REASONING ABOUT ARRAYS

by
John C. Reynolds

July 1977

This is a preprint of a paper which has been submitted to the

Communications of the ACM.

REASONING ABOUT ARRAYS

John C. Reynolds

Syracuse University

ABSTRACT A variety of concepts, laws, and notations are presented which
facilitate reasoning about arrays. The basic concepts include intervals
and their partitions, functional restriction, images, pointwise extension
of relations, 6rdering, single-point variation of functions, various
eugivalence relations for array values, and concatenation. The
effectiveness of these ideas is illustrated by informel descriptions of

algorithms for binary search and merging, and by a short formal proof.

Work supported by Netional Science Foundation Grant MCS 75-22002

1. Introduction -
The use of assertions to describe programs and prove their correct-
1,2 .

ness(»2,3) has developed to the point where the necessary assertions are

often at least as lengthy and difficult to comprehend as the program
vhich they describe. A major ca.use' is the use of languvages and proof
methods - typically the first—order predicate calculus - which are taken
from classical logic and are not oriented towards programming.

Perhaps the most glaring example of these difficulties is the use of
arrays. One need only compare the assertions needed to describe a program
such as n log n exponentiation, which does not involve arrays or other
compound date structures, with the assertions for a program such as binary
search, which is intuitively no more complex, but uses arrays. In the
first cese, the assertions are clear and concise, and reasoning about them
involves only the familiar laws of elementary algebra. But when arrays
~ are introduced, the assertions become lengthy and filled with quantifiers,
and their manipulation seems ornly tenuously connected with the programmer's
intuition.

. Superficially, we need a better notation for assertions about arrays.
But more fundamentally, we need concepts and laws which are not only
correct but also reflect our intuitive understanding of arrays, just as
the concepts of addition and multiplication, and the associative,
commutative, and distributive laws reflect our intuitive understanding of
numbers. Once the right concepts and laws have been found, it is
comparatively trivial to design a notation which facilitates their
application.

This paper presents a variety of concepts, laws, and notations for
reasoning about arrays - some borrowed from mathéma.tics and others
original - which we believe meet the above criteria. Their utility will
be demonstrated both by informal descriptions of program behavior and by
a short formal. proof of program correctness.

For a programming language, we will use Algol 60 with the following
changes:

(1) while statements.
A%

- ——

(2) Round rather than square brackets for array subscripts

(which emphasizes the view that array values are functions).

(3) Integer expressions of the form lower X and upper X,
VV— g,
denoting the minimum and maximum subscripts of a one-dimensional

array X.

(Although we will not use procedures here, it should be noted that for
(3) to be fully useful, there must be some way of restricting the
interval of subscripts of an actual arrsy parameter.)

We have purposely stayed close to Algol to avoid inadvertently
choosing & programming language which hid the defects of our assertion
language. In particular, we have refrained frombintroducing our
notation for assertions into the programming language itself (except for
%gzg? and upper, which were irresistably attractive). Moving in this

direction seems to lead to a very high level language, closer to APL than
to Algol, which is beyond the scope of this paper.

On the other hand, even the choice of Algol has had subtle effects
on the ensuing development. For example, switching to a programming
language with the novel approach to arrays described in Chapter 11 of
Reference 4 would necessitate minor changes to many concepts, such as
abandoning the uniqueness of the array value with an empty domsin.

To an even greater extent than is indicated by the explicit
references, this work is built upon the ideas of C. A. R. Hoare.(5’6’7)
Mention should also be made of distinect but related work on arrays by
(8) end of work by R. Burstall(g) which, foughly speaking,

does for list structures what we are trying to do for arrays.

D. C. Cooper

2. Interval and Partition Diagrams

Before considering arrays themselves, we introduce some diagrammatic
expressions for meking assertions about subscripts. Basically, these
expressions are a formalization of the diagrams which are traditionally
drawn by programmers when describing arrays. '

An interval is a finite consecutive set of integers. If & and b are
expressions denoting integers, then a[:::za, called an intervsl diagram,

is an expression denoting the interval

a[bl ={i|a<is<b} .
When formulating general properties of interval diagrams (or partition

diaegrams) we will always use the standard form a[::::]. But when using
the diasgrams to make assertions, we will permit more flexibility.

