This is a preprint of a paper to be given at the Conference on New Directions in

Algorithmic Languages sponsored by IFIP Working Group 2.1, Munich, August 1975.

USERPDEFINED TYPES AND PROCEDURAL DATA STRUCTURES

AS COMPLEMENTARY APPROACHES TO DATA ABSTRACTION

John C. Reynblds

Syracuse University, Syracuse, New York

ABSTRACT User-defined types (or modes) and procedural (or functional) data
structures are complementary methods for data abstraction, each providing a
capability lacked by the other. With user-defined types, all information about
the representation of a particular kind of data is centfalized in a type
definition and hidden from the rest of the program. With procedural data
struéiures, each part of the program which creates data can specify its owﬁ
representation, independently of any representations used elsewhere for the same
kind of data. However, this decentralization of the description of data is
acheived at the cost of prohibiting primitive operations from accessing the
representations of more than one data item. The contrast between these approaches

is illustrated by a simple example.

Work supported by National Science Foundation,Grant GJ-41540

Introduction

User-defined types and procedural data structures have both been proposed
as methods for data. abstraction, i.e., for limiting and segregating the portion
of a program which depends upon the representation used for some kind of data.
In this paper we suggest, by means of a simple example, that these methods are
complementary, each providing a capability lacked by the other.

(1,2) Liskov

The idea of user-defined types has been developed by Morris,
and Zilles,(3) Fischer and Fischer,(a) and Wulf(sz and has its roots in earlier
work by Hoare and Dahl.(6) In this approach, each particular conceptual kind
of data is called a type, and for each type used in a program, the program is
divided into two parts: a type definition and an "outer" or "abstract' program.
The type definition specifies the representation to be used for the data type
and a set of primitive operations (and perhaps constants), each defined in terms
of the representation. The choice of representation is hidden from the outer
program by requiring all manipulations of the data type in the outer .program
to be expressed in terms of the primitive operatioms. The heart of the matter
is that any consistent change in the data representation can be effected by
altering the type definition without changing the outer program.

Various notions of procedural (or functional) data structures have been

7 (8)_ (9

Landin, and Balzer. In this approach, the abstract

developed by Reynolds,
form of data is characterized by the primitive operations which can be performed
upon it, and an item of data is simply a procedure or collection of procedures
for performing these operatioms. The essense of the idea is seen most clearly
in its implementation: an item of procedural data is a kind of record called a
closure which contains both an internal representation of the data and a pointer
(or flag field) to code for procedures for m#nipulating this representation.
A program with access to a closure record is only permitted to examine or access
the internal yepresentation by executing the code indicated by the pointer, so that
this code serves to close off or protect the internal representation.

1n comparison with user-defined types, procedural data structures provide
a decentralized form of data abstraction. Each part of the program which creates
procedural data will specify its own form of representation, independently of the
representations used elsewhere for the same kind of data, and will provide versions

of the primitive operations (the components of the procedural data item) suitable

-3 -

for this representation. There need be no part of the program, correspending
to a type definition, in which all forms of representation for the same kind
of data are known. But a price must be paid for this decentralization:
a primitive operation can have access to the representation of only a single
data item, the item of which the operation is a component.

Apparently this price is inevitable. If an operation is to have access
to the representation of more than one item of data, each of which may have
several possible representations, then its definition cannot be "decentralized"
into one part for each representaﬁion; since one must provide for every possible
combination of representations. Presumably this requires the definition to occur
at a point in the program where all possible representationé of the operands are

known.

Linguistic Preliminaries

Before illustrating these ideas, we must digress to explain (informally)
the language we will use. It is an applicative language, similar to pure LISP(IO)
or the applicative subsets of GEDANKEN,(7) ’PALSll) or ISWIM,(lz) but with a
complete type structure somewhat like Algol 68.(13) Types will be indicated by
writing € T, where T is a type expression, after binding occurrences of identifiers
(except where the type is obvious from context). Type expressions are constructed
with the operators - denoting functional procedures, x denoting a Cartesian
‘product, and + denoting a named disjoint union.

The named disjoint union is sufficiently novel to require a more detailed
explanation. If Tys ++¢ s T, are type expressions denoting the sets Sl’ ces Sn

and i cee o in are distinct identifiers, then

19
11: T + ... + in: T
is a type expression denoting the set of pairs

{<i,, » | 1<k <nand xc¢ Sk} .

If e is an expression of type Ty with value x, then

inject 1, e

is an expression of type ilz 1 + ... + in: T with valug <Ay, x>

-4 -

Let e be an expression of type 11: T + ... T in: T with value <i, x>,

kl, cor 5 1y be distinct members of the set of identifiers {il, cee s in},
m .
for 1 < j < mlet lj be an expression of type T 7' with value fj’ and let
: h|
e' be an expression of type t' with value x'. Then

. . . ot
unioncase e of (ik : 11, cee s ik : lm’ other: e')

1 m

is an expression of type 7' with the value

™~ W -
i=1 £ (%)
k . 1
1
if o then)
i= ik fm(x)
m
Lotherwise x!
- L _

When m = n, the other clause will be omitted.
We use the type expression nilset to denote a standard one-element set,

whose unique member is denoted by Q.

