. As. condo(B(b, 5), pawlxy, ¢, 5), pawlxs, C,).

Intriguingly, the order of composition in the third equation is the reverse of the order for
direct semantics.

Linear Flow Diagrams

There are many flow diagrams which possess the same meaning. regardless of the choice
of direct or continuation semantics. The other languages we consider can be thought of
as successive attempts to strip away this redundancy and approach the goal of canonical- -
ity, where distinct diagrams have distinct meanings. Eventually, it will become clear that
we have a succession of languages with meaning-preserving mappings from each lan-
guage to the next, where the final language (of processes) is canonical for continuation
semantics. For the present, however, this image is only meant to motivate our defini-
tions, and no attempt will be made to prove relationships between languages or equiva-
lences within a language. '

In any reasonable semantics., one would expect the meaning of general flow diagrams
to satisfy the following equivalences:

Iix, =xy,
(x15X2)5 X3 = Xy (x25 X3),
(b = x4, x3);x3 = b — (x1;x3), (x2;x3).

Intuitively — neglecting any complications which might be caused by infinite diagrams — ’

" these equivalences can be used to transform any flow diagram until every left operand of
;7 is a primitive instruction. A flow diagram which meets this restriction is said to be
linear.

Following Goguen, Thatcher, Wagner, and Wright {4], we can formulate linear flow
diagrams as an initial algebra by regarding f; x as the application of a unary operator,
named by f, to the operand x. Thus the language of linear flow diagrams is the initial
algebra AInA for the signature A such that A, , = {I}, Ay, = F, A5 = B. This initial
algebra is isomorphic to CTy in [4, Sec. 5.2, pt. I]. As a concrete syntax, we write

1 for AlnA,,
fix for AlInA,(x),
b—->x,x; for AlnAy(x,,x,).

This notation has been chosen so that general and linear flow diagrams with the same
concrete representation should have the same meaning. Intuitively, applying this rela-
tionship to the forms I, f; x, and b — x,, x, determines the semantic equations for linear
flow diagrams.

Thus direct semantics is provided by the semantic function u,, € InA — H such that

ap(l) = Jg7
I",\H(f;X) = pau(x) *&F(f),
/""\H(b -> X1, x2) = M' Co"ds_._(@(b, S), l""\l'l(xh s)l M'Aﬂ(x27 S))’

while continuation semantics is provided by w,y- € InA — W such that

ﬂ-.\w(l) = Ic,
andfs x) = G(f) - mawlx),
Maw(b = xy, x3) = Ac. As. condo(B(b, s5), mawlxy, C, S), Hawlxs, C, 5)).

492 JOHN C. REYNOLDS

Decision Table Diagrams

There is a variety of equivalences for conditional branching operations. For example,
(by = (b2 = x4y, X12), (b2 = X34, X22)) = (by = (by = X4y, Xa1), (by = X1, X33))
or

(by = (by = x13, X12), (by = X1, X23)) = (b1 = (by = Xy, X12), X22).

As a step toward eliminating this kind of redundancy, we replace the set B of binary
branching operations by a single many-way branching operation D. which is an idealiza-
tion of the well-known programming concept of a decision table.

Suppose for a moment that B = {b,, b,} has only two members. Then either side of the
first equivalence given above can be replaced by

[% true false :\

b,
D | true X1 X1z +
false Xgy Xap

L+ L + +

Similarly, either side of the second equivalence can be replaced by

—

. true false . -l

b,
D |true Xy X1z ~
false X322 X22 X2

4 4 4 +

Essentially, the decision D[x] means ‘‘Produce a list ¢ of the current value of all Boolean
expressions in B, and then execute the table entry x(¢).”

The “list™ ¢ is really a function in the domain 7 = B — Bool.. Thus, if table entries
belong to the set Inl" (which is going to be the language of decision table diagrams), then
the decision table x itself will be a function from T to InI". But only some of these
functions are reasonable.

In the evaluation of any compound conditional branching operation, for a particular
value of b,, either b, is evaluated, so that the nontermination of b, implies the nontermi-
nation of the entire branching operation, or b, is not evaluated. so that the outcome is
independent of b,. This constraint is reflected by the fact that every row in a decision
table has either the formx y + or the formx x x. A similar rule holds for columns. As a
consequence, decision tables are always monotonic functions from T to InI".

The generalization to arbitrary finite B is straightforward. More surprisingly, we can
even permit B to be infinite. The only qualification, which is typical of the lattice-
theoretic approach, is that decision tables are required to be continuous, rather than
merely monotonic, functions from T to Inl'. Thus the decision operator D accepts
operands which belong to T — Inl", i.e. it is an operator with rank T. Although such an
operator goes beyond the framework of conventional algebra., it is encompassed by our
generalization to operators whose ranks are arbitrary predomains.