Specifically, -at either end of an interval diagram, |a may be written
instead of a-ll . Also, - ‘may be written as an abbreviation for .
Thus
A <iz<n}
EJo=1i]as<ix<np}
a[:::]b‘=j{i | a <i<b}
[al = {a} .

_For any finite set S, ve write¥ S to denote the size, or number of

[}
-
(%)
[+
A
[

elements 1n S. Thus

#a] b] =ifb-a>0thenb-aelse 0 . (2.1)

N : o —
This use of & conditional expression to describe a fundamental property
of a data structure is a clear symptom of a potential source of error,
i.e., the possibility that a program may be correct for one case of the
conditional but not the other. To emphasize this situation, we say that
the interval.a[b is regular when b - & > 0, or irreguiar wvhen b - a
< 0. It is evident that a nonempty interval is always regular, but the
empty interval can be either regular or irregular. (This is a slight

abuse of language; it is really the interval diagram, rather than the
interval itself, which is regular or irregular.)

From interval diagrams, we can build more complex entities called .
partition diagrams, which describe relationships between intervals.:

If ays & » & are expressions denoting integers, then:

l, . e .<
(a) ag a | .- n—ll agl is called a partition diagram.

(®) &, ‘,. e+ » 8 4 &, i.e. the intervals denoted by
dla.grams obtalned by ellmlnatlng all but a.n a.daacent pa.lr of 11nes,
are ca.lled the component 1ntervals of the pa.rtltlon dlagra.m.

() ao : a.nl , i.e. the interval denoted by the diagram o'btalned by
eliminating interior lines, is called the total interval of the

- partition diagram.
(d) The partition diagram is a logical expression which is true iff
the component intervals are a partition of the total interval, i.e.,
iff the compomnent in'_berva.ls: are disjoint end their union ig the total
interval. ' ’ o '

As with interval disgrams, __ |a _ _may be written in place o

e, and:_-_-::: in place of . Thus for
example, is a partition diagram which is true iff the
component intervals [a b ={i | a < i < b}, [t] = (v}, ana b[j =
{i | b <i< c} are disjoint and their union is the total interval
[a_cl=1{i]as<iz<ecl

The nature of partitions implies that the size of the total interval

is the sum of the sizes of the component intervals:

: n
agl &q| - 2 a, 1mp11es#ao e | = 1£1ﬁ 8y a; .(2.2)

As shown in the Appendix, (2.2) implies the following fundemental property
of partition diagrams:

a. ses 8 8 | iff either

a. < 8a < ... <8 < a Or 8. 2 8., 2 .. 2 8 > a
- - n-l-—'n 0—"1- - n-1-="n-

&0

Note that the first inequality asserts that every component interval is

regular, wvhile the second inequality asserts that every component interval

is empty.
From (2.3), the following simple cases are obvious:
'al_j is always true. ;(2.1&)
irf [a__|b] iff a < b iff is nonempty. (2.5)
[a o] c] iffa<b<ciffbe [a_cl. (2.6)

More interestingly, one can easily derive several "diagrammatically
natural" rules of inference: (Here "line" refers to any vertical line in

a diagram, including its associated expression.)

Erasure From a partition diagram one can infer any diagram

ocbtained by deleting a line, i.e., (2.7)
CITElUT implies. . _ L.

Adjacent Duplication From a partition diagram one can infer

any 3imgram obtained by replicating a line next to itself, (2.8)

i.e.,

-—— P

TTTS[I impries 8] o .

Substitution From two partition diasgrams such that the
end lines of the first match some pair of adjacent lines
in the second, one can infer the diagram obtained by

substituting the first diagram for the adjacent lines in

(2.9)
the second: .

- - - -

1 "‘bk4 c| & a c j:i_.mplies

a b

a Dyl ees by c .

- - —

- The use of these rules is illustrated by the following inferences,

which will be pertiment to the binary search example given later:

{a) For any integers £ and u, (2.h).and (2.8) show that
[£ [¢ w] u] hoias.

(b) Suppose [# Ja b] u|l end a < j <b. Then by (2.6) and
(2.9), | la |3 o[u] nolas. 1In turn, by (2.7), this
implies [2 3] |, [[3+1_] 4, and

{2 la- j-1] .

