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1. IntroductionSpectral partitioning has become one of the most success-ful heuristics for partitioning graphs and matrices. It isused in many scienti�c numerical applications, such asmapping �nite element calculations on parallel machines[Sim91, Wil90], solving sparse linear systems [PSW92],and partitioning for domain decomposition [CR87, CS93].It is also used in VLSI circuit design and simulation[CSZ93, HK92, AK95]. Substantial experimental workhas demonstrated that spectral methods �nd good par-titions of the graphs and matrices that arise in manyapplications [BS92, HL92, HL93, PSL90, Sim91, Wil90].However, the quality of the partition that these methodsshould produce has so far eluded precise analysis. In thispaper, we will prove that spectral partitioning methodsgive good separators for the graphs to which they areusually applied.The size of the separator produced by spectral meth-ods can be related to the Fiedler value|the second small-est eigenvalue of the Laplacian|of the adjacency struc-ture to which they are applied. By showing that well-shaped meshes in d dimensions have Fiedler value at mostO�1=n2=d�, we show that spectral methods can be used to�nd bisectors of these graphs of size at most O�n1�1=d�.While a small Fiedler value does not immediately im-ply that there is a cut along the Fiedler vector that isa balanced separator, it does mean that there is a cutwhose ratio of vertices separated to edges cut is O�n1=d�.By removing the vertices separated by this cut, comput-ing a Fiedler vector of the new graph, and iterating asnecessary, one can �nd a bisector of O�n1�1=d� edges.In particular, we prove that maximum-degree � planargraphs have Fiedler value at most 8�=n, which impliesthat spectral techniques can be used to �nd bisectors ofsize at mostO(pn) in these graphs. These bounds are the



best possible for well-shaped meshes and planar graphs.1.1. HistoryThe spectral method of graph partitioning was born inthe works of Donath and Ho�man [DH72, DH73] who �rstsuggested using the eigenvectors of adjacency matrices ofgraphs to �nd partitions. Fiedler [Fie73, Fie75a, Fie75b]associated the second-smallest eigenvalue of the Laplacianof a graph with its connectivity and suggested partition-ing by splitting vertices according to their value in thecorresponding eigenvector. Thus, we call this eigenvaluethe Fiedler value and a corresponding vector a Fiedlervector.A few years later, Barnes and Ho�man [Bar82, BH84]used linear programming in combination with an exam-ination of the eigenvectors of the adjacency matrix of agraph. In a similar vein, Boppana [Bop87] analyzed eigen-vector techniques in conjunction with convex program-ming. However, the use of linear and convex program-ming made these techniques impractical for most appli-cations.By recognizing a relation between the Fiedler valueand the Cheeger constant [Che70] of continuous mani-folds, Alon [Alo86] and Sinclair and Jerrum [SJ89] demon-strated that if the Fiedler value of a graph is small,then directly partitioning the graph according to thevalues of vertices in the eigenvector will produce a cutwith a good ratio of cut edges to separated vertices(see also [AM85, Fil91, DS91, Mih89, Moh89]). Aroundthe same time, improvements in algorithms for approxi-mately computing eigenvectors, such as the Lanczos al-gorithm, made the computation of eigenvectors practi-cal [PSS82, Sim91]. In the next few years, a wealth ofexperimental work demonstrated that spectral partition-ing methods work well on graphs that usually arise inpractice [BS92, HL92, PSL90, Sim91, Wil90]. Still, re-searchers were unable to prove that spectral partitioningtechniques would work well on the graphs encounteredin practice. This failure is partially explained by resultsof Guattery and Miller [GM95] demonstrating that naiveapplications of spectral partitioning, such as spectral bi-section, will fail miserably on some graphs that couldconceivably arise in practice. By bounding the Fiedlervalues of the graphs of interest in scienti�c applications|bounded-degree planar graphs and well-shaped meshes|we are able to show that spectral partitioning methodswill successfully �nd good partitions of these graphs.In a related line of research, algorithms were devel-oped along with proofs that they will always �nd smallseparators in various families of graphs. The seminal

