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Abstract

Spectral partitioning methods use the Fiedler vector—
the eigenvector of the second-smallest eigenvalue of the
Laplacian matric—to find a small separator of a graph.
These methods are important components of many sci-
entific numerical algorithms and have been demonstrated
by experiment to work extremely well. In this paper,
we show that spectral partitioning methods work well on
bounded-degree planar graphs and finite element meshes—
the classes of graphs to which they are usually applied.
While naive spectral bisection does not necessarily work,
we prove that spectral partitioning techniques can be used
to produce separators whose ratio of vertices removed to
edges cut is O(y/n) for bounded-degree planar graphs and
two-dimensional meshes and O(nl/d) for well-shaped d-
dimensional meshes. The heart of our analysis is an up-
per bound on the second-smallest eigenvalues of the Lapla-
cian matrices of these graphs: we prove a bound of O(1/n)
for bounded-degree planar graphs and 0(1/n2/d) for well-
shaped d-dimensional meshes.
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1. Introduction

Spectral partitioning has become one of the most success-
ful heuristics for partitioning graphs and matrices. It is
used in many scientific numerical applications, such as
mapping finite element calculations on parallel machines
[Sim91, Wil90], solving sparse linear systems [PSW92],
and partitioning for domain decomposition [CR87, CS93].
It is also used in VLSI circuit design and simulation
[CSZ93, HK92, AK95]. Substantial experimental work
has demonstrated that spectral methods find good par-
titions of the graphs and matrices that arise in many
applications [BS92, HL92, HL93, PSLI0, Sim91, Wil90].
However, the quality of the partition that these methods
should produce has so far eluded precise analysis. In this
paper, we will prove that spectral partitioning methods
give good separators for the graphs to which they are
usually applied.

The size of the separator produced by spectral meth-
ods can be related to the Fiedler value—the second small-
est eigenvalue of the Laplacian—of the adjacency struc-
ture to which they are applied. By showing that well-
shaped meshes in d dimensions have Fiedler value at most
O(1/n?/?), we show that spectral methods can be used to
find bisectors of these graphs of size at most O(n!=%/¢).
While a small Fiedler value does not immediately im-
ply that there is a cut along the Fiedler vector that is
a balanced separator, it does mean that there is a cut
whose ratio of vertices separated to edges cut is O(n'/?).
By removing the vertices separated by this cut, comput-
ing a Fiedler vector of the new graph, and iterating as
necessary, one can find a bisector of O(nl’l/d) edges.
In particular, we prove that maximum-degree A planar
graphs have Fiedler value at most 8A/n, which implies
that spectral techniques can be used to find bisectors of
size at most O(y/n) in these graphs. These bounds are the



best possible for well-shaped meshes and planar graphs.

1.1. History

The spectral method of graph partitioning was born in
the works of Donath and Hoffman [DH72, DH73] who first
suggested using the eigenvectors of adjacency matrices of
graphs to find partitions. Fiedler [Fie73, Fie75a, Fie75b]
associated the second-smallest eigenvalue of the Laplacian
of a graph with its connectivity and suggested partition-
ing by splitting vertices according to their value in the
corresponding eigenvector. Thus, we call this eigenvalue
the Fiedler value and a corresponding vector a Fiedler
vector.

A few years later, Barnes and Hoffman [Bar82, BH84]
used linear programming in combination with an exam-
ination of the eigenvectors of the adjacency matrix of a
graph. In a similar vein, Boppana [Bop87] analyzed eigen-
vector techniques in conjunction with convex program-
ming. However, the use of linear and convex program-
ming made these techniques impractical for most appli-
cations.