3. Functions as Array Values

There are two quite different concepts of an array. The more
-traditional view is that an arrsy of, say, real numbers is a function
from subscripts into variables, which in turn possess repl values. The

(5.6) ang Dijkstfa(h)

more recent view, expounded by Hoare , is that an
array of real numbers is ‘a variable whose value is a function from
subscripts into' real numbers. In this paper, we take the latter view.
The effect is to banish the possibility of "sharing" or "aliasing" among
array elements, which would greatly complicate the problems of proving
program correctness. . _

Specifically, we assume that an array decla.réd-.'by T array X(a:b) is
& variable whose values range over the set of functions from the interval

into the set t.

For any function X, we write dom X for the domain of X and, when
W

this domain is an ‘interval, lower X and upper X for the integers such
[V Sy —~———

= . i inition of 1 r is
dom X = [lower X upper X|. This definit of lower and uppe

Wm——— W . . .
intentionally incomplete for the case where X is the unique function,

denoted by <>, whose domain is the empty set.

When S C dom X, we write X'] S, called the restriction of X to S,
to denote the function such that

dom(X] 8) =8 (3.1)
(vi e 8) (X7 s)(i) = x(i) . (3.2)

This concept, which mirrors the informal idea of (the value of) a

subarrsy or segment of an array, satisfies
If 8' €5 € dom X then (x1s8)7 s =x1s (3.3)
X1 {} =< . (3.4)

As an example, consider the program

begin integer i; integer array Squares(-5: 5);

| ¥ NN — N~ S ————

integer arrsy Possquares(0: 5);

Ve~ My ————

integer array Nosquares(1lh: 5);

for i := -5 wntil 5 ggSqmres(l) =1 x i

for i := 0 wntil 5 do Possquares(i) := i x i;
W, ———

S em—

end
N

At the program point indicated by the ellipsis, the following assertions
will hold:

dom Squares = |-5 5

lower Squares = -5 .
S~ e

uppe:: Squares =

(vi € |5 5]) Squares(i) =

Possquares = Squares] [0 5]

Nosquares = Squares] {} =

lower Nosquares > upper Nosquares .

——

The expressions]\./ngx: X and upper X occur so frequently in interval
and partition diagrams that it is u::ﬁﬂ to adopt conventions for eliding
them unambiguously. When an interval or partition diagram is labelled
with a function X, lower X may be omitted from the right of the leftmost
line of the diagram:;;: upper X may be omitted from the left of the
rightmost line. For exa.mpvi;: X: [Ja b] | stands for
Lover X la bl r X Moreover, when an interval diagram is

used to restrict a function X, the label can a.lso be elided. For example,

x4 [al stents for x [Iover ©_al.

-For a function X, we write {X}, called the image of X, to denote
the set {X(i) | i e QSE.X} of values obtained by applying X to members of
its domain. (On the other hand, vhen x is not a function, {x} will

denote the singleton set containing x.) Thus for example,

{Possquares} = {0, 1, 4, 9, 16, 25}
{Possquares] [1__ 3[} = {1, b, 9}
{Squares 1 [-2 2]} ="{0, 1, 4} .

It is easily seen that images possess the following properties:

SC dom X implies {x1 s} < {x} ‘ (3.5)
{<>} = {} | (3.6)
SUS' = dom X implies {X} = {x1 stu {x1 s'} (3.7)
x1 31 = x(i)} " (3.8)
Z{(X}<ztdmX. ‘ i (3.9)

4., Operations on Relations

Suppose p is a binary relation between two sets U and U'. Then p*,
called the pointwise extension of p, is the binary relation.between the
set of subsets of U and the set of subsets of U', sﬁch that S p*'S' holds
if and only if x p x' holds for all x in S and x' in S'.

When U and U' are both the set of integers, p could be any of the
relational operators of Algol. For example, {2, 3} jf4{3, 4} and
{2, 3} # {k, 5) are both true, vhile {2, 3} < {3, 4}, {2, 3} = {2, 3},
and {2, 3} ¥* {2, 3} are all false. The last two examples demonstrate
that #* is not the negation of =* (and thereby show the -importance of
meking * explicit). PR - _ ,

The pointwise extension of any relation satisfies the following laws:

8o 8 & T €S implies T LR " (k.1a)
so"s' & T'Cs implies 5o T ~ (b.1p)
{1o" 8" S (4.2a)
8o (3 - - (k.2b)
(5UT) o 8'izrSp S' & To" s | ’ (fli;_ég_)
S p*—(s'o T!') iff S o 8" & 8 ot | (iiﬁ3b)'

{x} p* {x'} iff x o i' . » ‘ | (b.h)

Occasionally, one needs the pointwise extension of & relation with
regard to only a single argument. The simplest way of encompassing this
case is to regard x p* S' as an sbbreviation for {x} p* S' and S p* x!
as an abbreviation for S p*>{x'}.

