1102.4842v4 [cs.DS] 19 Aug 2011

arxiv

A nearly-mlogn time solver for SDD linear systems *

Ioannis Koutis Gary L. Miller Richard Peng
CSD-UPRRP CSD-CMU CSD-CMU
ioannis.koutis@Qupr.edu glmiller@cs.cmu.edu yangp@cs.cmu.edu

August 22, 2011

Abstract

We present an improved algorithm for solving symmetrically diagonally dominant linear systems. On
input of an n X n symmetric diagonally dominant matrix A with m non-zero entries and a vector b such
that AT = b for some (unknown) vector Z, our algorithm computes a vector = such that ||[x—Z||a < €||Z||a
Lin time

O(mlognlog(1/e)).?

The solver utilizes in a standard way a ‘preconditioning’ chain of progressively sparser graphs. To
claim the faster running time we make a two-fold improvement in the algorithm for constructing the
chain. The new chain exploits previously unknown properties of the graph sparsification algorithm given
in [Koutis,Miller,Peng, FOCS 2010], allowing for stronger preconditioning properties. We also present
an algorithm of independent interest that constructs nearly-tight low-stretch spanning trees in time

O(mlogn), a factor of O(logn) faster than the algorithm in [Abraham,Bartal,Neiman, FOCS 2008].
This speedup directly reflects on the construction time of the preconditioning chain.

1 Introduction

Solvers for symmetric diagonally dominant (SDD)? systems are a crucial component of the fastest known
algorithms for a multitude of problems that include (i) Computing the first non-trivial (Fiedler) eigen-
vector of the graph, with well known applications to the sparsest-cut problem [Fie73, ST96, Chu97]; (ii)
Generating spectral sparsifiers that also act as cut-preserving sparsifiers [SS08]; (iii) Solving linear systems
derived from elliptic finite element discretizations of a significant class of partial differential equations
[BHVO04]; (iv) Generalized lossy flow problems [SD08]; (v) Generating random spanning trees [KMO09]; (vi)
Faster maximum flow algorithms [CKM™11]; and (vii) Several optimization problems in computer vision
[KMST09b, KMT11] and graphics [MP08, JMD™07].

These algorithmic advances were largely motivated by the seminal work of Spielman and Teng who
gave the first nearly-linear time solver for SDD systems [ST04, EEST05, ST06]. The running time of their
solver is a large number of polylogarithmic factors away from the obvious linear time lower bound. In
recent work, building upon further work of Spielman and Srivastava [SS08], we presented a simpler and
faster SDD solver with a run time of O(mlog?nloge™'), where m is the number of nonzero entries, n is
the number of variables, and € is a standard measure of the approximation error [KMP10a].

It has been conjectured that the algorithm of [KMP10a] is not optimal [SpilOb, Ten10, SpilOa]. In this
paper we give an affirmative answer by presenting a solver that runs in O(m lognloge™!) time.

*Partially supported by the National Science Foundation under grant number CCF-1018463.
YI-]]a denotes the A-norm

2The O notation hides a (loglogn)? factor

3A system Az = b is SDD when A is symmetric and Ay > Zj# |Aijl.

http://arxiv.org/abs/1102.4842v4

The O(logn) speedup of the SDD solver applies to all algorithms listed above, and we believe that
it will prove to be quite important in practice, as applications of SDD solvers frequently involve massive
graphs [Tenl10)].

1.1 Overview of our techniques

The key to all known near-linear work SDD solvers is spectral graph sparsification, which on a given input
graph G constructs a sparser graph H such that G and H are ‘spectrally similar’ in the condition number
sense, defined in Section 2. Spectral graph sparsification can be seen as a significant strengthening of the
notion of cut-preserving sparsification [BK96].

The new solver follows the framework of recursive preconditioned Chebyshev iterations [ST06, KMP10a].
The iterations are driven by a so-called preconditioning chain {G1, Hi,Go, Ho, ..., } of graphs, where H;
is a spectral sparsifier for GG; and G;11 is generated by contracting H; via a greedy elimination of degree 1
and 2 nodes. The total work of the solver includes the time for constructing the chain, and the work spent
on actual iterations which is a function on the preconditioning quality of the chain. The preconditioning
quality of the chain in turn depends on the guarantees of the sparsification algorithm.