work in this area was that of Lipton and Tarjan [LT79],who constructed a linear-time algorithm that produces a1=3-separator of p8n nodes in any n-node planar graph.Their result improved a theorem of Ungar [Ung51] whichdemonstrated that every planar graph has a separa-tor of size O(pn logn). Gilbert, Hutchinson, and Tar-jan [GHT84] extended these results to show that ev-ery graph of genus at most g has a separator of sizeO�pgn�. Another generalization was obtained by Alon,Seymour, and Thomas [AST90], who showed that graphsthat do not have an h-clique minor have separators ofO(h3=2pn) nodes. Plotkin, Rao, and Smith [PRS94] re-duced the dependency on h from h3=2 to h. Using ge-ometric techniques, Miller, Teng, Thurston, and Vavasis[MT90, MTTV96a, MTTV96b, MTV91, MV91, Ten91]extended the planar separator theorem to graphs embed-ded in higher dimensions and showed that every well-shaped mesh in Rd has a 1=(d + 2)-separator of sizeO(n1�1=d). Using multicommodity 
ow, Leighton andRao [LR88] designed a partitioning method guaranteedto return a cut whose ratio of cut size to vertices sepa-rated is within logarithmic factors of optimal. While spec-tral methods have been favored in practice, they lacked aproof of e�ectiveness.1.2. Outline of paperIn Section 2, we introduce the concept of a graph par-tition, review some facts from linear algebra that we re-quire, and describe the class of spectral partitioning meth-ods. In Section 3, we prove the embedding lemma, whichrelates the quality of geometric embeddings of a graphwith its Fiedler value. We then show (using the mainresult of Section 4) that every planar graph has a \nice"embedding as a collection of spherical caps on the sur-face of a unit sphere in three dimensions. By applyingthe embedding lemma to this embedding, we prove thatthe Fiedler value of every bounded-degree planar graphis O(1=n). In Section 4, we show that, for almost everyarrangement of spherical caps on the unit sphere in Rd,there is a sphere-preserving map that transforms the capsso that the center of the sphere is the centroid of their cen-ters. It is this fact that enables us to �nd nice embeddingsof planar graphs. In Section 5, we extend our spectral pla-nar separator theorem to well-shaped meshes. This ex-tension enables us to show that the spectral method �ndscuts of ratio O(1=n1=d) for k-nearest neighbor graphs andwell-shaped �nite element meshes. In the full paper, weextend the results of Guattery and Miller to show thatour results are essentially the best possible given currentcharacterizations of well-shaped meshes. We present nat-



ural families of graphs for which Fiedler vectors can beused to �nd cuts of good ratio, but not good balance. Wediscuss why these graphs exist and why they might notappear in practice.2. Introduction to Spectral PartitioningIn this section, we de�ne the spectral partitioning methodand introduce the terminology that we will use through-out the paper.2.1. Graph PartitioningThroughout this paper, G = (V;E) will be a connected,undirected graph on n vertices.A partition of a graph G is a division of its vertices intotwo disjoint subsets, A and �A. Without loss of generality,we can assume that jAj � �� �A��. Let E(A; �A) be the set ofedges with one endpoint in A and the other in �A. Thecut size of the partition (A; �A) is simply jE(A; �A)j. Theratio of the cut, denoted �(A; �A), is equal to the ratio ofthe size of the cut to the size of A, namely,�(A; �A) = jE(A; �A)jmin(jAj; j �Aj) :The isoperimetric number of a graph, which measureshow good a cut ratio one can hope to �nd, is de�nedto be �(G) = minjAj�n=2 ��E(A; �A)��jAj :A