Integer Sets as a User-Defined Type

Our example is an implementation of the abstract concept of sets of integers.
Using the approach of user-defined types, we wish to define a type set and

primitive constants and functions

none € set
all € set

1imit ¢ integer x integer X set - set

union ¢ set X ‘set + set

exists ¢ integer X integer X set > Boolean

satisfying the specifications

none = {}

all = The set of all (machine-representable) integers
limit(m, n, s) =s n {k | m < k < n}

union(sl, s2) = sl v s2

when m < n, exists(m, n, s) = (Fk) m<k <nandk es

To make our solution seem more realistic, we require that the execution of limt
and wnion should reduire time and space bounded by constants which are independent
of their arguments. Of course this will exact a price in the speed of exists.

An appropriate and simple solution is to represent a set by a list structure
which records the way in which the set is constructed via primitive operations.
Thus the representation of a set is a disjoint union, over the four set-valued
primitive functions (including constants), of sets of possible arguments for
these functions. More precisely, this representation is defined by the recursive
type declaration:

set = nonef: nilset + allf: nilset + limitf: integer x integer x set

+ unionf: set X set

and the effect of none, all, limit, or union is to imbed its arguments -into

the appropriate kind of list element:

none = inject nonef ()

all = inject allf ()

limit(m, n, s) = inject limitf (m, n, s)
union(sl, s2) = inject unionf (sl, s2)

(Roughly speaking, we are representing sets by a free algebra with constants
none and all, and operators limit and union.)v The entire computational burden of
interpreting this representation falls ﬁpon the function exists:
exists(m, n, s) = unioncase s of

(nonef: A(). false,

allf: Ax(). true,

limitf: A(ml, nl, sl). max(m,ml) < min(n,nl) -

and exists (max(m,ml), min(n,nl), s),

unionf: A(sl, s2). exists(m, n, sl) or exists(m, n, s2))

-6 -

(We assume that the operations and and or do not evaluate theif second operand
when the first operand is sufficient to determine their result.)

Although the above is a definition of the type set which meets our
specifications, it can be easily improved, even within the time and space
constraints imposed upon limit and wnton. For example, both Iimit and union
can be optimized by taking advantage of some obvious properties of sets -
the result of limit can be simplified when its last argument is none or another
application of limit, and the result of wnion can be simplified when either

argument is none or all:

limit(m, n, s) = unioncase s of
(nonef: A(). none, .
1imitf: A(ml, nl, sl). if max(m, ml) < min(n, nl)

then inject limitf (max(m,ml), min(n,nl), sl) else none,
other: inject limitf (m, n» s))

union(sl, s2) = unioncase sl of
(nonef: A(). s2, allf: A(). all,
other: unioncase s2 of
(nonef: A(). sl, allf: A(). all,

other: inject unionf (sl, s2)))

In conclusion, we show how our specification of integer sets might be

"packaged" in a language permitting user-defined types:

-7 -

newtype set = nonef: nilset + allf: nilset + limitf: integer * integer X set

+ unionf: set x set
with none ¢ set = inject nonef (),
all € set' = inject allf (),

limit € integer x integer x set - set =

A(m, n, s).unioncase s of
(nonef: A(). none,
limitf: A(ml, nl, sl1). if max (m,ml) < min(n,nl)
then injéct limitf (max(m,ml), min(n,nl), sl) else none,
other: inject limitf (m, n, s)),

union € set X set + set =
A(sl, s2). unioncase sl of
(nonef: A(). s2, allf: A(). all,
other: unioncase s2 of
(nonef: A(). sl, allf: A(). all,
other: inject unionf (sl, s2))),

exists € integer X integer X set - Boolean =

A(m, n, s). unioncase s of
(nénef: A(). false,
allf: A(). true,
limitf: A(ml, nl, sl). max(m,ml) < min(n,nl)
and exists(max(m,ml), min(n,nl), s),
unionf: A(sl, s2). exists(m, n, sl) or exists(m, n, s2))

in <outer program>

The language used here is an outgrowth of the ideas discussed in reference
14. A complete exposition of this language is beyond the scope of this paper,

but the following salient points should be noted:

(1) The type declaration between newtype and with binds all occurrences of
the type identifier set throughout the above expression (including occurrences
in <outer program>). The ordinary declarations between with and in bind all
occurrences of the ordinary identifiers none, all, limit, union, and extsts

throughout the expression.