More concretely, all sparsification routines that have been used in SDD solvers conform to the same
template; on input a graph G with n vertices and m edges returns a graph H with n+ O(m log®n)/k edges
such that the condition number of the Laplacians of G and H is k. In all known SDD solvers the factor
O(log®n) appears directly in the running time of the SDD solver. In particular the solver of [KMP10b]
was based on a sparsification routine for which ¢ = 2.

The optimism that SDD systems can be solved in time O(m log nlog e!) has mainly been based on
the result of Kolla et al. [KMST09a] who proved that there is a polynomial (but far from nearly-linear)
time algorithm that returns a sparsifier with ¢ = 1. However, our new solver is instead based on a slight
modification and a deeper analysis of the sparsification algorithm in [KMP10a] which enables a subtler
chain construction.

The incremental sparsification algorithm in [KMP10a] computes and keeps in H a properly scaled copy
of a low-stretch spanning tree of G, and adds to H a number of off-tree samples from G. The key enabling
observation in the new analysis is that the total stretch of the off-tree edges is essentially invariant under
sparsification. In other words, the total stretch of the off-tree edges in H; is at most equal to that G;.
The total stretch is invariable under the graph contraction process as well. The elimination process that
generates ;41 from H; naturally generates a spanning tree for G; 1. The total stretch of the off-tree edges
in G;41 is at most equal to that in H;. This effectively allows us to compute only one low-stretch spanning
tree for the first graph in the chain, and keep the same tree for the rest of the chain. This is a significant
departure from previous constructions, where a low-stretch spanning tree had to be calculated for each G;.

The ability to keep the same low-stretch spanning tree for the whole chain, allows us to prove that
Laplacians of spine-heavy graphs, i.e. graphs with a spanning tree with average stretch O(1/logn), can
be solved in linear time. This average stretch is a factor of O~(log2 n) smaller than what is true for general
graphs. We reduce the first general graph (7 into a spine-heavy graph G5 by scaling-up the edges of its
low-stretch spanning tree by a factor of O~(log2 n). This results in the construction of a preconditioner
chain with a skewed set of conditioner numbers. That is, the condition number of the pair (G;, H;) is a
fixed constant with the exception of (G, Hy) for which it is O(log?n). In all previous solvers the condition
number for the pair (G;, H;) was a uniform function of the size of G;.

An additional significant departure from previous constructions is in the way that the number of edges
decreases between subsequent G;’s in the chain. For example, in the [KMP10a] chain the number of edges
in G;41 is always at least a factor of O(log2 n) smaller than the number of edges in G;. In the chain
presented in this paper irreqular decreases are possible; for example a big drop in the number of edges may
occur between Go and G3 and the progress may stagnate for a while after G, until it starts again.

In order to analyze this new chain we view the graphs H; as multi-graphs or graphs of samples. In

the sampling procedure that generates H;, some off-tree edges of G; can be sampled multiple times, and
so H; is naturally a multi-graph, where the weight of a ‘traditional’ edge e is split among a number of
parallel multi-edges with the same endpoints. The progress of the overall sparsification in the chain is then
monitored in terms of the number of multi-edges in the H;’s. In other words, when the algorithm appears
to be stagnated in terms of the edge count in the G;’s, progress is still happening by ‘thinning’ the off-tree
edges. The details are given in Section 4.

The final bottleneck to getting an O(mlogn) algorithm for very sparse systems is the O(m logn +
nlog®n) running time of the algorithm for constructing a low-stretch spanning tree [ABN08, EESTO05].
We address the problem by noting that it suffices to find a low-stretch spanning tree on a graph with
edge weights that are roughly powers of 2. In this special setting, the shortest path like ball/cone growing
routines in [ABNO08, EEST05] can be sped up in a way similar to the technique used in [OMSW10]. We
also slightly improve the result of [OMSW10], which may be of independent interest.