Of course an infinite decision table cannot be explicitly tabulated. but it can stxll be
described by functional notation. For example, the decision table diagrams given above,
when generalized to an arbitrary B containing b, and b,, can be represented by

DIM. cond\,{t(b,), condi{t(bs), Xy, X12), condiar(t(bs), X2, X22))]

and

D{\t. condy,{t(b,), condn{t(bs), X11, X12), Xa2)].

However, such expressions are not in themselves decision table diagrams, but only
indirect and nonunique representations of such diagrams.
_ With this motivation. we can give a precise definition. The language of decision table

N

Semantics of the Domain of Flow Diagrams 493

diagrams is the initial algebra I'Inl’ for the signature T such that ', = {f}, T'yy = F,
['; = {D}. As a concrete syntax, we write

1 for T'Inly,
f;x for FInl4(x),
D[x] for TI'InI'p(x).

Direct semantics is provided by the semantic function ury € Inl' > H such that

l‘-rH(I) = Js,
peu(fs x) = prglx) * F(f),
pre(DIX]) = As. pr(x(Ab. B(b, 5)), 5).

In the last equation, the function Ab. B(b, s) € T denotes the “list” of the values of all
Boolean expressions in the state 5.
For continuation semantics, we have the semantic function ury € Inl’ — W such that

pewll) = I,
prw(f; x) = %N Hrwlx),
wrw(D[x]) = Ac. As. yfw(x()\b. A(b,s)),c,s).

Admittedly we are stretching a point in calling decision table diagrams a language.
They are even further than flow diagrams from the conventional finitary concept of
language. But they still have the essential linguistic characteristic of being uninterpreted:
They make no commitment to a choice of the set of states, nor to the meaning of
primitive instructions or Boolean expressions, nor even to the choice between direct and
continuation semantics.

Processes

There are two important equivalences for decision table diagrams. The first, D[\, x] =
x, shows that a decision is redundant if all of its table entries are the same. The second,

D[\e. D[\, g(¢, ¢)]] =D[At. g(t,)],

where g € T — (T — Inl), shows that, when the entries of a decision table are
themselves decisions, the inner decisions must *‘go the same way™ as the outer one, since
there is no intervening primitive instruction which might change the state of the-compu-
tation.

To eliminate this kind of redundancy, we define a further language in which decisions
and primitive instructions are required to alternate. More precisely, a decision table entry
will always have the form I, or 1, or f; D[x] where x is a decision table.

To obtain an algebraic formulation, we regard f; D[x] as the application of a T-ary
operator, named by f, to the operand x. Then table entries are the initial algebra AlnA
for the signature A such that A, = {I}, & = F. As a concrete syntax, we write

I for Alnj,,
f; D[x] for AlnAs(x),

which suggests the relationship between our new language and the language of decision
table diagrams.

If InA is the domain of table entries, then decision tables themselves belong to the
domain T — InA, which we call Z. From eq. (1) in the proof of Theorem 1. InA satisfies
the domain isomorphism

InA~ 2 (rank(a) — InA)

oE{NUF .
= 2 if o = I then ({ } = InA) else (T — InA
ae{lUF

= E if o = I then {-} else Z,
age{luF

494 JOHN C. REYNOLDS

where {} denotes a one-element domain. But the right side is easily seen to be
isomorphic to {-} + F x Z. Thus Z and InA satisfy

Z=T—>InA, InA={}+ Fx Z

These “domain equations” suggest a close connection with the concept of processes
developed by Milner [7] and Bekic [1], which in fact inspired the language described
here. To emphasize this connection we henceforth call Z the domain of processes and
InA the domain of process components. It should be noted, however, that the processes
of Milner and Bekic are less syntactic than ours and are specifically oriented to problems
of concurrent processing which are not considered here.

Intuitively the process z means “For the current state s, compute a listt = Ab. B(b, s)
of values of the Boolean expressions, and then execute the process component z(1).” The
process component I means “Do nothing,” while the process component f; D[z] means
“Execute f and then execute the process z.”

This intuition is captured in direct semantics by the semantic functions 8-, € Z— H
and p,y € InA — H such that

8”{(2) = }\S. #M(Z(kb~ %(by S))s s)9
tan(l) = Jsg,
pan(f; D[z]) = 8rulz) * (.