partition is a bisection of G if A and �A di�er in sizeby at most 1. Given an algorithm that can �nd cuts ofratio � in G and its subgraphs, we can �nd a bisector ofG of size O(�n).Lemma 1. Assume that we are given an algorithm thatwill �nd a cut of ratio at most �(k) in every k-node sub-graph of G, for some monotonically decreasing function�. Then repeated application of this algorithm can be usedto �nd a bisection of G of size at mostZ nx=1 �(x)dx:Proof: The following algorithm (see [LT79, Gil80])will �nd the bisection.i. Initially, let D(0) = G, let A and B be empty sets,and let i = 0.ii. If D(i) is empty, then return A and B; otherwiserepeat

(a) Find a cut of ratio at most �(jD(i)j) that dividesD(i) into F (i) and F (i). We assume that jF (i)j �jF (i)j.(b) If jAj � jBj, let A = A [ F (i); otherwise, letB = B [ F (i);(c) Let D(i+1) = F (i+1), let i = i + 1, and returnto step (a).We assume that the algorithm terminates after t itera-tions. To show that this algorithm produces a bisection,we need to prove that, for all i in the range 0 � i < t,min(jAj; jBj) + jF (i)j � n=2. Because jF (i)j � jF (i)j,min(jAj; jBj)+jF (i)j � (jAj+jBj+jF (i)j+jF (i)j)=2 = n=2:We now analyze the total cut size. Because the al-gorithm �nds cuts of ratio at most �(jD(i)j) at the ithiteration, the number of edges we cut to separate F (i) isat most�(jD(i)j)jF (i)j = jF (i)jXj=1 �(jD(i)j)= jD(i)j�jF (i)j+1Xj=jD(i) j �(jD(i)j)� jD(i)j�jF (i)j+1Xj=jD(i) j �(j)The inequality follows from the fact that � is monoton-icly decreasing. The total number of edges cut by thisalgorithm is at mostt�1Xi=0 �(jD(i)j)jF (i)j � t�1Xi=00@jD(i)j�jF (i)j+1Xj=jD(i) j �(j)1A= nXj=1 �(j)� Z n1 �(x)dxThe last inequality follows from the assumption that � ismonotonically decreasing. 2Remark 2. If �(x) = x�1=d thenZ n1 �(x)dx = dd� 1(n1�1=d � 1):



Lipton and Tarjan [LT79] showed that by repeatedlyapplying an �-separator of size �pn, one can obtain abisection of size �=(1 � p1� �)pn. Gilbert [Gil80] ex-tended this result to graphs with positive vertex weightsat the expense of a 1=(1 � p2) factor in the bisec-tion bound. Djidjev and Gilbert [DG92] further gen-eralized this result to graphs with arbitrary weights.Leighton and Rao [LR88] showed that one can obtainan O(�)-approximation to a 1/3-separator from an �-approximation to a ratio cut.2.2. Laplacians and Fiedler VectorsThe adjacency matrix, A(G), of a graph G is the n �n matrix whose (i; j)-th entry is 1 if (i; j) 2 E and 0otherwise. The diagonal entries are de�ned to be 0. LetDbe the n�n diagonal matrix with entries Di;i = di, wheredi is the degree of the ith vertex of G. The Laplacian,L(G), of the graph G is de�ned to be L(G) = D � A.Notice that the all-ones vector is an eigenvector of anyLaplacian matrix and that its associated eigenvalue is 0.Because Laplacian matrices are positive semide�nite, alltheir other eigenvalues must be non-negative. We willfocus on the second smallest eigenvalue, �2, of the Lapla-cian and an associated eigenvector ~u. Fiedler called thiseigenvalue the \algebraic connectivity of a graph", so wewill call it the Fiedler value and an associated eigenvectora Fiedler vector.For any vector ~x 2 Rn, we have~xTL(G)~x = X(i;j)2E(xi � xj)2:Moreover, the Fiedler value, �2, of G is given by�2 = min~x?(1;1;:::;1) ~xTL(G)~x~xT~x ;with the minimum occurring only when ~x is a Fiedlervector. In general, the Rayleigh quotient of a vector ~x isgiven by ~xTL(G)~x=~xT~x.Alon [Alo86] and Sinclair and Jerrum [SJ88] provedthat graphs with small Fiedler value have a good ratiocut (Alon's theorem actually demonstrates the existenceof a small vertex separator). A corollary of an extensionof their work by Mihail [Mih89] demonstrates that onecan obtain a good ratio cut from any vector with smallRayleigh quotient that is perpendicular to the all-ones'svector (although this is not explicitly stated in her work).In the full version of this paper, we present a new proofof Mihail's theorem (see also [AM85, Fil91, DS91, Mih89]and [Moh89] for a tighter bound).