-8 -

(2) With regard to occurrences of set between with and in, the type
declaration behaves like a mode definition in Algol 68, i.e., set is
equivalent to the type expression on the right side of the type declaration,
and the type-correctnesé of the text in with ... in depends upon this type

expression.

(3) In <outer program> occurrences of set behave like a primitive type,

e.g., integer or Boolean. In other words, <outer program> must be a

correctly typed expression regardless of what type expression ﬁight be
equivalent to set. This insures that all manipulations of the user-defined
type in <outer program> must be expressed in terms of the primitives

declared in with ... in.

(4) Although it is not illustrated by our example, it should be possible
to declare simultaneously several related user-defined types between

newtype and with. This ability is needed to permit the definition of

multiargument primitive functions which act upon more than one user—defined
type. An example might be the use of the types point and line in a program

for performing geometrical calculatioms.

Integer Sets as Procedural Data Structures

We now develop integer sets as procedural data structures. The starting point
is the realization that all we ever want to do to a set s, aside from using it to
construct other sets, is to evaluate the Boolean expression exists(m, n, 8).

This suggests that we can simply equate the set s with the Boolean function
A(m, n). exists(m, n, 8) which characterizes the only information we want to
extract from the set. .

Thus we define

set = integer X integer - Boolean

and specify that if s ¢ set represents the "mathematical” set 8,9 then for m < n,
s(m, n) = (Zk) m <k <nand kes.

The need for defining the primitive funétion exists has vanished since this

function has been internalized - its value for a particular set is simply the

(only component of the) set itself. The remaining primitive constants and

functions are easily defined by:

none = A(m, n). false
all = A(m, n). true
limit(m, n, s) = A(ml, nl).
max(m,ml) < min(n,nl) and s(max(m,ml), min(n,nl))

union(sl, s2) = A(m, n). sl(m, n) or s2(m, n)

In this approach, there is no "outer program”" from which the definition

set = integer x integer - Boolean is hidden. Any part of the program can create

a set by giving an appropriate function whose internal representation (the
collection of values of global variables which form the fields of the closure
record) can be arbitrary. For example, in augmenting an existing program, one
might write

A(m, n). even{(m) or (m < n)
to denote the set of even integers, or
letrec s = A(m, n). (m < n) and (p(m) or s(mtl, n)) in s

to denote the set of integers satisfying the predicate p. The procedural approach
insures that these definitions will mesh correctly with the rest of the program,
even though they introduce novel representations.

This kind of extensional capability, which is the main advantage of the
procedurai approach, is offset by two limitations. In the first place, although
(ignoring computability considerations) every set can be represented by a function

in integer x integer - Boolean, the converse is false. To represent a set, a

function s must satisfy
n

s(m, n) = \ sk, k)
k=m
for all m and n such that m < n. This kind of condition, which cannot be checked
* syntactically, must be satisfied by all parts of the program which create séts.

A more important limitation is that only the function exigts, which has been
internalized as (the only component of)'a procedural data item, is truly primitive
in the sense of having access to the internal representation of a set. Essentially,
we have been forced to express the funcfions 1imit and unton in terms of the
internalized exists. We are fortunate that our example permits us to do this
at all. Even so, we are ﬁrevented from optimizing limit and union as we

did in the user-defined-type development. There is no practically effective

- 10 -

way that limit(m, n, §) can "see" whether & has the form none or limit(ml, nl, sl),
or that unton(sl, s2) can "see" whether sl or 82 has the form nome or all.

In fact, this difficulty can be surmounted for limit but not for umton.
The solution is to internalize limit as well as exists, so that both functions
have access to.internal representations. Thus we represent sets by pairs of

functions:

set = (integer x integer - Boolean) x (integer X integer + set)

and specify that if & represents the mathematical set so then for m < n,
| s.l(m,n)=(Hk)mikg_nandksso,
and for all m and n, s8.2(m, n) represents the mathematical set
s, N {k | m<k<n}

(Here s.l and s.2 denote the components of the pair s.)

In this approach, we may define none by:
none = (A(m, n). false, A(m, n). none)

Note the peculiar kind of recursion which is characteristic of this style of
programming: the second component of none is a function which doés not call itself
but rather returns itself as a component of its result.