Another concept involving relations, somewhat more specialized than
pointwise extension, is ordering. The usual idea of an ordered arrsy can
be generalized to an arbitrary relation in a way which unifies several
important ceses. Let X be a function whose domain is a set of integers,
and let p be a binary relation appropriate to the type of result of X.
Then X is ordered with regard to p, written SEPD’X’ if and only if, for
all i and j in the domain of X, i < j implies X(i) p X(J).

The following "orderings" appear as specific cases:
ord X: increasing order
Y-
ord X: strict increasing order
— <

ord_ X: decreasing order
P-4 .

ord_ X: strict decreasing order
>

ord_ X: all elements equal

Ay

ord, X: all elements distinct

N

Moreover, the generalizastion satisfies the following essential laws of

-

ordering:
ord X &S C dom X implies ord (X1 S) (%.5)
"Z dom X < 1 implies ord X = (4,6)
[V, - -0
*
IfSUTS= ng X &S < T then : 4.7)

(?ﬁiip X iff (gz;dp(x'] s)&gz;dp(x‘] T) & {X] s} o {xq11hH) .

An important special case of (4.T7) is obtained by taking S and T to be

two components of a partition:
If X: |___k| | then
(ord) X iff (gzdp(x1 [x]) & gvr;dp(x'l k[]) (4.8)

e x1 X))o xTx[IM) .

10

5. Binary Search

We have now introduced enough of our notation to demonstrate its
use in describing - precisely yet intelligi‘ﬁly - why a program works. v
_As an example, we descrlbe an algorlth.m for binary search

leen an ordered arrey X and & test value ¥, the program should
set the boolean ver:,a.ble found to indicate whether any element of X is
equal toy. If found is true, _then the integer varisble j should be set
to the subseript‘ of X such that X(j) = y. More precisely, if ord X,

then executing the program should achieve the goal
if fownd-then X: [3]] & X(j) =y else (X} # v .
Throughout program execution; found will only be set to true if
X: & X(j) =y is achieved. On the other hand, when found is
false, it will not be known that y occurs nowhere in X, but only that it
does not occur in either of two segments at the left and right ends of X.

If we use the local variables a and b to delineate these segments, we have

the invariant:

if found then X: — &X(J)
toe x: [Ta [] & (x1 T £y

On the one hand, this invariant can be achieved initially by setting

found to i:&}_?f and making the end segments of X empty. On the other hand,
the invariant implies the goal of the program if either found is true or
a > b, since the latter condition implies that is empty and thus,
from the partition diagram,]:‘a 9] b[:[dom X. Thus our program

has the form:

begin integer.a, b;

N~ W —

a := 1ower X; b := upper X; fOund := false;
M — Ay,

whlle-i(found or a > b) do ...

NN —

end .
——

When executlon of the body of the whlle statement beglns both the
invariant and the whlle test will be true. Slnce a <b, we can perform an

operation "Pick j" (whose ‘details will be considered later) which sets j
to some integer in . At this stage, we will have

[Ta Tl o] &1 (CJaus[Dif v,

11

and we cen compare X(j) with y. There are three cases:

(1) If X(j) =y, the invarient will be preserved if found is

set to true.
| ST

(2) 1If X(j) <y, then ord_ X 1nsures that {x1 T [} & Y,
so that {X7] (L3} Ub[[)} # y. This permits us to set a
to j + 1.

(3) If X(j) >y, then a similer argument justifies setting b
to j - 1.