2 Background and notation

A matrix A is symmetric diagonally dominant if it is symmetric and A;; > > ki |A;j]. Tt is well understood
that any linear system whose matrix is SDD is easily reducible to a system whose matrix is the Laplacian
of a weighted graph with positive weights [Gre96]. The Laplacian matrix of a graph G = (V, E,w) is the
matrix defined as
Lg(’i,j) = —Wiy and Lg(i,i) = Zwi’j'
J#i

There is a one-to-one correspondence between graphs and Laplacians which allows us to extend some
algebraic operations to graphs. Concretely, if G and H are graphs, we will denote by G + H the graph
whose Laplacian is Lg + Ly, and by ¢G the graph whose Laplacian is cL¢.

Definition 2.1 [Spectral ordering of graphs]
We define a partial ordering = of graphs by letting

G < H if and only if 2T Lga < 2T Ly,
for all real vectors x. e

If there is a constant ¢ such that G < ¢cH =< kG, we say that the condition of the pair (G, H) is k. In
our proofs we will find useful to view a graph G = (V, E, w) as a graph with multiple edges.

Definition 2.2 [Graph of samples]

A graph G = (V, E,w) is called a graph of samples, when each edge e of weight w, is considered as a sum
of a set L. of parallel edges, each of weight w; = we/|Le|. When needed we will emphasize the fact that a
graph is viewed as having parallel edges, by using the notation G = (V, L,w). e

Definition 2.3 [Stretch of edge by tree]

Let T = (V, Ep,w) be a tree. For e € Ep let w, = 1/w.. Let e be an edge not necessarily in Ep, of weight
we. If the unique path connecting the endpoints of e in T consists of edges ey ... ey, the stretch of e by T
1s defined to be

Zf:l wéi

/
w@

stretchp(e) =

A key to our results is viewing graphs as resistive electrical networks [DS00]. More concretely, if
G = (V,L,w) each [€ L corresponds to a resistor of capacity 1/w; connecting the two endpoints of £. We

denote by Rg(e) the effective resistance between the endpoints of e in G. The effective resistance on
trees is easy to calculate; we have Ry (e) = Zle 1/w(e;). Thus

stretchr(e) = weRr(e).
We extend the definition to | € L, in the natural way
stretchr (1) = wiRr(e),

and note that stretchr(e) = ;. stretchr(l).
This definition can also be extended to set of edges. Thus stretchy(E) denotes the vector of stretch
values of all edges in E. We also let stretchr(G) denote the vector of stretch for edges in Eg — Er.

Definition 2.4 [Total Off-Tree Stretch)]
Let G = (V, Eg,w) be a graph, T = (V, Ep,w) be a spanning tree of G. We define

|stretchp(G)| = Z stretchr(e). o
eeEq—Er

3 Incremental Sparsifier

In their remarkable work [SS08], Spielman and Srivastava analyzed a spectral sparsification algorithm based
on a simple sampling procedure. The sampling probabilities were proportional to the effective resistances
Rg(e) of the edges on the input graph G. Our solver in [KMP10a] was based on an incremental sparsifi-
cation algorithm which used upper bounds on the effective resistances, that are more easily calculated. In
this section we give a more careful analysis of the incremental sparsifier algorithm given in [KMP10a].

We start by reviewing the basic SAMPLE procedure. The procedure takes as input a weighted graph
G and frequencies p., for each edge e. These frequencies are normalized to probabilities p, summing to 1.
It then picks in ¢ rounds exactly ¢ samples which are weighted copies of the edges. The probability that
given edge e is picked in a given round is p.. The weight of the corresponding sample is set so that the
expected weight of the edge e after sampling is equal to its actual weight in the input graph. The details
are given in the following pseudocode.

SAMPLE
Input: Graph G = (V, E,w), p' : E — RT, real &.
Output: Graph G' = (V, L, w').