For continuation semantics, the semantic functions are 8ry € Z— W and paw € InA—
W such that

Srw(z) = Ac. As. pawlz(Ab. B(b, 5)), ¢, 5),
I‘LAW(I) = ICa
paw(f; Dz]) = 4(f) - 8rwl2)-

For either set of semantic equations, the substitution of the first equation into the third
gives a pair of homomorphic equations for pay Or maw. We have introduced the
subsidiary functions 8,,; and 8ry (whose names will become meaningful later) to treat the
domains Z and InA more symmetrically.

Nevertheless, Z. unlike InA, is not the carrier of an initial algebra. This anomaly is the
price of avoiding many-sorted algebras. One could define Z and InA as the carriers of a
two-sorted initial algebra, with 8y and pay (o1 8rw and pay) as the components of a two-
sorted homomorphism.

Algebraic Treatment of Decision Table Diagrams

From an algebraic viewpoint, the eight language definitions we have given are tanta-
mount to a specification of the following target algebras:

Direct Continuation
Language . R
semantics semantics
General flow diagrams QH aw
Linear flow diagrams AH AW
Decision table diagrams TH rw
Process components AH AW

Our main task is to define these target algebras more directly and to investigate
relationships among them. As each target algebra is defined, it will become apparent that
the corresponding language definition is a display of the equations for the homomor-
phism into the target algebra from the initial algebra with the same signature.

We begin with decision table diagrams, then move “forward” to processes, and then
move “backward” to linear and finally general flow diagrams.

Decision table diagrams are the initial algebra with the signature I such that I'(, =
{}, Ty, = F,and Ty = {D}, where T = B— Bool, . To describe their direct semantics, let
.S be some predomain of states, H = §$—>S,F€EF>H,andBEB— (S — Bool,).

5

Semantics of the Domain of Flow Diagrams 495

Then the target algebra I'H is the I'-algebra with carrier H such that

I‘}11 = JSa
TH/h) = h + (),
THp(h) = As. b(ADb. B(b, 5), 5).

For continuation semantics, let S be some predomain of states, O be some domain of
outputs, C=S—-0, W=C—> C, §€ F— W,and B € B— (5§ — Bool,). Then the
target algebra I'W is the I'-algebra with carrier W such that

I'w, =I,
TW;(w) = 4(f)-w,
TWy(W) = Ac. As. wAb. B(b, 5), c, 5).

The previously given semantic equations for decision table diagrams are simply the
homomorphic equations for the unique homomorphisms ury € I'lnl’ > 'H and pry €
I’ > T'W.

We can now establish the fundamental relationship between direct and continuation
semantics. First note that I'H is actually a family of ['-algebras depending upon the triple
(S, F, B), which we call a direct interpretation. Similarly TW is actually a family
depending upon the quadruple (S, O, 4, ®), which we call a continuation interpretation.
(This kind of dependence will hold for all of our target algebras describing direct or
continuation semantics.)

Consider a direct interpretation (S, ¥, #) and a continuation interpretation (S, O, 4,
®) with the same S and B. Let « € H— W be the function such that a(h) = Ac.c *h. If
% = «-F, then the continuation interpretation is said to be an image of the direct
interpretation. If in addition O = S, then it is an exact image. Each direct interpretation
obviously has many images, one of which is exact. There are, however, continuation
interpretations (where primitive instructions have ‘‘abnormal” meanings) which are not
the image of any direct interpretation. Then: :

ProrosiTioN 1. If the continuation interpretation is an image of the direct interpreta-
tion, then a is @ homomorphism from TH to TW. If the image is exact, then a left inverse
for a is provided by the function B € W — H such that B(w) = w(Jg).

Proor. The reader may verify that « satisfies the equations for a homomorphism
from I'H to ’'W and that it is strict and continuous. In the exact case, S{a(h)) = alh)(Js)
=Js*h=h. 0O ‘

Thus we have the following diagram of homomorphisms:

HrH r,H
:
FInl @ (D
'
*ru W

where a occurs only if the continuation interpretation is an image of the direct interpre-
tation. Since I'Inl’ is an initial algebra, which implies a- ury = pry, this diagram
commutes, i.e. all paths with the same origin and destination denote equal compositions
of functions.

In other words, when the continuation interpretation is an image of the direct
interpretation, a maps the direct meaning of any decision table diagram into its continua-
tion meaning. Moreover, when the image is exact, 8 maps the continuation meaning
back into the direct meaning.

Processes _
.. 'Let A be the signature such that A, = {I} and A, = F. Then the domain of process

496 JOHN C. REYNOLDS

components is InA, and the domain of processes is Z= T — InA. Not only do we want to
define the semantics of these entities, but also to connect this semantics with the
semantics of decision table diagrams. For this purpose, we assume that the semantics of
decision table diagrams is given by an arbitrary target algebra I'X (of which’'H and 'W
are instances). and we derive the semantics of processes and their components fromI'X.