To define all and union we first define an "external" limit e integer x integer
x get + set which will be called upon by the internal limiting functions (i.e.,

the second components) of all and union:

limit(m, n, 8) = .
(A(ml, nl). max(m,ml) < min(n,nl) and s.1l(max(m,ml), min(n,nl)),
A(ml, nl). if max(m,ml) < min(n,nl) then
1limit (max(m,ml), miﬁ(n,nl), s) else none)

Then
all = (A(m, n). true, A(m, n). limit(m, n, all))
union(sl, s2) = (A(m, n). sl.1(m, n) or s2.1(m, n),

A(m, n). limit(m, n, union(sl, s2)))

With these definitions, the internal limiting functions perform simplifications
analogous to those performed by limit in the user-defined-type approach. Indeed, if
one examines the behavior of the closures which would represent sets in an implemen-

tation of this definition, one finds that they mimic the list structures of the type

-1 -

approach almost exactly (except for the simplifications perfofmed by union).
But even to someone who is experienced with procedural data structures,
the internalization of limit is more a tour de force than a specimen of clear
programming. Moreover, internalization cannot be applied to give a function
such as union acces; to the internal representation of more than one argument,

i.e., we could convert union(sl, s2) to a component of sl or of 82 but not both.

Conclusions

In comparison with user-defined types, procedural data structures offer a
more decentralized method of data abstraction which precludes any interaction
between different representations of the same kind of data. This offers the
advantage of easier extensibility at the price of prohibiting primitive operations
from accessing the representations of more than one data item.

Of course, the two apprbaches can be combined. For example, we can augment
our user-defined-type definition to include an additional primitive functset

€ (integer x integer + Boolean) - set which accepts a functional set (in the sense

of the first part of the previous section) and produces an equivalent value of
type set. It is sufficient to add one more kind of record to the disjoint union

defining set and one more alternative to the branches defining exists:

newtype set = ... + functsetf: (integer x integer -+ Boolean)
with ...

functset € (integer x integer - Boolean) - set = Af. inject functsetf f,

exists € integer x integer X set - Eoolean =

A(m, n, s). unioncase s of
(... functsetf: Af. f(m, n))
in <outer program>

However, this kind of combination is hardly a unification. To some extent,

(6)

the data-representation structuring approach of Hoare and Dahl unifies the
concepts of user-defined tyﬁes and procedural data structures, but only at the
expense of combining their limitations. It appears that this is inevitable;
that the two concepts are inherently distinct and complementary. _
The reader should be cautioned that this is a working paper describing
ongoing research. In particular, the linguistic constructs we have used are
tentative and will require considerable study and evolution before they can be

integrated into a complete programming language. The extension of these constructs

to languages with imperative features is a particularly murky area.

10.

ll.

12.

13.

14.

- 12 -

REFERENCES

Morris, J. H., Types are not Sets. Proc. ACM Symposium on .
Principle of Programming Languages, Boston 1973, pp. 120-124.

Morris, J. H., Towards More Flexible Type Systems. Proc.
Colloque sur la Programmation, Lecture Notes in Computer
Science 19, Springer-Verlag 1974, Ppp. 377-384. :

Liskov, B. H. and S. Zilles, "programming with Abstract Data
Types," ACM SIGPLAN Notices, Vol. 9, No. 4, April 1974,

pp. 50-60. (Also.available as MIT Project MAC Computation
Structure Group Memo 99). '

Fischer, A. E., and Fischer, M. J., Mode Modules as
Representations of Domains. Proc. ACM Symposium on Principles
of Programming Languages, Boston 1973, pp. 139-143.

Wulf, W., Alphard: Toward a Language to Support Structured
Programs, Department of Computer Science Internal Report,
Carnegie-Mellon University, Pittsburgh, Pa., April 1974.

pahl, 0.-J., Dijkstra, E. W., and Hoare, C. A. R., Structured
Programming, Academic Press 1972.

Reynolds, J. C., GEDANKEN = A Simple'Typeless Language Based
on the Principle of Completeness and the Reference Concept.
Comm ACM 13 (May 1970), 308-319.

Landin, P. J., A Correspondence Between ALGOL 60 and Church's
Lambda-Notation. Comm ACM 8 (February-March 1965), 89-101
and 158-165.

Balzer, R. M., Dataless programming. Proc. AFIPS 1967 Fall
Joint Comput. Conf. Vol. 31, MDI Publications, Wayne, Pa.,
pp. 535-544.

McCarthy, J., Recursive functions of symbolic expressions
and their computation by machine, Pt. I. Comm ACM 3, 4
(Apr. 1960), 184-195.

Evans, A., PAL - A language designed for teaching programming
linguistics. Proc. ACM 23rd Nat. Conf. 1968, Brandin Systems
Press, Princeton, N.J., PP. 395-403.

Landin, P. J., The next 700 programming languages. Comm ACM 9, 3
(Mar. 1966), 157-166. -

van Wijngaarden, A. (Ed.), Mailloux, B. J., Peck, J. E. L.,
and Koster, C. H. A, Report on the algorithmic language ALGOL
68. MR 101, Mathematisch Centrum, Amsterdam, Feb. 1969.

Reynolds, J. C., Towards a Theory of Type Structure. Proc.
Colloque sur la Programmation, Lecture Notes in Computer Science
Springer-verlag 1974, PppP. 408-423.