1: t:= Ze p/e
2: q:= Cstlogtlog(1/€) (* Cs is an explicitly known constant *)
3 pe = pl/t
4: G = (V,L,w'") with £L=10
5. for ¢ times do
6
7
8
9

Sample one e € F with probability of picking e being p,

Add sample of e, | to L. with weight w; = we/(peq) (* Recall that £ =, 5 Le *)
: end for
: return G’

The following Theorem characterizes the quality of G’ as a spectral sparsifier for G and it was proved
in [KMP10a].

Theorem 3.1 (Oversampling) Let G = (V,E,w) be a graph. Assuming that p, > w.Rq(e) for each
edge e € E, and £ € Q(1/n), the graph G' = SAMPLE(G, p', &) satisfies

G <2G" <3G

with probability at least 1 — &.

Suppose we are given a spanning tree T of G = (V, E,w). The incremental sparsification algorithm
of [KMP10a] was based on two key observations: (a) By Rayleigh’s monotonicity law [DS00] we have
Rr(e) > Rg(e) because T' is a subgraph of G. Hence the numbers stretchr(e) satisfy the condition of
Theorem 3.1 and they can be used in SAMPLE. (b) Scaling up the edges of T' in G by a factor of k gives a
new graph G’ where the stretches of the off-tree are smaller by a factor of x relative to those in G. This
forces SAMPLE (when applied on G’) to sample more often edges from 7', and return a graph with a smaller
number of off-tree edges. In other words, the scale-up factor x allows us to control the number of off-tree
edges. Of course this comes at the cost of incurring condition x between G' and G’.

In this paper we follow the same approach, but also modify INCREMENTALSPARSIFY so that the output
graph is a union of a copy of T and the off-tree samples picked by SAMPLE. To emphasize this, we will
denote the edge set of the output graph by E7 U L. The details are given in the following algorithm.

INCREMENTALSPARSIFY
Input: Graph G = (V, E,w), edge-set Ep of spanning tree T, reals k > 1, 0 < £ < 1
Output: Graph H = (V, Er U L) or FAIL

Calculate stretchp(Q)
if |stretchr(G)| < 1 then
return 27
end if
T :=kT.
G =G+ (k—=1)T (* G’ is the graph obtained from G by replacing T by T' *)
t:=|stretchp (G")| (% = |stretchr(G)|/r *)
t=t+n—-1 (* total stretch including tree edges *)
H = (V, L) := SAMPLE(G', stretchp:(E'), €)
if (ZeQET |E~6|) > 2(5/75)03 logtlog(1/£) (* Cs is the constant in SAMPLE *)
return FAIL

— = =
v

: end _ ~
. ﬁ = E - UBGET ﬁe.
- H ::£—|-3T,

: return 4H

—_ =
Tt o= W

Theorem 3.2 Let G be a graph with n vertices and m edges and T be a spanning tree of G. Then
for & € Q(1/n), INCREMENTALSPARSIFY(G, E7, k,&) computes with probability at least 1 — 2§ a graph
H = (V,Er U L) such that

o G =X H < 54rG
o |L]| < 2{Cslogtlog(1/€)

where t = stretchy(G)/k, t = t+n—1, and Cs is the constant in SAMPLE. The algorithm can be
implemented to run in O((nlogn + tlog®n)log(1/€)).

Proof We first suppose that |stretchp(G)| < 1 holds. Thus G/2 < T < G, by well known facts [BH03].
Therefore returning H = 27 satisfies the claims. Now assume that the condition is not true. Since
in Step 6 the weight of each tree edge is increased by at most a factor of k, we have G < G' <X kG.
INCREMENTALSPARSIFY sets p, = 1 if e € Ep and stretchp(e)/k otherwise, and invokes SAMPLE to
compute a graph H such that with probability at least 1 — &, we get

G =G <2H < 3G" < 3kG. (3.1)

We now bound the number |£| of off-tree samples drawn by SAMPLE. For the number ¢ used in SAMPLE
we have t = ¢+ n — 1 and ¢ = Cytlogtlog(1/£) is the number samples drawn by SAMPLE. Let X; be a
random variable which is 1 if the i*" sample picked by SAMPLE is a non-tree edge and 0 otherwise. The
total number of non-tree samples is the random variable X = Y7 | X;. and its expected value can be
calculated using the fact Pr(X; =1) = t/t:

tACstlogtlog(l/f)

EX] = ¢ ;

= Cgtlogtlog(1/€).