By recognizing a relation between the Fiedler value
and the Cheeger constant [Che70] of continuous mani-
folds, Alon [Alo86] and Sinclair and Jerrum [SJ89] demon-
strated that if the Fiedler value of a graph is small,
then directly partitioning the graph according to the
values of vertices in the eigenvector will produce a cut
with a good ratio of cut edges to separated vertices
(see also [AMS85, Fil91, DS91, Mih89, Moh89]). Around
the same time, improvements in algorithms for approxi-
mately computing eigenvectors, such as the Lanczos al-
gorithm, made the computation of eigenvectors practi-
cal [PSS82, Sim91]. In the next few years, a wealth of
experimental work demonstrated that spectral partition-
ing methods work well on graphs that usually arise in
practice [BS92, HL92, PSL90, Sim91, Wil90]. Still, re-
searchers were unable to prove that spectral partitioning
techniques would work well on the graphs encountered
in practice. This failure is partially explained by results
of Guattery and Miller [GM95] demonstrating that naive
applications of spectral partitioning, such as spectral bi-
section, will fail miserably on some graphs that could
conceivably arise in practice. By bounding the Fiedler
values of the graphs of interest in scientific applications—
bounded-degree planar graphs and well-shaped meshes—
we are able to show that spectral partitioning methods
will successfully find good partitions of these graphs.

In a related line of research, algorithms were devel-
oped along with proofs that they will always find small
separators in various families of graphs. The seminal

work in this area was that of Lipton and Tarjan [LT79],
who constructed a linear-time algorithm that produces a
1/3-separator of v/8n nodes in any n-node planar graph.
Their result improved a theorem of Ungar [Ung51] which
demonstrated that every planar graph has a separa-
tor of size O(y/nlogn). Gilbert, Hutchinson, and Tar-
jan [GHTS84] extended these results to show that ev-
ery graph of genus at most g has a separator of size
O(\/g_ ) Another generalization was obtained by Alon,
Seymour, and Thomas [AST90], who showed that graphs
that do not have an h-clique minor have separators of
O(h*/?\/n) nodes. Plotkin, Rao, and Smith [PRS94] re-
duced the dependency on h from h3/2 to h. Using ge-
ometric techniques, Miller, Teng, Thurston, and Vavasis
[MT90, MTTV96a, MTTV96b, MTV91, MV91, Ten91]
extended the planar separator theorem to graphs embed-
ded in higher dimensions and showed that every well-
shaped mesh in R? has a 1/(d + 2)-separator of size
O(n'~Y/%). Using multicommodity flow, Leighton and
Rao [LR88] designed a partitioning method guaranteed
to return a cut whose ratio of cut size to vertices sepa-
rated is within logarithmic factors of optimal. While spec-
tral methods have been favored in practice, they lacked a
proof of effectiveness.

1.2. Outline of paper

In Section 2, we introduce the concept of a graph par-
tition, review some facts from linear algebra that we re-
quire, and describe the class of spectral partitioning meth-
ods. In Section 3, we prove the embedding lemma, which
relates the quality of geometric embeddings of a graph
with its Fiedler value. We then show (using the main
result of Section 4) that every planar graph has a “nice”
embedding as a collection of spherical caps on the sur-
face of a unit sphere in three dimensions. By applying
the embedding lemma to this embedding, we prove that
the Fiedler value of every bounded-degree planar graph
is O(1/n). In Section 4, we show that, for almost every
arrangement of spherical caps on the unit sphere in R?,
there is a sphere-preserving map that transforms the caps
so that the center of the sphere is the centroid of their cen-
ters. It is this fact that enables us to find nice embeddings
of planar graphs. In Section 5, we extend our spectral pla-
nar separator theorem to well-shaped meshes. This ex-
tension enables us to show that the spectral method finds
cuts of ratio O(1/n'/?) for k-nearest neighbor graphs and
well-shaped finite element meshes. In the full paper, we
extend the results of Guattery and Miller to show that
our results are essentially the best possible given current
characterizations of well-shaped meshes. We present nat-



ural families of graphs for which Fiedler vectors can be
used to find cuts of good ratio, but not good balance. We
discuss why these graphs exist and why they might not
appear in practice.

2. Introduction to Spectral Partitioning

In this section, we define the spectral partitioning method
and introduce the terminology that we will use through-
out the paper.

2.1.

Throughout this paper, G = (V, E) will be a connected,
undirected graph on n vertices.