Theorem 3 (Mihail). Let G = (V;E) be a graph on nnodes of maximum degree �, let L(G) be its Laplacianmatrix, and let � be its isoperimetric number. For anyvector ~x 2 Rn such that Pni=1 xi = 0,~xTL(G)~x~xT ~x � �22� :Moreover, there is an s so that the cut(fi : xi � sg ; fi : xi > sg)has ratio at most �2=(2�).2.3. Spectral Partitioning MethodsLet ~u = (u1; :::; un) be a Fiedler vector of the Laplacianof a graph G. The idea of spectral partitioning is to �nd asplitting value s with which to partition the vertices of Ginto the set such that ui > s and the set such that ui � s.We call such a partition a Fiedler cut. Popular choices forthe splitting value s are: bisection cut, in which s is themedian of fu1; :::; ung; ratio cut, in which s is the valuethat gives the best cut ratio; sign cut, in which s is equalto 0; and gap cut, in which s is a value in the largest gapin the sorted list of Fiedler vector components. Othervariations have been proposed.In this paper, we will analyze the spectral method thatuses the splitting value that achieves the best cut ratio.We will show that, for bounded-degree planar graphs andwell-shaped meshes, it always �nds a good ratio cut. Be-cause of Theorem 3, an approximation to a Fiedler vectorwill su�ce.Guattery and Miller [GM95] have shown that thereexist bounded-degree planar graphs on n vertices withconstant-size separators for which spectral bisection andspectral sign cuts give separators that cut n=3 edges.Our bound on the Fiedler values of bounded degree pla-nar graphs implies that they have Fiedler cuts of ratioO(1=pn). By Lemma 1, our result implies that a bisec-tor of size O(pn) can be found by repeatly �nding Fiedlercuts. Such repetition is necessary. In the full paper, weextend the results of Guattery and Miller to show thatthis repeated application of Fiedler cuts is required, evenfor some quite natural graphs. We will show that, for anyconstant � in the range 0 < � � 1=2, there are naturalfamilies of well-shaped two-dimensional meshes that haveno Fiedler cut of small ratio that is also a �-separator.We discuss why these graphs exist as well as why theymight fail to arise in practice.



3. The Fiedler value of planar graphsIn this section, we will prove that the Fiedler value ofevery bounded-degree planar graph is O(1=n). Our proofestablishes and exploits a connection between the Fiedlervalue and geometric embeddings of graphs. We obtainthe eigenvalue bound by demonstrating that every planargraph has a \nice" embedding in Euclidean space.A bound ofO(1=pn) can be placed on the Fiedler valueof any planar graph by combining the planar separatortheorem of Lipton and Tarjan [LT79] with the fact that�2=2 � �(G). Bounds of O(1=n) on the Fiedler values ofplanar graphs were previously known for graphs such asregular grids [PSL90], quasi-uniform graphs [GK95], andbounded-degree trees. Bounds on the Fiedler values ofregular grids and quasi-uniform graphs essentially followfrom the fact that the diameters of these graphs are large(see [Chu89]). Bounds on trees can be obtained from thefact that every bounded-degree tree has a �-separator ofsize 1 for some constant � in the range 0 < � < 1=2 thatdepends only on the