Intuitively, in a I'-algebra, ['X; means “Do nothing.” I'X/(x) means “Execute f and
then execute x,” and I'X,(x) means ‘““Compute a table ¢ of the current values of Boolean
expressions and then execute x(r).” In a A-algebra, AX; means ‘Do nothing,” and
A X/(x) means “‘Execute f, compute a table ¢ of the current values of Boolean expres-
sions, and then execute x(r).”” This suggests that, for any ['-algebra I'’X, we define AX to
be the A-algebra with the same carrier such that

AX[= FX[, AX,—(X) = FXI(FXD(X)).

Now suppose that z € Z is a process. Then the meaning of a process component z(r)
will be s x(z(t)). But the meaning of z itself is **Compute a table ¢ of the current values of
Boolean expressions and then execute the meaning of z(¢)," or, in other words, I' X, of
the function of ¢+ which gives the meaning of z(f). Thus processes are mapped into their
meanings by the function §rx € Z — X such that

8rx(z) = TXp(\r. pax(z(t))) = T Xp(pax-2).

The previously given semantic equations for processes are simply assertions that the
direct and continuation semantics of processes are given by 8y and 8y and the direct
and continuation semantics of process components are given by uay and paw.

The 8-functions bear the following relationship to homomorphisms between I'-alge-
bras:

Proposition 2. Ifp €TX — X', then p-8rx = 1.

ProoF. Suppose p € T'X — 'X’. It is easily seen that this implies p € AX — AX’
(which is not surprising since the definition of AX in terms of I'X is an instance of the
standard notion of a “derived algebra™). But then p- uyx € AlnA — AX’ must be the
unique homomorphism w,y. Thus p(8rxl(z)) = p(TXp(max 2)) = TXplp: max-2) =
TXp(pax-2) = dpxA2). - O

Informally we motivated the definition of processes by suggesting that they were a
kind of canonical formr for decision table diagrams. If this suggestion is true, then it
should be possible to translate decision table diagrams into processes. By regarding this
translation as a kind of meaning, we can define it algebraically: We define a target
algebra I" Z such that decision table diagrams are translated into processes by the unique
homomorphism g, € F'In[' - T'Z. It turns out that the right definition of ['Z is the I'-
algebra with carrier Z such that

FZ] = M. AInA],

I'Z;(z) = At. AlnAs(2),
T'Zy(z) = At 2(2)() (wherez€ T — Z =T — (T — Inj)).

This definition leads to the following relationship between I'Z and the §-functions:

ProposiTioN 3. (1) I'Z is a key algebra. If it exists, the unique homomorphism from
TZ to TX is 8rx. (2) Spyar is a right inverse for pry.

Proof. The definition of I'Z gives rise to the derived algebra A Z. By checking the
appropriate homomorphic equations, the reader may verify that \x. M. x is a homomor-
phism from AInA to AZ and is therefore equal to the unique homomorphism p,z. This
equality implies that §,; is the identity function for Z since 812(2) = TZy(paz-2) =
M. (paz- 2O = M. paz(z(E)E) = M. 2()) = 2. _

To establish (1). let p be any homomorphism from ' Z to '’X. Then p = p-8rz, and, by
Proposition 2, p-8,;, = 8,x. To establish (2), take p in Proposition 2 to be wz € I'lnl’
—I'Z. Then pwz 8pnr = 8z = I;. O

Semantics of the Domain of Flow Diagrams 497

AlthoughT Z is a key algebra, it is not initial since it is not isomorphic to I'Inl". In other
words, there are I'-algebras for which there is no homomorphism from I'Z. However, we
are really only interested in target algebras in which D behaves like a decision operation.
This behavior is characterized by the following decision laws, which are the aigebraic
formulation of the equivalences for D-operations given earlier:

1) (Vx € X) TXyA.x)=x;
(2) (Vg €T - (T —> X)) TXp(Mt. TXp(\'. g(t, 1)) = TXp(\r. g(t, 1)).