A partition of a graph G is a division of its vertices into
two disjoint subsets, A and A. Without loss of generality,
we can assume that |A| < |A|. Let E(A, A) be the set of
edges with one endpoint in A and the other in A. The
cut size of the partition (A, A) is simply |E(A, A)|. The
ratio of the cut, denoted ¢(A, A), is equal to the ratio of
the size of the cut to the size of A, namely,
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The isoperimetric number of a graph, which measures
how good a cut ratio one can hope to find, is defined
to be B

E(4, A)|

#(G) = a

= min
|A[<n/2
A partition is a bisection of G if A and A differ in size
by at most 1. Given an algorithm that can find cuts of
ratio ¢ in G and its subgraphs, we can find a bisector of
G of size O(¢n).

Lemma 1. Assume that we are given an algorithm that
will find a cut of ratio at most ¢p(k) in every k-node sub-
graph of G, for some monotonically decreasing function
¢. Then repeated application of this algorithm can be used
to find a bisection of G of size at most

/w :1 6 (x)de.

Proof: The following algorithm (see [LT79, Gil80])
will find the bisection.

i. Initially, let D(® = G, let A and B be empty sets,
and let « = 0.

ii. If D is empty, then return A and B; otherwise
repeat

(a) Find a cut of ratio at most ¢(|D(?)|) that divides
D@ into F() and F(9). We assume that |F(?] <

|F@).

(b) If |A] < |BJ, let A = AU F®; otherwise, let
B=BUFW;

(c) Let DUt = FG+1) let 4 = 4 + 1, and return
to step (a).

We assume that the algorithm terminates after ¢ itera-
tions. To show that this algorithm produces a bisection,
we need to prove that, for all ¢ in the range 0 < ¢ < ¢,
min(|A|, |B|) + |F?| < n/2. Because |F)| < |F()],

min(|4|, |B))+|F7| < (JA|+[Bl+|FO|+|FO])/2 = n/2.

We now analyze the total cut size. Because the al-
gorithm finds cuts of ratio at most ¢(|D?|) at the ith
iteration, the number of edges we cut to separate F(?) ig
at most

|[F)
> (D))
j=1

|D(")\7\F(i)\+1

- 3

J=ID®)|

p(IDINIFO] =

$(|D))

DO |~ |F® |41

¢(J)

IN

j=|D)]

The inequality follows from the fact that ¢ is monoton-
icly decreasing. The total number of edges cut by this
algorithm is at most

t—1 ' , t—1 [IDW|—|FO|+1
> e(IDIPIFD] < Y > sl
i=0 i=0 j=|D®]

n

= 2 90)

< [ s

The last inequality follows from the assumption that ¢ is
monotonically decreasing. a

Remark 2. If ¢(x) = z=/¢ then

/1” d(x)ds = d;il(nlfl/d —1).



Lipton and Tarjan [LT79] showed that by repeatedly
applying an a-separator of size 34/n, one can obtain a
bisection of size 3/(1 — /1 — a)y/n. Gilbert [Gil80] ex-
tended this result to graphs with positive vertex weights
at the expense of a 1/(1 — +/2) factor in the bisec-
tion bound. Djidjev and Gilbert [DG92] further gen-
eralized this result to graphs with arbitrary weights.
Leighton and Rao [LR88] showed that one can obtain
an O(a)-approximation to a 1/3-separator from an a-
approximation to a ratio cut.

2.2. Laplacians and Fiedler Vectors

The adjacency matrix, A(G), of a graph G is the n x
n matrix whose (i,j)-th entry is 1 if (¢,j) € E and 0
otherwise. The diagonal entries are defined to be 0. Let D
be the n x n diagonal matrix with entries D; ; = d;, where
d; is the degree of the ith vertex of G. The Laplacian,
L(QG), of the graph G is defined to be L(G) = D — A.

Notice that the all-ones vector is an eigenvector of any
Laplacian matrix and that its associated eigenvalue is 0.
Because Laplacian matrices are positive semidefinite, all
their other eigenvalues must be non-negative. We will
focus on the second smallest eigenvalue, A», of the Lapla-
cian and an associated eigenvector @. Fiedler called this
eigenvalue the “algebraic connectivity of a graph”, so we
will call it the Fiedler value and an associated eigenvector
a Fiedler vector.

For any vector & € R", we have

.i"TL(G).i": Z (Iz — .Z'j)2.

(i,4)EE
Moreover, the Fiedler value, Az, of G is given by

#L(G)T

A2= —
7Ty 7’

min
FL(1,1,...,1)
with the minimum occurring only when Z is a Fiedler
vector. In general, the Rayleigh quotient of a vector Z is
given by #/' L(G)#/# z.