Thus our program is:

begin integer a, b;
VS N ——

a := lover X; b := upper X; found := false;
N~ WA — W~
vhile ¥(found or a > b) do
N A~ A
begin
N~
"Pick j";

é\f; () =y then found := true else

A e

ifX(,J)<ythena: j+lelsedb :=j -1

L

end
W‘

end
C—

Termination is guaranteed by the fact that each iteration either sets
found to true, which immediately stops further iterations, or else dec.reases
the size of |_?__—_E] , whose emptiness will cause termination. The absence
of subsecript errors is guaranteed since X: - holds at the program
points where X(j) is evaluated. ,'

It should be noticed that this description of binary search does not
exclude the possibility that [lower X upper X|, and therefore .
might be irregular. The heart of the matter is the reasoning about
pertition diagrams, which was formalized at the end of Section 2. One of

the virtues of this kind of reasoning is that it_includes the irregular
case without any special case analysis. -
To complete our program, We must digress from the topic of arrays to
specify "Pick j". In this case, the probiem is not to find a correct
realization - either j := a or j := b would be correct - but to find an
efficient one. The need to shrink as much as possible suggests
choosing j at or near the midpoint of , i.e., j := (a +Db) # 2.

12

However, we must be sure thé.t, if a < b, then j := (a +b) + 2 will
achieve a < j < b, despite the fact that integer division involves
rounding (and that the details of this rounding might vary for different
machines, especially when a + b is negative). Fortunately, it is enough
to know that division by two is a monotonic function which is exact for
even numbers. For & < b implies a +a<a +b <b + B, so that
monotonicity gives (a + a) + 2 < (a +1b) + 2 < (b +b) ¢+ 2, and exactness
for even numbers gives a < (a +b) + 2 <b. (S. Winograd has pointed out
that j := (a + 1) + 2 is unnecessarily prone to overflow, in comparison
with, for example, j :=a + (b - &) ¢+ 2. We leave it to the reader to
show that the correctness of his improvement can still be proved with a

monotonicity argument.)

6. Array Assignment

We must now move beyond programs such as binary search which merely
use arrsys, to consider programs which change arrays. In programming
languages at the level of Algol, the fundamental agent of change is an
assignment statement which alters a single array element, e.g., X(i) := e.

Hoare(5’6) has shown that, to deal with this statement from the
viewpoint that an array is a function-valued variable, we must regard it
as an sbbreviation for the assignment X :=[X | i | €], vhere [X | i | e]
" denotes the function which is similar to X except that it maps i into e.
More formelly, EX | i eJ is defined when i € 392 X, in which case it is

the function satisfying

dom[X | i] e]= gomx (6.1)
[xlileJli)=e (6.2)
[x|i] €](d) =x(§) vhen j#1i, (6.3)

and, as en immediate consequence of (6.3),

[x1ileJ1s=x1s when sCdamXeamai¢s. (6.1

Once X(i) := e is seen as an sbbreviation for X := [X | i | €], the

(2),

usual exiom of assignment

P|x oo (x:=elP (6.5)
(where P x+ e denotes the result of substituting e for x in P) extends to

(6),

an axiom of array assignment

13

PIX+[X 1] e] {X(i) :=e} P . (6.6)
(Because of (6.1), when this axiom is used, the substitution X +

[X] i | eJneed not be applied to occurrences of X in dom X, X:, lower X,
or upper X.)
o~

T. Equivalence Relations for Arrays

For many programs which alter arrsys, such as sorting programs, a
full specification will stipulate both that the final value of the array
will possess some property, such as being ordered, and that the final
value will be related to the initial value in some way, such as being &
rearrangement. Often - even when the situation is intuitively obvious -
a formidable technical apparatus is needed to formulate and prove the
latter kind of specificdtion.

To deal with these problems it is useful to introduce several
equivalence. relations for arrsy values. Suppose X and Y are both

functions whose domains are sets of integers. Then:

(a) We write X an Y, and say that X is a redistribution of Y .
iff (X} = {Y}. '

(b) We write X~ Y, and say that X is a rearrangement of Y

iff there is a bijection B (sometimes called a one-to-one
correspondence or a permutation) from dom X to dom Y such

N~ oAy
that (Vi e dom X) Y(B(i)) = x(i).

(c) We write X = Y, and say that X is a shift of Y iff there
is a bijection as in (b) with the special form B(i) =i + s

for some integer s.

This defines an increasingly stringent sequence of equivalence relstions.