~ The following proposition shows that I'Z is initial in the restricted class of I'-algebras
which obey the decision laws. The reader may verify that this class includes 'H, 'W, and
I'Z, but not I'lnl".
ProrosiTioN 4. IfTX obeys the decision laws, then 6z € TZ — I'X.
Proor. The necessary homomorphic equations are established by:

3rx(TZ)) = T Xp(pax (M. AInAj)) = TXp(M. pax(AInAy))
= pax(Alnd) = AX; =TX,;
8rx(TZ;(2)) = T Xp(pax- (M. AInAL(2)))
' = I'Xp(M. ps (AINALz2))) = psx(AInAg(z)) = AX!(”'AX z)

TXATXp(pax2)) = T X(8rx(2));
FXp(pax: (M. 2(0)(0))) = TXp(Me. pax(z(1)(0)))
= TXp(M. T Xp(A'. pa f(2()2')))) = TXp(Ar. DX pta x - 2(1)))
= T Xp(M. 8rx(2(t))) = T Xp(Srx- 2).

Strictness is established by

Sre(1) = TXp(pax- 1) = TXp(M. max(1)) = pax(L) = 1. a
At this stage, we have the following diagram of homomorphisms:

Srx(I" Zp(2))

3
I

PrH

SrH

FInr— 12 rz

=]

(In

e —— e = ———

p

Since I'Inl" and I'Z are both key algebras, the diagram commutes.

Composers and Monoids

To treat linear and general flow diagrams, we will derive A-algebras from the I'-algebras
and then derive (2-algebras from the A-algebras. In the final stage, however, in order to
define the semicolon operation for ()-algebras, we will need appropriate composition
functions, or composers, for each of our algebras. We will introduce these composers as
we go along and show at each stage that the homomorphisms we use remain valid when
each algebra is augmented by adding its composer as an additional binary operation.

In general, when 3.X is a S-algebra with carrier X and 3, , contains the constant I, we
write FnZ X for the 3-algebra with carrier X — X such that Fn3 X, = I, and for o € 3,
oc#¥l,andge S>> (X— X).

F2X,(g = Ax. ZX,(As. gls)(x)).

When § = {1, ..., n}, the conventional form of the last equation is:

FnXX,(g1, ..., 8n) = Ax. 2X,(g4(x), ..., galx)).

498 JOHN C. REYNOLDS

A homomorphism € 2X — FnXX is said to be a composer for 2X.

For any signature 3, we write 3¢ to indicate the signature obtained from X by adding ;
as a binary operator. When 7 is a composer for 2X, we write 2°X to denote the algebra
obtained from 3X by interpreting ; as the binary operation 2'X; = 7. (There is a
potential ambiguity here which we avoid by never specifying more than one composer for
the same algebra.)

For example, FnT'H is the I'-algebra with carrier H — H such that

FnFH, = I",
FaTH,(g) = M. TH,(g(h)) = . g(h)}+F(f),
FnTHp(g) = M. THp(\e. g(0)(h)) = M. As. g(Ab. B(b, s), h, s).

It is easily seen that the function M,. Mh;. hy*h, is a homomorphism from I'H to FnTH
and is therefore a composer for I'H. Thus I H is obtained from I'H by interpreting the
semicolon as I'*H. (hy, hy) = hy*h,.

This construction has the following general properties:

THeoreM 2. IfI € 3,,and 3X is a key Z-algebra with a composer 1, then 23X is a
monoid, i.e. (1) (Vx € X) nCX;, x) = x, (2) (Vx € X) 9, 2X)) = x, (3
(Vx, y, z € X) n(nlx, y), 2) = n(x, n(y, 2)). If in addition 3X" is a Z-algebra with a
composer and p € 3X — X', then p € X — X X',

Proor. For a S-algebra X and x € X, we write ZX[x] to denote the algebra
obtained from X by reinterpreting I as the constant 2X[x]); = x. It is evident that
p E3X - 3X' implies p € ZX[x] - ZX'[p(x)]. Also the definition of FnZX implies that
Ag. glx) € FnXX — ZX[x].

Now suppose X is a key algebra with the composer n € 2X — FnXX. Then:

1) 9(ZX;, x) = Fln2ZX(x) = x.

(2) The assumption that 3.X is a key algebra implies that the diagram

. |
x@x . FnEX

M. (EX1)

of homomorphisms commutes. Applying both compositions to x gives n(x, ZX, ,)== x.
(3) The following diagram also commutes:

1 Ag.g(y) ,
IX——=FnIX — IX [v]
ln
M FnIX[n ()]
Ae. o
| As-9(n0) @) =00
FnIX — IX[z]ln ()]
=IXMWMEAI

Applying both compositions to x gives n(n(x, y), 2) = nix, n(y, 2)).
If SX' has the composer o' and p € X — 3X', then the following diagram also
commutes:

Semantics of the Domain of Flow Diagrams 499

Ag.