Alon [Alo86] and Sinclair and Jerrum [SJ88] proved
that graphs with small Fiedler value have a good ratio
cut (Alon’s theorem actually demonstrates the existence
of a small vertex separator). A corollary of an extension
of their work by Mihail [Mih89] demonstrates that one
can obtain a good ratio cut from any vector with small
Rayleigh quotient that is perpendicular to the all-ones’s
vector (although this is not explicitly stated in her work).
In the full version of this paper, we present a new proof
of Mihail’s theorem (see also [AMS85, Fil91, DS91, Mih89]
and [Moh89] for a tighter bound).

Theorem 3 (Mihail). Let G = (V, E) be a graph on n
nodes of maximum degree A, let L(G) be its Laplacian
matrix, and let ¢ be its isoperimetric number. For any
vector & € R™ such that ).\ x; =0,

TLG)E | ¢
A7~ 2A

Moreover, there is an s so that the cut
iz <s},{i:z; >s})

has ratio at most ¢ /(2A).

2.3. Spectral Partitioning Methods

Let @ = (uq,...,u,) be a Fiedler vector of the Laplacian
of a graph GG. The idea of spectral partitioning is to find a
splitting value s with which to partition the vertices of G
into the set such that u; > s and the set such that u; < s.
We call such a partition a Fiedler cut. Popular choices for
the splitting value s are: bisection cut, in which s is the
median of {uy, ...,up}; ratio cut, in which s is the value
that gives the best cut ratio; sign cut, in which s is equal
to 0; and gap cut, in which s is a value in the largest gap
in the sorted list of Fiedler vector components. Other
variations have been proposed.

In this paper, we will analyze the spectral method that
uses the splitting value that achieves the best cut ratio.
We will show that, for bounded-degree planar graphs and
well-shaped meshes, it always finds a good ratio cut. Be-
cause of Theorem 3, an approximation to a Fiedler vector
will suffice.

Guattery and Miller [GM95] have shown that there
exist bounded-degree planar graphs on n vertices with
constant-size separators for which spectral bisection and
spectral sign cuts give separators that cut n/3 edges.
Our bound on the Fiedler values of bounded degree pla-
nar graphs implies that they have Fiedler cuts of ratio
O(1/y/n). By Lemma 1, our result implies that a bisec-
tor of size O(y/n) can be found by repeatly finding Fiedler
cuts. Such repetition is necessary. In the full paper, we
extend the results of Guattery and Miller to show that
this repeated application of Fiedler cuts is required, even
for some quite natural graphs. We will show that, for any
constant 0 in the range 0 < 6 < 1/2, there are natural
families of well-shaped two-dimensional meshes that have
no Fiedler cut of small ratio that is also a Jd-separator.
We discuss why these graphs exist as well as why they
might fail to arise in practice.



3. The Fiedler value of planar graphs

In this section, we will prove that the Fiedler value of
every bounded-degree planar graph is O(1/n). Our proof
establishes and exploits a connection between the Fiedler
value and geometric embeddings of graphs. We obtain
the eigenvalue bound by demonstrating that every planar
graph has a “nice” embedding in Euclidean space.

A bound of O(1/+/n) can be placed on the Fiedler value
of any planar graph by combining the planar separator
theorem of Lipton and Tarjan [LT79] with the fact that
A2/2 < ¢(G). Bounds of O(1/n) on the Fiedler values of
planar graphs were previously known for graphs such as
regular grids [PSL90], quasi-uniform graphs [GK95], and
bounded-degree trees. Bounds on the Fiedler values of
regular grids and quasi-uniform graphs essentially follow
from the fact that the diameters of these graphs are large
(see [Chu89]). Bounds on trees can be obtained from the
fact that every bounded-degree tree has a d-separator of
size 1 for some constant ¢ in the range 0 < § < 1/2 that
depends only on the degree. However, in order to estimate
the Fiedler value of general bounded-degree planar graphs
and well-shaped meshes, we need different techniques.