Thus, where p is v, v, or =:

Transitivity Xp Y & Y p Z implies X p 2 (7.1)
M Xp Y implies Y p X (1.2)
Reflexivity X p X (7.3)
X =Y implies X~ Y (7.4)

Xn Y implies X Y .) (7.5)

1k

Finally, we have three more specific laws. Exchanging a pair of

elements produces a rearrangement:
(vi, je gom [Dx | 1 | x5 @]~ x, (7.6)
two one-element arrays with equal values are shifts of one another:

(] =domx & [J] = dom Y & X(i) = Y(j) implies X = Y , (1.7
[Z Lt
and a shift of an ordered array is ordered:

X =Y &ord Ximplies ord Y . (7.8)
R P

As Hoare has pointed out,(3)

for any program which only alters an

array by performing exchanges, (7.1), (7.3), and (7.6) are sufficient to
show that the final array value is a rearrangement of the initial value.
However, to deal with programs which move information from one array to

another, we must also consider the concatenation of arrsy values.

8. Concatenation

Let X and Y be functions whose domains are intervals with sizes m and
n respectively. Then XY, called the concatenation of X and Y is the

unique function such that

(3213 (x7Y) = |1 m+n‘|
(x> 1)1
x~11 B] =

The choice of one as a lower bound is arbitrary, since we will a.iways
regard shifts of concatenated array values as equivalent.
Let <> denote the unique function whose domsin is empty. Then

concatenation satisfies the following laws:

X T =X ‘ (8.1)
> X=X | (8.2)
"Nz s x T (X7 2) (8.3)
X=X &Y = Y' implies XY = X7 Y (8.4)
X7TYAYTX (8.5)

XX &Y~V Y implies X Y~ X7 Y (8.6)

15

X: implies X = (X7)A (x1 oD (8.7)

X 7Y} = {X} v {Y} (8.8)
ord (X7Y) iff ord X & ord Y & {X} p* {x} . (8.9)
Ve P w~ P w~ P

The first four laws show that array values form a monoid under
concatenation, provided that shift equivalence is used in place of true
equality. The next two laws show that this monoid becomes commutative
when the less stringent equivalence of rearrangement is used.
(Technically, one cen make these statements precise by working with the
quotient of the set of array values under the equivalence relations

= or &.) '

The last three laws establish the basic connections between
concatenation and partitions, images, and ordering. In particular, (8.9)
is a consequence of (4.8) and (7.8).

In fect (8.3) actually remeins true when = is changed to =. But the
stronger relationship is irrelevant, since we should never be interested

in true equality for concatenated arrsy values.

9. Merging

As a second example of program description, we consider the problem
of merging: Given two ordered arrsys X and Y, set Z to an ordered
rearrangement of the concatenation of X and Y. We assume that Z is just

the right size to hold the result. Thus if
e{df_x &adiy&ﬁwz=ttgg_mx+yqﬂlx R
then executing the program should achieve the goal

ord Z &2~ XY .
U"S<

During execution, each array will be partitioned into a processed
part on the left and an umprocessed part on the right, the processed part
of 7 will be an ordered rearrangement of the concatenation of the
processed parts of X and Y, the unprocessed part of Z will be the right
size to hold the unprocessed parts of X and Y, and all processed elements
in 2 will be smaller or equal to all unprocessed elements in X or Y. (The
last condition is needed to insure thak the unprocessed elements can be
moved into Z without rearranging the already processed elements.) Thus we

have the invariant:

16

T o= e [T Jev:s [Ty]z [e] (a)
tora 27 [z (b)
ez [Jeznx] [Qe v iy (c)
e rz: (kz_ | =#x: (kx| +TY: [y | (@)
221 [Jxe} < x1 = _Jr0] oy_13. (e)

This invariant can be achieved initially by making the processed
parts all empty, and it will imply the goal of the program when the
unprocessed parts are all empty, vhieh - by (@) - will occur when the

unprocessed part of Z is empty. Thus we can use a program of the form:

begin integer kx, ky, kz;
AN ~— L)

kx := lower X; ky := lower Y; kz := lower Z,
Ny (W Y \rr——

vhile kz < upper Z do "Copy One Element"

-y N -

end .