IX e Fnzx — 2 e
I p
Ty

IX FnIX -2 X [p(v)]

Applying both compositions to x gives p(nx, y)) = n'(p(x), p(y)), which is the extra
homomorphic equation needed to show p € 3:.X —» 3'X’. O

Our immediate goal is to extend Diagram (II) to the signature I'*. Suppose that we can
provide a composer for each of the algebras in this diagram and that we can show that
a € "H — I*W. Then, since every other homomorphism in (II) has the form
p €ETX - I'X’ where I'X is a key algebra (either I'InI’ or I'Z), Theorem 2 gives p €
I*'X — I'X'. Thus (IT) will remain a diagram of homomorphisms if we change the
signature of each algebra toT*, i.e. if we add the appropriate composer to each algebra as
a binary operation. Of course the diagram will continue to commute since the functions
remain unchanged.

By deriving the appropriate algebras, verifying the resulting homomorphic equations,
and checking strictness, one can show:

ProPOSITION 5. (1) My, Ahy. ho*hy is a composer for TH. (2) A\w,. Aw,. w,-w, s a
composer for TW. (3) If the continuation interpretation is an image of the direct interpreta-
tion, then a € I"H — "'W.

Moreover, a composer for FInI" is automatically provided by initiality. In general:

ProrosITioN 6. For any signature X, ppysias IS the (unique) composer for XinX.

To complete our chain of reasoning, we must find a composer forI"Z. To do so, we use
an analogue of the idea of a Herbrand interpretation: We define a particular continua- ,
tion semantics in which continuations are processes, and the meaning of a process is a
function which forms the composition of that process with another.

Let I'W? be the special case of 'W for the continuation interpretation in which S = T,
O=InA, $=A.TZ,and B = Ab. M. t(b),sothat C= Z, W =.Z - Z, and

FW‘; = IZ!

T'wWiw) =TZ-w,
TWY(w) = Az. T Zy(\r. Wiz, 2)).

Then I'W? is identical with FnI'Z. Thus:

PROPOSITION 7. 8y is the (unique) composer for I'Z.

A side benefit is the right identity law for the monoid I Z, 8rwe(z2)(I'Z;) = z, which
implies:

ProposiTioN 8. Aw.w(l'Z) € (Z - Z) — Zis a left inverse for Srye.

Thus processes are canonical for continuation semantics, since 'W? is a continuation
semantics which always gives distinct meanings to distinct processes.

In contrast there is no direct semantics with this property. For example, the distinct
processes + and I'Z,(+) both mean + in any direct semantics. Thus direct semantics
induces a coarser relation of equivalence for processes (or other languages) than
continuation semantics. This situation coincides with the author’s intuition about the
difference between direct and continuation semantics. It is one of the main reasons for
not using a complete-lattice formalism; we have not been able to find a simple complete-
lattice formulation of direct semantics such that + and I' Z(+) have the same meaning in
all direct and continuation semantics.

Linear Flow Diagrams

Linear flow diagrams are the initial algebra with the signature A such that A, = {I}, A,
_= F,and A, 5 = B. Intuitively, in a A-algebra, / and each f have the same meaning as in

N

500 JOHN C. REYNOLDS

the corresponding [-algebra, while AX,(x,, x;) means “Compute the current value of b
and then execute x;, if this value is true or x, if it is false.” Thus, for any I'-algebra I'X, we
define AX to be the A-algebra with the same carrier such that

AX[= er,
AX,=TX,
AXy(xy, x2) = TXp (M. condx(t(b), x,, X2)).

Then:

ProposITiON 9. (1)Ifp ETX—TX' then p EAX— AX'. (2) A composer for TX is
also a composer for AX. (3)If p ET'X - I'X’, then p € AX - AX.

The tedious but straightforward proof is left to the reader. It should be noted,
however, that these results are more than an application of the standard notion of a
derived algebra since they depend upon properties of the conditional function and the
strictness of homomorphisms.

As a consequence (II) remains a diagram of homomorphisms if we change the
signature of all algebras to either A or A’. For A we can add the initial algebra AInA and
its unique homomorphisms to the other algebras:

Mry y"“
f n l
ATan—tAIT | Ay — T2 2AZ la an
~_H
AW Pri M ’
AW

But Proposition 6 provides a composer for the added algebra, and Theorem 2 ensures
that the added homomorphisms extend to A’. Thus (I11) remains a diagram of homomor-
phisms if we change each signature to A'.

There is no right inverse for papr since there are decision table diagrams which cannot
be mapped into any flow diagram with the same meaning in all semantics. A simple
example is the decision table diagram

DIN. (fy; condpr(e(®), (2 1), (fs3 D)

To execute this diagram, one must save a copy of the initial state during the execution of
f, and then evaluate b in the saved state to determine whether f; or f; is to be executed
next. One cannot evaluate b before executing f, since b may be nonterminating and f;
may be an abnormal instruction.