¢
t

Step 12 assures that H does not contain more than 2E[X] edges so the claim about the number of off-tree
samples is automatically satisfied. A standard form of Chernoff’s inequality is:

Pr(X > (14 0)E[X]] < exp(—6*E[X])
PriX < (1-0)E[X]] < exp(—3*E[X]).

Letting § = 1, and since £ > 1,Cs > 2 we get Pr[X > 2F[X]] < (exp(—2E[X]) < 1/n?. So, the probability
that the algorithm returns a FAIL is at most 1/n2. It follows that the probability that an output of SAMPLE
satisfies inequality 3.1 and doesn’t get rejected by INCREMENTALSPARSIFY is at least 1 — & — 1/n?.

We now concentrate on the edges of T. Any fixed edge e € Er is sampled with probability 1/t in
SAMPLE. Let X, denote the random variable equal to number of times e is sampled. Since there are
q = Cstlogtlog(1/€) iterations of sampling, we have E[X.] = g/t > Cslogn. By the Chernoff inequalities
above, setting § = 1/2 we get that

Pr(Xe > (3/2)E[X.]] < exp(—(Cs/4)logn)

and
PrX. < (1/2)E[X.]] < exp(—(Cy/4) logn).

By setting C; to be large enough we get exp(—(Cs/4)logn) < n~*. So with probability at least 1 — 1/n?
there is no edge e € Er such that X, > (3/2)E[X.] or X, < (1/2)E[X.]. Therefore we get that with
probability at least 1 — 1/n? all the edges e € Er in H have weights at most three times larger than their
weights in (H/2), and

G < H < H < 18H < 54kG.

Overall, the probability that the output H of INCREMENTALSPARSIFY satisfies the claim about the condi-
tion number is at least 1 — & —2/n? > 1 — 2/¢.

We now consider the time complexity. We first compute the effective resistance of each non-tree edge by
the tree. This can be done using Tarjan’s off-line LCA algorithm [Tar79], which takes O(m) time [GT83].
We next call SAMPLE, which draws a number of samples. Since the samples from Ep don’t affect the
output of INCREMENTALSPARSIFY we can implement SAMPLE to exploit this; we split the interval [0, 1]
to two non-overlapping intervals with length corresponding to the probability of picking an edge from Er
and F — Ep. We further split the second interval by assigning each edge in F — Er with a sub-interval

of length corresponding to its probability, so that no two intervals overlap. At each sampling iteration
we pick a random value in [0,1] and in O(1) time we decide if the value falls in the interval associated
with £ — Ep. If no, we do nothing. If yes, we do a binary search taking O(logn) time in order to find
the sub-interval that contains the value. With the given input SAMPLE draws at most O(flognlog(1/¢))
samples from F — Ep and for each such sample it does O(log n) work. It also does O(nlognlog(1/£)) work
rejecting the samples from E7. Thus the cost of the call to SAMPLE is O((nlogn + flog?n)log(1/¢)). W
Since the weights of the tree-edges Er in H are different than those in G, we will use Ty to denote the
spanning tree of H whose edge-set is Fr. We now show a key property of INCREMENTALSPARSIFY.

Lemma 3.3 (Uniform Sample Stretch) Let H = (V, EpUL, w) := INCREMENTALSPARSIFY(G, E7, K, §),
and Cg,t as defined in Theorem 3.2. For alll € L, we have

1
- 3Cslogtlog(1/€)

stretchry, (1)

Proof Let T’ = kT. Consider an arbitrary non-tree edge e of G’ defined in Step 5 of INCREMENTALSPAR-
SIFY. The probability of it being sampled is:

1
P = 7w Bl

where Ry (e) is the effective resistance of e in 7" and ¢t =n — 1+ s/ (G') = n — 1 + stretchp(G)/k is the
total stretch of all G’ edges by T”. If e is picked, the corresponding sample [has weight w, scaled up by a
factor of 1/p., but then divided by ¢ at the end. This gives

we 1 We 1

" P, g (weRp(e)/t Cstlogtlog(1/€)
1

- CsRp/(e)logtlog(1/€) .