We denote the standard l> norm of a vector Z in Eu-
clidean space by ||| = VaTxz. We relate the quality of an
embedding of a graph in Euclidean space with its Fiedler
value by the following lemma:

Lemma 4 (embedding lemma). Let G = (V, E) be a
graph. Then Aq, the Fiedler value of G, is given by

Z(@j)eE 1v; — 6j||2
Y@
where the minimum is taken over vectors {vy,...,7,} C

R™ such that Y, | U; = 0, where 0 denotes the all-zeroes
vector.

A2 = min

Proof:  Consider the n? by n? matrix consisting of n
diagonal blocks of L(G). The eigenvalues of this matrix
are the same as the eigenvalues of L(G). The lemma fol-
lows because the condition that the sum of the vectors be
0 implies that the expression minimized above is just the
Rayleigh quotient of a vector orthogonal to the eigenvec-
tors with eigenvalue zero. a

Our method of finding a good geometric embedding of
a planar graph is similar to the way in which Miller, Teng,
Thurston, and Vavasis [MTTV96a] directly find good sep-
arators of planar graphs.

We first find an embedding of the graph on the plane by
using the “kissing disk” embedding of Koebe, Andreev,
and Thurston [Koe36, And70a, And70b, Thu88]:

Theorem 5 (Koebe-Andreev-Thurston). Let G be a
planar graph with vertex set V.= {1,...,n} and edge set
E. Then, there ezists a set of disks {Dy,...,D,} in the
plane with disjoint interiors such that D; touches D; if
and only if (i,j) € E.

Such an embedding is called a kissing disk embedding of
G.

The analogue of a disk on the sphere is a cap. A cap is
given by the intersection of a half-space with the sphere,
and its boundary is a circle. We define kissing caps anal-
ogously with kissing disks. Following [MTTV96a], we use
stereographic projection to map the kissing disk embed-
ding of a graph on the plane to a kissing cap embedding on
the sphere (See Section 4 for more information on stereo-
graphic projection). In Theorem 9, we will show that we
can find a sphere preserving map that sends the centroid
(also known as the center of gravity or center of mass) of
the centers of the caps to the center of the sphere. Us-
ing this theorem, we can bound the eigenvalues of planar
graphs:

Theorem 6. Let G be a planar graph on n nodes of de-
gree at most A. Then, the Fiedler value of G is at most

8A
—-

Accordingly, G has a Fiedler cut of ratio O(1/+/n), and
one can iterate Fiedler cuts to find a bisector of size

O(v/n).

Proof: By Theorem 5 and Theorem 9, there is a rep-
resentation of G by kissing caps on the unit sphere so that
the centroid of the centers of the caps is the center of the
sphere. Let ¢, ..., 7, be the centers of these caps. Make
the center of the sphere the origin, so that > . | ¥; = 0.
Let rq,...,r, be the radii of the caps. If cap i kisses
cap j, then the edge from ¥; to @; will have length at most
(ri+7;)?. As this is at most 2(r} +77), we can divide the
contribution of this edge between the two caps. That is,

we write
n
S e -5l <283 02

(id)EE i=1

But, because the caps do not overlap,

n
Z mr? < 4.
i=1

Moreover, ||7;]] = 1 because the vectors are on the unit
sphere.



Applying the embedding lemma, we find that the
Fiedler value of GG is at most

Yper IV — 7l
> i i1
Given the bound on the Fiedler value, the ratio achievable

by a Fiedler cut follows from Theorem 3 and the corre-
sponding bisector size follows from Lemma, 1. a

8A
<=
n

4. Sphere-preserving maps

Let B¢ be the unit ball in d dimensions:

{(mla"-;mdﬂzmg < ]-}

Let S¢ denote the sphere defining the surface of B%. A
sphere-preserving map from S to S is a continuous func-
tion that sends every sphere (of lower dimension) con-
tained in S? to a sphere in S% and such that every sphere
in S has a pre-image under the map that is also a sphere.
Familiar sphere-preserving maps include rotations and
the map that sends each point to its antipode.

We will make use of a slightly larger family of sphere-
preserving maps. We obtain this family by first con-
sidering sphere-preserving maps between the sphere and
the plane. Let H? be the hyperplane tangent to S¢ at
(=1,0,...,0). One can map H? to S? by stereographic
projection:

II:H? - S by
I1(z) = the intersection of S¢ with

the line connecting zto (1,0, ...,0).