A more spectacular example, for which the initial state must be saved indefinitely, is
the decision table diagram D[\. 6(0, 1], where § € Int = (T — Inl) is the least solution
of

0(n, t) = condinr{t(ba), (f1; 0 +1,0), (23 0(n+1,1)))

and {b,, b,, ...} is some enumeration of B.

The existence of such decision table diagrams is regrettable, since their execution
requires a kind of wholesale state-saving that is not in the spirit of imperative program-
ming languages. It is an open question whether our development could be carried out
with some more restricted notion of decision table diagram (and of process) such that
every decision table diagram is equivalent to some flow diagram.

Semantics of the Domain of Flow Diagrams 501

General Flow Diagrams

General flow diagrams are the initial algebra with the signature) such that Q,, = {I} U F
and (), 5 = {;} U B. For any A'-algebra A:X, we define ()X to be the ()-algebra with the
same carrier such that

QX, = AX,, QX,= AX{AX), QX =AX, QX,=AX,

Note that A’ is used, rather than A, to provide an interpretation of the semicolon
operator—we are finally letting our composers perform publicly. This is a standard
instance of a derived algebra, so that p € A‘X — A'X’ implies p € QX — QX'.

Thus, since the functions in Diagram (11T) are homomorphisms of A'-algebras, they are
also homomorphisms of ()-algebras. By adding the initial 2-algebra and its unique
homomorphisms to the other algebras, we obtain:

|
I
FQ1nA PAInl Prz la (IV)
QmQ 2 o1, —Alel | o1nl — Qz !
RQrnr W Pri 5 i
Lou QW

Since QIn} is initial, the diagram continues to commute.

An implication is that uqy,, is a meaning preserving function from general to linear
flow diagrams, which is slightly surprising since, intuitively, general flow diagrams really
seem to be more general than linear flow diagrams. In fact this is a valid intuition, but in
a more subtle sense: Call an element of an algebra equational if it is the least solution of a
finite set of finite equations whose right sides are constructed from the operators of the
algebra (as in [4, Sec. 5.1]). Then there are equational elements of QIn(2, such as the
least solution of x = b — ((f; x); g), I, which are mapped by papa into nonequational
elements of AInA. Essentially, the equational elements of a -algebra can express
recursion, while those of a A-algebra can only express iteration. ‘

. Finally, we can “redefine” a A-algebra in terms of an Q-algebra. For any ()-algebra
1X (actually, we are only interested in 2InQ and QInA), let AX be the A-algebra with
the same carrier such that

AX, = QX,, AX/(x) = QX,(QX;,x), AX, = QX,.

Again this is a standard instance of a derived algebra, so that p € QX — QX' implies p €
AX — AX'. '

By applying this fact to pas and adding the initial A-algebra and its unique homomor-
phism into AIn{}, we get

AT ¢
AL A—DInR | Ap g FQINA g A1

where the algebra on the left is the initial A-algebra and the algebra on the right is
obtained from QInA by the above definition. But in fact these two algebras are the same,
as can be seen by comparing their operations. The only nontrivial case occurs for the
operator f, where

502 JOHN C. REYNOLDS

AlnAj(x) = QInA(QInAj, x)

AInA (A InA (A InA)), x)
Lrnama(AINAL(AINA))(x)
FnAInA(FnAlInA)(x)

= (Ax. AInA (FnAInA(x)))(x)

= (Ax. AInA(1;pa(x)))(x) = AlnAs(x).

Then, since AInA is initial, we have papa° pama = Hama = Ina, i.€.

PROPOSITION 10. famq is a right inverse for pam.-
(But not a left inverse, since papm, is a many-one function from general to linear flow
diagrams.)

Conclusions

A variety of relationships among our languages and their semantics is specified by the
commutativity of Diagram (IV), along with Propositions 1, 3(2), 8, and 10. Most of this
information can be summarized as follows:

(1) The following are continuous functions among general flow diagrams (In(2), linear
flow diagrams (InA), decision table diagrams (Inl), and processes (Z), which preserve
meaning in any direct or continuation semantics:

) |
QInA PAInF Prz

InA Inle

BALnQ SrInr

However, there is no such meaning-preserving function from decision table diagrams to
linear flow diagrams. ‘

(2) Continuation semantics subsumes direct semantics in the following sense: For any
direct interpretation there is a continuation interpretation (its exact image) and functions
« € H— W and B € W — H such that a maps the direct meaning of any general flow
diagram, linear flow diagram, decision table diagram, or process into the continuation
meaning and 8 maps the continuation meaning back into the direct meaning. Direct
semantics does not subsume continuation semantics in a similar sense.