degree. However, in order to estimatethe Fiedler value of general bounded-degree planar graphsand well-shaped meshes, we need di�erent techniques.We denote the standard l2 norm of a vector ~x in Eu-clidean space by k~xk = pxTx. We relate the quality of anembedding of a graph in Euclidean space with its Fiedlervalue by the following lemma:Lemma 4 (embedding lemma). Let G = (V;E) be agraph. Then �2, the Fiedler value of G, is given by�2 = minP(i;j)2E k~vi � ~vjk2Pni=1 k~vik2 ;where the minimum is taken over vectors f~v1; : : : ; ~vng �Rn such that Pni=1 ~vi = ~0, where ~0 denotes the all-zeroesvector.Proof: Consider the n2 by n2 matrix consisting of ndiagonal blocks of L(G). The eigenvalues of this matrixare the same as the eigenvalues of L(G). The lemma fol-lows because the condition that the sum of the vectors be~0 implies that the expression minimized above is just theRayleigh quotient of a vector orthogonal to the eigenvec-tors with eigenvalue zero. 2Our method of �nding a good geometric embedding ofa planar graph is similar to the way in which Miller, Teng,Thurston, and Vavasis [MTTV96a] directly �nd good sep-arators of planar graphs.We �rst �nd an embedding of the graph on the plane byusing the \kissing disk" embedding of Koebe, Andreev,and Thurston [Koe36, And70a, And70b, Thu88]:

Theorem 5 (Koebe-Andreev-Thurston). Let G be aplanar graph with vertex set V = f1; : : : ; ng and edge setE. Then, there exists a set of disks fD1; : : : ; Dng in theplane with disjoint interiors such that Di touches Dj ifand only if (i; j) 2 E.Such an embedding is called a kissing disk embedding ofG.The analogue of a disk on the sphere is a cap. A cap isgiven by the intersection of a half-space with the sphere,and its boundary is a circle. We de�ne kissing caps anal-ogously with kissing disks. Following [MTTV96a], we usestereographic projection to map the kissing disk embed-ding of a graph on the plane to a kissing cap embedding onthe sphere (See Section 4 for more information on stereo-graphic projection). In Theorem 9, we will show that wecan �nd a sphere preserving map that sends the centroid(also known as the center of gravity or center of mass) ofthe centers of the caps to the center of the sphere. Us-ing this theorem, we can bound the eigenvalues of planargraphs:Theorem 6. Let G be a planar graph on n nodes of de-gree at most �. Then, the Fiedler value of G is at most8�n :Accordingly, G has a Fiedler cut of ratio O(1=pn), andone can iterate Fiedler cuts to �nd a bisector of sizeO(pn).Proof: By Theorem 5 and Theorem 9, there is a rep-resentation of G by kissing caps on the unit sphere so thatthe centroid of the centers of the caps is the center of thesphere. Let ~v1; : : : ; ~vn be the centers of these caps. Makethe center of the sphere the origin, so that Pni=1 ~vi = ~0.Let r1; : : : ; rn be the radii of the caps. If cap i kissescap j, then the edge from ~vi to ~vj will have length at most(ri+rj)2. As this is at most 2(r2i +r2j ), we can divide thecontribution of this edge between the two caps. That is,we write X(i;j)2E k~vi � ~vjk2 � 2� nXi=1 r2i :But, because the caps do not overlap,nXi=1 �r2i � 4�:Moreover, k~vik = 1 because the vectors are on the unitsphere.