Similarly, one defines a map II"! : S — H? that sends
a point z € S? to the intersection of H¢ with the line
through z and (1,0,...,0). Note that II! is not well-
defined at (1,0,...,0). To fix this, we add the point oo
to the hyperplane H?, and define I17%(1,0,...,0) = oo
as well as II(oco0) = (1,0,...,0).

For any point a € S?, we define II, to be the stere-
ographic projection from the plane perpendicular to S?
at a, and we let II! be its inverse (so, II(c0) = —a).
One can show that the maps II, and II;! are sphere-
preserving maps (see [HCV52] or [MTTV96a] for a proof).

Sphere-preserving maps in the plane include rigid mo-
tions of the plane as well as dilations (and other mobius
transformations). We will obtain sphere-preserving maps
in the sphere by applying a projection onto a plane, then
applying a dilation of the plane, and then mapping back

by stereographic projection. For a € S¢ and a > 0,
we define D¢ to be the map that dilates the hyperplane
perpendicular to S? at a by a factor of a (note that
D4 (00) = 00). For example,

D{y o, ,xq) > (—1,az,, ..

0) (=1, za,... ., QTq).

ey

As the composition of sphere-preserving maps is again
a sphere-preserving map, we can now define the sphere-
preserving maps that we will use. For any « such that
llal| < 1, define f4(2) by

Ja(2) = Moo (Do o (110 (29)) -

It is routine to verify that f, is continuous. We wish to
extend the definition of f, to o on S2, even though the
resulting maps will not be continuous. For |af| = 1, we
define

—a if z=—a, and

Q otherwise.

o) = {

We will now examine the effect of the maps f, on ar-
rangements of spherical caps on S¢. Recall that a spheri-
cal cap on S? is a connected region of S¢ whose boundary
is a (d — 1)-dimensional sphere. Thus, the image of a cap
under a map f, is determined by the image of its bound-
ary along with a point in its interior. For a cap C' on
S?, let p(C') denote the point on S? that is the center
of C (i.e., the point inside C that is equidistant from its
boundary). We want to show that, for any arrangement
of caps {C1,...,Cp} on S% there is an a € S? so that
the centroid of {p(fo(C1)),...,p(fa(Cr))} is the origin.
But first, we must exclude some degenerate cases:

Definition 7. An arrangement of caps {Cy,...,C,} in
S? is well-behaved if there is no point that belongs to at
least half of the caps.

Remark 8. All of the arrangements of caps obtained
from graphs contained in the other sections of this paper
are well-behaved. Otherwise, the induced graphs would
have cliques on half of their vertices and no small sepa-
rators.

Theorem 9. For any well-behaved arrangement of caps
{C1,...,Cy} in 8%, there is a sphere-preserving map fa
such that the centroid of the centers of { fo(C1),- .., fa(Cn)}
is the origin.

Proof:
and

We will show that there is an « so that ||a|| < 1

n

=0.



Consider the map from « to the centroid of

{p(fa(cl))a S 7p(fa(cn))} :

We want to show that 0 has a preimage under this map.
This would be easier if the map were continuous, but it is
not continuous for ||al| = 1: as —« crosses the boundary
of C;, p(fo(C;)) jumps from one side of the sphere to the
other.

To fix this problem, we construct a slightly modified
map that is continuous. Because the set of caps is well-
behaved, we can choose an € > 0 so that, for all a such
that ||| > 1 — €, most of the caps {fo(C1),..., fa(Cr)}
are entirely contained within the ball of radius 1/2n
around a/||a||. This implies that f, does not map the
centroid of the centers of the caps to the origin. For
a € B%, we now define the map

¢(a) — Z?:l w(Ciaa)fa(p(Ci)),

n

where the weight function w is given by

(2—-d(a,C))/e

w(C,a):{ ! if d(a,C) >2 —¢, and

otherwise,

where by d(«, C), we mean the greatest distance from «
to a point in the cap C (for example, if —a/||la| € C, then
d(a,C) = 1+ ||a]). We have chosen w to be a continuous
function of a that goes to zero as —a approaches the
boundary of a cap; so, ¢(«) is also a continuous function.