(3) Processes are canonical for continuation, but not direct semantics, since there is a
particular continuation interpretation (used to define T'W?) which always gives distinct
meanings to distinct processes. There is no such direct semantics.

InQ Z.

ACKNOWLEDGMENTs. The author would like to thank J.W. Thatcher, J.A. Goguen,
and R. Milner for their encouraging and helpful comments on earlier drafts of this paper.

REFERENCES

1. Bekic, H. Towards a mathematical theory of processes. Tech. Rep. TR25.125, IBM Vienna Lab.,
Vienna, Dec. 1971.

2. BursTaLL, R.M., aND LanoiN, P.J. Programs and their proofs: An algebraic approach. In Machine
Intelligence 4, B. Melizer and D. Michie, Eds., Edinburgh U. Press, Edinburgh, 1969, pp. 17-43.

3. Ecul, H., AND ConstaBLE, R.L. Computability concepts for programming language semantics. Proc.
Seventh Annual ACM Symp. on Theory of Computing. May 1975, pp. 98-106; also Theoretical Comptr.
Sci. 2 (1976), 133-145.

4. GoGUEN, J.A.. THATCHER, J.W.. WaGNER, E.G.. AND waichT, J.B. Initial algebra semantics and
continuous algebras.J. ACM 24, 1 (Jan. 1977), 68-95.

5. Gorpon, M. Models of pure LISP. Experimental Programming Reports, No. 31. Dep. of Machine
Intelligence, School of Artificial Intelligence, Edinburgh U.. Edinburgh, 1973.

6. MiLner, R. Implementation and applications of Scott’s logic for computabie functions. Proc. ACM Conf.
on Proving Assertions about Programs, SIGPLAN Notices (ACM) 7, 1 (Jan. 1972). 1-6.

7. Miner, R. An approach to the semantics of parallel programs. Proc. Convegno di Informatica Teorica.

Pisa. March 1973, pp. 283-302.
. Moreis, F.L. The next 700 programming-language decriptions. Unpublished.
9. ProtkiN, G.D. A powerdomain construction. SIAM J. Comping. 5 (Sept. 1976}, 452-487.

oo

Semantics of the Domain of Flow Diagrams 503

10.

11,

12.

13.

14.

15.

16.

ReyNowLDs, J.C. Notes on a lattice-theoretic approach to the theory of computation. Systems and
Information Science, Syracuse U., Syracuse, N.Y., Oct. 1972.

Scott, D. Outline of a mathematical theory of computation. Proc. Fourth Annual Princeton Conf. on
Inform. Sci. and Syst.. 1970, pp. 169-176; also Tech. Monog. PRG-2, Programming Res. Group, Oxford
U. Comptng. Lab., Oxford, 1970.

Scott, D. The Lattice of Flow Diagrams. Proc. Symp. on Semantics of Algorithmic Languages. E.
Engeler, Ed.. Springer Lecture Note Series No. 188, Springer-Verlag, Heidelberg, 1971, pp. 311-366;
also, Tech. Monog. PRG-3, Programming Res. Group. Oxford U. Comptng. Lab.. Oxford, Nov. 1970.
Scott, D. Continuous lattices. Proc. 1971 Dalhousie Conf., Springer Lecture Note Series No. 274,
Springer-Verlag, Heidelberg, 1971, pp. 97-136; also, Tech. Monog. PRG-7, Programming Res. Group.
Oxford U. Comptng. Lab.. Oxford, Aug. 1971.

Sco1T, D., AND StracHEY, C. Towards a mathematical semantics for computer languages. Proc. Symp.
on Computers and Automata, Polytechnic Institute of Brooklyn, Voli. 21, 1971, pp. 19-46; also, Tech.
Monog. PRG 6, Oxford U. Comptng. Lab., Oxford, 1971.

STRACHEY, C., AND Wapsworti, C.P. Continuations—a mathematical semantics for handling full
jumps. Tech. Monog. PRG-11, Programming Res. Group, Oxford U. Comptng. Lab., Oxford, Jan. 1974.
WaND, M. On the recursive specification of data types. Category Theory Applied to Computation and
Control, Lecture Notes in Computer Science, Vol. 25, Springer-Verlag, Berlin. 1975, pp. 214-217.

RECEIVED JULY 1975; REVISED NOVEMBER 1976

1 of the Association for C ing Machinery, Vol. 24, No. 3, July 1977.