Applying the embedding lemma, we �nd that theFiedler value of G is at mostP(i;j)2E k~vi � ~vjk2Pni=1 k~vik2 � 8�n :Given the bound on the Fiedler value, the ratio achievableby a Fiedler cut follows from Theorem 3 and the corre-sponding bisector size follows from Lemma 1. 24. Sphere-preserving mapsLet Bd be the unit ball in d dimensions:((x1; : : : ; xd)j nXi=1 x2i � 1) :Let Sd denote the sphere de�ning the surface of Bd. Asphere-preserving map from Sd to Sd is a continuous func-tion that sends every sphere (of lower dimension) con-tained in Sd to a sphere in Sd and such that every spherein Sd has a pre-image under the map that is also a sphere.Familiar sphere-preserving maps include rotations andthe map that sends each point to its antipode.We will make use of a slightly larger family of sphere-preserving maps. We obtain this family by �rst con-sidering sphere-preserving maps between the sphere andthe plane. Let Hd be the hyperplane tangent to Sd at(�1; 0; : : : ; 0). One can map Hd to Sd by stereographicprojection: � : Hd ! Sd by�(z) = the intersection of Sd withthe line connecting zto (1; 0; : : : ; 0):Similarly, one de�nes a map ��1 : Sd ! Hd that sendsa point z 2 Sd to the intersection of Hd with the linethrough z and (1; 0; : : : ; 0). Note that ��1 is not well-de�ned at (1; 0; : : : ; 0). To �x this, we add the point 1to the hyperplane Hd, and de�ne ��1(1; 0; : : : ; 0) = 1as well as �(1) = (1; 0; : : : ; 0).For any point � 2 Sd, we de�ne �� to be the stere-ographic projection from the plane perpendicular to Sdat �, and we let ��1� be its inverse (so, �(1) = ��).One can show that the maps �� and ��1� are sphere-preserving maps (see [HCV52] or [MTTV96a] for a proof).Sphere-preserving maps in the plane include rigid mo-tions of the plane as well as dilations (and other mobiustransformations). We will obtain sphere-preserving mapsin the sphere by applying a projection onto a plane, thenapplying a dilation of the plane, and then mapping back

by stereographic projection. For � 2 Sd and a � 0,we de�ne Da� to be the map that dilates the hyperplaneperpendicular to Sd at � by a factor of a (note thatDa�(1) =1). For example,Da(�1;0;:::;0) : (�1; x2; : : : ; xd) 7! (�1; ax2; : : : ; axd):As the composition of sphere-preserving maps is againa sphere-preserving map, we can now de�ne the sphere-preserving maps that we will use. For any � such thatk�k < 1, de�ne f�(z) byf�(z) = ��=k�k �D1�k�k�=k�k (��1�=k�k(z))� :It is routine to verify that f� is continuous. We wish toextend the de�nition of f� to � on S2, even though theresulting maps will not be continuous. For k�k = 1, wede�ne f�(z) = � �� if z = ��, and� otherwise.We will now examine the e�ect of the maps f� on ar-rangements of spherical caps on Sd. Recall that a spheri-cal cap on Sd is a connected region of Sd whose boundaryis a (d� 1)-dimensional sphere. Thus, the image of a capunder a map f� is determined by the image of its bound-ary along with a point in its interior. For a cap C onSd, let p(C) denote the point on Sd that is the centerof C (i.e., the point inside C that is equidistant from itsboundary). We want to show that, for any arrangementof caps fC1; : : : ; Cng on Sd, there is an � 2 Sd so thatthe centroid of fp(f�(C1)); : : : ; p(f�(Cn))g is the origin.But �rst, we must exclude some degenerate cases:De�nition 7. An arrangement of caps fC1; : : : ; Cng inSd is well-behaved if there is no point that belongs to atleast half of the caps.Remark 8. All of the arrangements of caps obtainedfrom graphs contained in the other sections of this paperare well-behaved. Otherwise, the induced graphs wouldhave cliques on half of their vertices and no small sepa-rators.Theorem 9. For any well-behaved arrangement of capsfC1; : : : ; Cng in Sd, there is a sphere-preserving map f�such that the centroid of the centers of ff�(C1); : : : ; f�(Cn)gis the origin.Proof: We will show that there is an � so that k�k < 1and Pni=1 p(f�(Ci))n = ~0:



Consider the map from � to the centroid offp(f�(C1)); : : : ; p(f�(Cn))g :We want to show that ~0 has a preimage under this map.This would be easier if the map were continuous, but it isnot continuous for k�k = 1: as �� crosses the boundaryof Ci, p(f�(Ci)) jumps from one side of the sphere to theother.To �x this problem, we construct a slightly modi�edmap that is continuous. Because the set of caps is well-behaved, we can choose an � > 0 so that, for all � suchthat k�k � 1� �, most of the caps ff�(C1); : : : ; f�(Cn)gare entirely contained within the ball of radius 1=2naround �=k�k. This implies that f� does not map thecentroid of the centers of the caps to the origin. For� 2 Bd, we now de�ne the map�(�) = Pni=1 w(Ci; �)f�(p(Ci))n ;where the weight function w is given byw(C;�) = � (2� d(�;C))=� if d(�;C) � 2� �, and1 otherwise,where by d(�;C), we mean the greatest distance from �to a point in the cap C (for example, if ��=k�k 2 C, thend(�;C) = 1+k�k). We have chosen w to be a continuousfunction of � that goes to zero as �� approaches theboundary of a cap; so, �(�) is also a continuous function.From the fact that fC1; : : : ; Cng is well-behaved, it iseasy to verify that, for � 2 Sd, �(�) lies on the lineconnecting ~0 to � and is closer to � than it is to ��.Combined with Lemma 10, this implies that there is an� such that �(�) = ~0. Our choice of � implies that k�k <1��; so, all of the w(�;Ci) terms are 1 and f� is the mapwe are looking for. 2Lemma 10. Let � : Bd ! Bd be a continuous functionsuch that, for all � 2 Sd, �(�) lies on the line connecting� with ~0 and is closer to � than it is to ��. Then, thereexists an � 2 Bd such that �(�) = ~0.Proof: Assume, by way of contradiction, that there isno point � 2 Bd such that �(�) = ~0. Now, consider themap b(�(�)), where b : Bd � n~0o! Sd by b(z) = z=kzk.Since b is a continuous map, b � � is a continuous map ofBd onto Sd that is the identity on Sd. Then z 7! �b(�(z))is a map from Bd onto Sd that has no �xed point. Thiscontradicts Brouwer's Fixed Point Theorem, which saysthat every continuous map from Bd into Bd has a �xedpoint. 2

We have shown that, for all well-behaved collections ofballs in Hd, there is a sphere preserving map from Hd toSd so that the centroid of the centers of the caps is theorigin. We now show that one can �nd such a map byperforming a rigid motion of Hd followed by a dilationof Hd followed by stereographic projection. We will needthis stronger theorem when we bound the Fiedler valuesof well-shaped meshes.De�nition 11. An arrangement of balls fD1; : : : ; Dng inHd is well-behaved if there is no point that belongs to atleast half of the balls.Theorem 12. Let fD1; : : : ; Dng be a well-behaved col-lection of balls. Then, there is a point x 2 Hd and ana > 0 so that the sphere preserving mapgx;a : z 7! �(a(z � x))sends the balls to a collection of caps, the centroid ofwhose centers is the origin.Proof: [sketch] For an � 2 Sd, consider the mapg��1(�);(1�k�k) followed by a rotation of the sphere thatsends (�1; 0; : : : ; 0) to �. As we did in the proof of The-orem 9, we can construct a continuous map from � toa weighted centroid of the centers of the caps, which for� 2 Sd sends � to a point on the line segment between� and ~0. We can then apply Lemma 10 to prove thatthere is some map � such that the map g��1(�);(1�k�k)sends the centroid of the centers of the caps to the origin.25. The Spectra of Well-Shaped MeshesOne of the main applications of the spectral method is thepartitioning of meshes for parallel numerical simulations.Many experments demonstrate the e�ectiveness of thismethod [BS92, HL92, HL93, PSL90, Sim91, Wil90]. Inthis section, we explain why the spectral method �ndssuch good partitions of well-shaped meshes.5.1. Modeling Well-Shaped MeshesThe graphs that we consider are de�ned by neighborhoodsystems. A neighborhood system is a set of closed balls inEuclidean space. A k-ply neighborhood system is onein which no point is contained in the interior of morethan k of the balls. Given a neighborhood system, � =fB1; : : : ; Bng, we de�ne the intersection graph of � to be