From the fact that {Cy,...,Cy,} is well-behaved, it is
easy to verify that, for « € S? ¢(a) lies on the line
connecting 0 to a and is closer to a than it is to —ov.
Combined with Lemma 10, this implies that there is an
o such that ¢(a) = 0. Our choice of € implies that ||a <
1—¢; so, all of the w(w, C;) terms are 1 and f, is the map
we are looking for. m|

Lemma 10. Let ¢ : B® — B¢ be a continuous function
such that, for all o € S%, ¢(a) lies on the line connecting
o with 0 and is closer to a than it is to —a. Then, there
exists an o € B such that ¢(a) = 0.

Proof:  Assume, by way of contradiction, that there is
no point a € B? such that ¢(a) = 0. Now, consider the
map b(¢(a)), where b: B — {6} — S by b(2) = 2/|2]].
Since b is a continuous map, bo ¢ is a continuous map of
B? onto S that is the identity on S?. Then z — —b(¢(z))
is a map from B? onto S¢ that has no fixed point. This
contradicts Brouwer’s Fixed Point Theorem, which says
that every continuous map from B? into B? has a fixed
point. a

We have shown that, for all well-behaved collections of
balls in H?, there is a sphere preserving map from H? to
S so that the centroid of the centers of the caps is the
origin. We now show that one can find such a map by
performing a rigid motion of H? followed by a dilation
of H¢ followed by stereographic projection. We will need
this stronger theorem when we bound the Fiedler values
of well-shaped meshes.

Definition 11. An arrangement of balls {D+,...,Dy}in
H? is well-behaved if there is no point that belongs to at
least half of the balls.

Theorem 12. Let {D;,...,D,} be a well-behaved col-
lection of balls. Then, there is a point x € H® and an
a > 0 so that the sphere preserving map

Gz, 22— H(a(z — x))

sends the balls to a collection of caps, the centroid of
whose centers is the origin.

Proof: [sketch] For an a € S? consider the map
gii-1(a),(1—|a|)) followed by a rotation of the sphere that
sends (—1,0,...,0) to @. As we did in the proof of The-
orem 9, we can construct a continuous map from « to
a weighted centroid of the centers of the caps, which for
a € S% sends « to a point on the line segment between
o and 0. We can then apply Lemma 10 to prove that
there is some map « such that the map gy-1(a),1-|a|)
sends the centroid of the centers of the caps to the origin.

O

5. The Spectra of Well-Shaped Meshes

One of the main applications of the spectral method is the
partitioning of meshes for parallel numerical simulations.
Many experments demonstrate the effectiveness of this
method [BS92, HL92, HL93, PSL90, Sim91, Wil90]. In
this section, we explain why the spectral method finds
such good partitions of well-shaped meshes.

5.1. Modeling Well-Shaped Meshes

The graphs that we consider are defined by neighborhood
systems. A neighborhood system is a set of closed balls in
Euclidean space. A k-ply neighborhood system is one
in which no point is contained in the interior of more
than k of the balls. Given a neighborhood system, I' =
{B,...,B,}, we define the intersection graph of I" to be



the undirected graph with vertex set V' = {By,...
and edge set

,Bn}

We will use overlap graphs to model well-shaped
meshes (Miller et al [MTTV96a]). An overlap graph is
based on a k-ply neighborhood system. The neighbor-
hood system and a parameter, « > 1, define an overlap
graph: Let @ > 1, and let I' = {By,...,B,} be a k-ply
neighborhood system in R¢. The a-overlap graph of T is
the graph with vertex set {Bi,...,B,} and edge set

{(Bi, Bj) : (Bi N (o~ Bj) #0) and ((e- Bi) N B; # 1)},

where by a - B, we mean the ball whose center is the
same as the center of B and whose radius is larger by a
multiplicative factor of a.

Overlap graphs are good models for well-shaped meshes
because each well-shaped mesh in two, three, or higher
dimensions is a bounded-degree subgraph of some over-
lap graph (for suitable choices of the parameters a and
k) [MTTV96a, MTTW95, Ten96, MVI1].