N

In "Copy One Element", a single element will be moved from the
unprocessed part of X or Y into the processed part of Z. To preserve
condition (e) the element to be moved must be the smallest member of
{x1 Tex Jr0 (¥ .[E_I____—_I }. Since both X and Y are ordered, this will
be the smaller of the leftmost unprocessed elements, X(kx) or Y(ky),
providing both unprocessed parts are nonempty. However, if only one
unprocessed part is nonempty, _its leftmost element will be the element®

to be moved. Thus:

"Copy One Element'" = .

if (if kx > upper X then false else

e~ —— Name WA W
if Xy > upper Y then true else
Vv o™ AN A e o
X(kx) < ¥Y(ky))

then "Copy X" else "Copy Y" ,

NN A,

where, prior to executing "Copy X",

1x = 2: [kz]] & X: [kx]] (£)
e X(en) < (x4 b 11U [DD | (&)

vill hold as well as the invariant I.

17

Thus (e) will be preserved if "Copy X" moves X(kx) out of the
unprocessed part of X and_into the processed part of Z. Moreover, (e)
insures that X(kx) will be larger or equal to the elements which have

previously been moved into Z. Thus the ordering (b) will be preserved

if X(xx) is placed at the right of the processed part of Z. Therefore:

"Copy X" = .
begin Z(kz) := X(kx); kx := kx + 1; kz :=kz + 1 end ,
N W

and by a similar argument

"Copy. Y" =
begin Z(kz) := Y(ky); ky :=ky +1; kz :=kz + 1 end .
A Y N~—

Formally, in the notation of Reference 2, "Copy X" must meet the
specification
I &IX {"Copy X"} 1I.

To exemplify the application of the various laws we have stated, we give

a formal proof of this specification. The assignment axioms (6.5) and
(6.6) imply I' {"Copy X"} I, where

I' = I, | |

z + kz+l 'kx » kx+l 12+ [2 | kz | X(kx)]

x: o s b 2
ora_ [z | k2 | X(xx)]1 ‘
o1z | e | X001 [E2] ~ X1 v
&L 7: kzr- l = ZX: ka____] +ILY:

14

-

e [z | kz | xe0)]1 [E2) < x1 [U ¥ Ty |3

(Here ve have written kx| instead of |kx+1 end kz| instead of |kz+1.)
Thus we must show that I & IX implies I', i.e., that lines (a) through

imply (a') through (e').
By the rule (2.9) of substitution, (a) and {f) imply

xe el] ev: [Ty ez [Tl J

which, by the rule (2.7) of erasure, implies (a') as well as various

(a')
(v")
(')
(a")

e')

(g)

(n)

partition diagrams used in the sequel. In particular, by (2.2) and (2.1),

X: [kx[_] implies &£ X: [kx] = #X: kx[__] + 1, end 2:
implies X Z: [kz | = 2: kz[__] + 1, so that (4) implies (a').

18

Next, we have

Lz | xz | x(x)]] [_x3]

= [z | kz | X(xx)]] [:]kzh[z | xz | X(xx)]“]

=1z Dkz/\ Lz | k2 | x(xx)]1
21 [Jxz " xq [ix]

x1 e ™Y i)™ 37
1 T "% =™ v iy
x1 7 11 Cw

which esteblishes (c'), and also

n

4

e

Then |
{z | ¥z | x(xx)] [_kz]}

21 [Jxz ™ x1 [kx]}

{21 [Jre} U {x7] [kx]}

{z [Jxz} U {X(kx)}

Sl E_NUe] BE_D

] b Tx1exC VT fir 1}

1 B Y =[Jivel &)

so that (U.la) and (k.1b) give (e') eand

21 ke <& 1x1 [l

A

(Z: l -)’ (8-7)

(6.14)

(7.7),(8.14),(6.2)
(c),(8.6)
(8.3),(8.5),(8.6),(7.14)
(x: [Ikx]), (8.7)

[z | k2 | x(x0]] [2] =27 [Jxe” %1 : (i)

(1),(7.4),(7.5)
(8.8)

(3.8)
(e),(g)s(k.3e)

(x: [x[1), (8.7)
(8.8)

(3)

© Finally, (3.1), (2.1), and (4.6) imply ora, X7 [kx], which with (b),

(j), and (8.9) implies ord((Z‘I]:__—_[kz’\x‘| l_g_x_—;l), which with (i) and

(7.8) implies (b’)

19

10. Multidimensional Arrays

Although the concepts we have presented were developed and tested
in the context of one-dimensional arrays, most of them extend to the
multidimensional case. The major additional concept which is needed is

the Cartesian product:

Sl X ... X Sn = {<il,

A Cartesian product of intervals is called a block. The values of the

eee 5 i | ie 5, & ... & i e Sn} .

array declared by T array X(al: bi, ces ah: bn) are functions whose

domein is the block [a b | X ... X |8 b {.
] 1 1 n n

It is evident that the values of subarrays of X such as rows and
columns ere restrictions of X to certain blocks. For example, the
following asserts that<i, j>is a saddle point of the two-dimensional

array X:

& (E « [0 < 26, §
8 X(i, §) < x] (] ~ Ghy -

11. Conclusion

The contents of this paper is only a small beginning. It is largely
limited to one-dimensional integer-subscripted arrays, and even within this
domain further study is certain to produce significant extensions and
changes. But we have gone far enough to demonstrate the value of the
underlying approach: We have formulated concepts, laws, and notations
which are powerful tools for the precise yet intelligible description of
a significant aspect of programming. '

Hopefully, this work suggests guidelines for further progress: Onme
should focus upon particular mechanisms such as arrays rather than
generalifies which pertain to all computation. Concepts and lavs are more
fundemental thanfnotatién per se, end should reflect intuitive
understanding. Most important, the crucial test is the ability to
describe real programs in a way which is not only precise but also

intelligible to the human reader.

20

APPENDIX

Proof of Proposition (2.3)

We leave it to the reader to verify that either 8y < a.l < ... %8

n
or a, > al > e 2 & implies 8, 8 ces B) The following proof
of the converse was found by F. L. Morris.

Suppose ao| a | ---al- From (2.2) we have

n
P e BB R S @

ﬁ_aE =\'1A£b—a10thenb—a.else0

where

is always nonnegative and is zero iff aEE is empty. For arbitrary ai's
simple cancellation gives
a.n—a0=.z R T
1=1

Then subtraction of (a) from both sides gives

n
f(aoa a-n) = .Z' f(ai__lg ai) s (b)
- 1i=1
where’
f(g,b)=b—a—";ta! b|'=3£b-'-a_>_0then0elseb—a

L]

is always nonpositive and is zero iff a[:j is regular.

The interval ag a |must be either empty or regular (or both).

Suppose it is empty. Then (a) asserts that a sum of nonnegative terms

is zero, which implies that each term is zero. Thus for each i,

a1 &;| 1s empty, and 8 2 8-

On the other hand, suppose &, & is regular. Then (b) asserts

that a sum of nonpositive terms is zero, which implies that each term is

. Th or each i, a. 8.|1s regular, and a, < a..
zero us for each 1, &, , 1 gular, s-1 =8

21

ACKNOWLEDGEMENTS

I am indebted to the members of IFIP Working Group 2.3, who have
provided motivation, inspiration, and helpful criticism. I em slso
grateful for the hospitality of the University of Edinburgh and the
support of the Science Research Cour_xcil during the period when this

paper was written.

REFERENCES

1. Floyd, R. W. "Assigning Meanings to Programs," Proceedings of

Symposia in Applied Mathematics 19, American Mathematical Society,
Providence (1967), pp. 19-32.

2. Hoare, C. A. R. "An Axiomatic Basis for Computer Programming,"
Comm. ACM 12, no. 10, October 1969, pp. 5T76-581.

3. Hoare, C. A. R. "Proof of a Program: FIND," Comm. ACM 1l, no. 1,
January 1971, pp. 39-45.

L. Dijkstra, E. W. A Discipline of Programming, Prentice-Hall, 1976.

5. Hoare, C. A. R. "Notes on Data Structuring," in Dahl, 0.-J.,
Dijkstra, E. W., and Hoare, C. A. R., Structured Progremming, Academic
Press (1972), pp. 83-17h.

6. Hoare, C. A. R., and Wirth, N. "An Axiomatic Definition of the
Programming Language PASCAL," Acta Informatica 2, 1973, pp. 335-355.

7. Hoare, C. A. R., "A Note on the FOR Statement," BIT 12, no. 3, 1972,
pp. 33L4-3L1. ' '

8. Cooper, D. C. "Proofs about Programs with One-Dimensional Arrays," .

unpublished.

9. Burstall, R. M. "Some Techniques for Proving Correctness of Programs
which Alter Data Structures," Machine Intelligence 7, November 1972,
pp. 23-49,