the undirected graph with vertex set V = fB1; : : : ; Bngand edge set E = f(Bi; Bj) : Bi \ Bj 6= ;g :We will use overlap graphs to model well-shapedmeshes (Miller et al [MTTV96a]). An overlap graph isbased on a k-ply neighborhood system. The neighbor-hood system and a parameter, � � 1, de�ne an overlapgraph: Let � � 1, and let � = fB1; : : : ; Bng be a k-plyneighborhood system in Rd. The �-overlap graph of � isthe graph with vertex set fB1; : : : ; Bng and edge setf(Bi; Bj) : (Bi \ (� �Bj) 6= ;) and ((� � Bi) \ Bj 6= ;)g;where by � � B, we mean the ball whose center is thesame as the center of B and whose radius is larger by amultiplicative factor of �.Overlap graphs are good models for well-shaped meshesbecause each well-shaped mesh in two, three, or higherdimensions is a bounded-degree subgraph of some over-lap graph (for suitable choices of the parameters � andk) [MTTV96a, MTTW95, Ten96, MV91].5.2. Spherical Embeddings of OverlapGraphsIn this section, we show that an �-overlap graph is asubgraph of the intersection graph obtained by projectingits neighborhoods onto the sphere and then dilating eachby an O(�) factor. By choosing the proper projection,we are able to use this fact to bound the eigenvalues ofthese graphs.In this section, we use the following notation: Capitalletters denote balls in Rd. If A is a ball in Rd, then wewill use A0 to denote its image on the sphere Sd+1 understereographic projection. If � is positive and A is a ballof radius r, then � � A is the ball with the same centeras A and radius �r. Similarly, if A0 is a spherical cap ofspherical radius r, then � � A0 is the spherical cap withthe same center as A0 and radius �r. Vd is the volume ofa unit d-dimensional ball and Ad is the surface volume ofa unit d-dimensional ball.Theorem 13. Let � � 1 and let A and B be balls in Rdsuch that(A \ (� �B) 6= ;) and ((� �A) \ B 6= ;):Then, (��+ �+ �) � A0 touches (�� + �+ �) � B0.Our proof uses two lemmas that handle orthogonal specialcases.

Lemma 14. Let A and C be balls in Rd equidistant fromthe origin and having the same radius. Let A0 and C 0 betheir images under stereographic projection onto Sd+1. If� �A touches � �C, then (��=2) �A0 touches (��=2) �C 0.Lemma 15. Let A and B be balls in Rd so that the centerof A, the center of B, and the origin are colinear and theorigin does not lie on the line segment between the centerof A and the center of B. If A is closer to the origin thanB and � � A touches B, then � �A0 touches B0.Proof: [of Theorem 13] Let A and B be any twoballs in Rd and let A0 and B0 be their images under stere-ographic projection on Sd+1. Assume that � � A touchesB and � �B touches A. We will show that (��+�+�) �A0touches (�� + �+ �) �B0.Assume, without loss of generality, that A is at leastas large as B. Let C be the disk of the same distance tothe origin as A and congruent to A that is closest to B.Then, the centers of C and B are colinear with the origin.Let C 0 be the image of C. Since C is closer to B than Ais, � � C touches B and � � B touches A. By Lemma 15,� � C 0 touches � �B0.The distance between the centers of A and B is lessthan (� + 1) times the radius of A (because we assumethat A is at least as large as B). The same holds for thedistance between the center of C and the center of B.Therefore, (� + 1) � A touches (� + 1) � C, so Lemma 14implies that �(�+1)=2�A0 touches �(�+1)=2�C 0. Since A0and C 0 have the same spherical radius, ��C 0 � (�(�+1)+�)A0. Thus, (��+�+�) �A0 must touch (��+�+�) �B0.25.3. The Spectral BoundWe now show that the Fiedler value of a bounded degreesubgraph of an �-overlap graph is small.Theorem 16. If G is a subgraph of an �-overlap graphof a k-ply neighborhood system in Rd and the maxi-mum degree of G is �, then the Fiedler value of L(G)is bounded by 
d��2(k=n)2=d, where 
d = 2(� + 1 +�=�)2(Ad+1=Vd)2=d. Accordingly, G has a Fiedler cut ofratio O���(k=n)1=d�, and one can iterate Fiedler cuts toobtain a bisector of size O���k1=dn1�1=d�.Proof: Let � = fB1; :::; Bng be the k-ply neighbor-hood system whose intersection graph contains G. ByTheorem 12, there is a stereographic projection � fromRd onto a particular sphere Sd+1 so that the centroid
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