5.2. Spherical Embeddings of Overlap

Graphs

In this section, we show that an «a-overlap graph is a
subgraph of the intersection graph obtained by projecting
its neighborhoods onto the sphere and then dilating each
by an O(«) factor. By choosing the proper projection,
we are able to use this fact to bound the eigenvalues of
these graphs.

In this section, we use the following notation: Capital
letters denote balls in R?. If A is a ball in RY, then we
will use A’ to denote its image on the sphere S+ under
stereographic projection. If « is positive and A is a ball
of radius 7, then « - A is the ball with the same center
as A and radius ar. Similarly, if A’ is a spherical cap of
spherical radius r, then « - A’ is the spherical cap with
the same center as A’ and radius ar. Vy is the volume of
a unit d-dimensional ball and A, is the surface volume of
a unit d-dimensional ball.

Theorem 13. Let o > 1 and let A and B be balls in R¢
such that

(AN(a-B) #0) and ((a-A)NB #0).
Then, (ra + a+ ) - A" touches (ra + a + ) - B,

Our proof uses two lemmas that handle orthogonal special
cases.

Lemma 14. Let A and C be balls in R? equidistant from
the origin and having the same radius. Let A’ and C' be
their images under stereographic projection onto S, If
a- A touches a - C, then (an/2) - A" touches (am/2) - C'.

Lemma 15. Let A and B be balls in R? so that the center
of A, the center of B, and the origin are colinear and the
origin does not lie on the line segment between the center
of A and the center of B. If A is closer to the origin than
B and a - A touches B, then o - A’ touches B'.

Proof: [of Theorem 13] Let A and B be any two
balls in R and let A’ and B’ be their images under stere-
ographic projection on S%*!. Assume that « - A touches
B and a- B touches A. We will show that (ra+a+m)- A’
touches (ra +a + ) - B'.

Assume, without loss of generality, that A is at least
as large as B. Let C be the disk of the same distance to
the origin as A and congruent to A that is closest to B.
Then, the centers of C' and B are colinear with the origin.
Let C' be the image of C. Since C is closer to B than A
is, a - C touches B and « - B touches A. By Lemma 15,
a - C" touches - B'.

The distance between the centers of A and B is less
than (a + 1) times the radius of A (because we assume
that A is at least as large as B). The same holds for the
distance between the center of C' and the center of B.
Therefore, (a + 1) - A touches (a + 1) - C, so Lemma 14
implies that 7(a+1)/2-A’ touches 7(a+1)/2-C'. Since A’
and C” have the same spherical radius, a-C’ C (r(a+1)+
a)A’. Thus, (ra+a+m)- A" must touch (ra+a+7)-B'.

O

5.3. The Spectral Bound

We now show that the Fiedler value of a bounded degree
subgraph of an a-overlap graph is small.

Theorem 16. If G is a subgraph of an a-overlap graph
of a k-ply neighborhood system in R? and the mami-
mum degree of G is A, then the Fiedler value of L(G)
is bounded by vgAa?(k/n)*/¢, where vq = 2(m + 1 +
7/)?(Agy1/Va)?'¢. Accordingly, G has a Fiedler cut of
ratio O(Aa(k/n)'/?), and one can iterate Fiedler cuts to
obtain a bisector of size O(Aak/dnt=1/d),

Proof: Let I' = {Bjy,..., By} be the k-ply neighbor-
hood system whose intersection graph contains G. By
Theorem 12, there is a stereographic projection II from
R? onto a particular sphere S?*! so that the centroid



of the centers of the images of the neighborhoods is the
center of the sphere.

Let II(T') = {B}, ..., B],} be the images of the balls in
[ under II. Let r; be the radius of B]. Because Vard <
volume(B}), We know that

n n
Z Vard < Zvolume(Bl'-) < kAgyr
i=1 i—1

By Theorem 13, G is a subgraph of the intersection graph
of {(ma+a+m)-B}:1<i<n}. Thus, by Lemma 4,

A (L(G)) < Yo 2A(ra + a+ )%

n

(2A)(ra + a + 7)? (Ad“ ) o <E> o .

IN

Vd n

Given the bound on the Fiedler value, the ratio achiev-
able by a Fiedler cut follows from Theorem 3 and the
corresponding bisector size follows Lemma 1. |
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