wy

So the stretch of [with respect to T is independent from w, and equal to

1
- Cslogtlog(1/€)

Finally note that Ty = 3T”. This proves the claim. |

stretchy(e) = wi Ry (e)

4 Solving using Incremental Sparsifiers

We follow the framework of the solvers in [ST06] and [KKMP10a] which consist of two phases. The pre-
conditioning phase builds a chain of graphs C = {G1, H1,Ga, ..., Hy} starting with G; = G, along with
a corresponding list of positive numbers K = {k1,...,kq_1} where k; is an upper bound on the condi-
tion number of the pair (G;, H;). The process for building C alternates between calls to a sparsification
routine (in our case INCREMENTALSPARSIFY) which constructs H; from G; and a routine GREEDYELIM-
INATION which constructs G;4+1 from B;, by applying a greedy elimination of degree 1 and 2 nodes. The
preconditioning phase is independent from the b-side of the system La4x = b. The solve phase passes C, b
and a number of iterations ¢ (depending on a desired error €) to the recursive preconditioning algorithm
R-P-CHEBYSHEV, described in [ST06] or in the appendix of [KMP10a].

We first give pseudocode for GREEDYELIMINATION, which deviates slightly from the standard presen-
tation where the input and output are the two graphs G and G, to include a spanning tree of the graphs.

GREEDYELIMINATION
Input: Graph G = (V, E,w), Spanning tree T of G
Output: Graph G = (V, E, W), Spanning tree T of G

1: G =G

2: B~ := FEp

3: repeat

4: greedily remove all degree-1 nodes from G

5. if degps(v) =2 and (v,u1), (v,u2) € Ep then

6: w' = (1/w(ur, v) + 1/w(ug,v)) "

T: w” == w(uy,ug) (* it may be the case that w’” = 0 *)
8: replace the path (u1,v,us) by an edge e of weight w’ in G
9: if (u1,v) or (v,u2) are not in T then

10: Let T ={T} — {(u1,v), (v,uz2), (ur,u2)}

11: else

12: Let T = {T Ue} — {(u1,v), (v,us), (u1,u)}

13: end if

14: end if

15: until there are no nodes of degree 1 or 2 in G
16: return G

Of course we still need to prove that the output T is indeed a spanning tree. We prove the claim in the
following Lemma that also examines the effect of GREEDYELIMINATION to the total stretch of the off-tree
edges.

Lemma 4.1 Let (G’,T) := GREEDYELIMINATION(G, T'). The output T is a spanning tree of G, and

]stretchT(G) | < |stretchr(G).

Proof We prove the claim inductively by showing that it holds for all the pairs (Gl, TZ) throughout the
loop, where (Gz,ﬁ) denotes the pair (G’,T) after the i*" elimination during the course of the algorithm.
The base of the induction is the input pair (G,T) and so the claim holds for it.

When a degree-1 node gets eliminated the corresponding edge is necessarily in E; by the inductive
hypothesis. Its elimination doesn’t affect the stretch of any off-tree edge. So, it is clear that if (G,,T,)
satisfy the claim then after the elimination of a degree-1 node (Gi+1, Ti“) will also satisfy the claim.

By the inductive hypothesis about 7} if (v,u1), (v,uz) are eliminated then at least one of the two edges
must be in Tj. We first consider the case where one of the two (say (v,uz)) is not in 7j. Both u; and ug
must be connected to the rest of (A}Z through edges of T, different than (uj,v) and (v,u3). Hence Tiﬂ is a
spanning tree of Gi—i—l- Observe that we eliminate at most two non-tree edges from G, (v,uz) and (uq, ug)
with corresponding weights w(v,ug) and w” respectively. Let T[e] denote the unique tree-path between
the endpoints of e in T. The contribution of the two eliminated edges to the total stretch is equal to

51 = 'UJ('U,UQ)RTZ_(('U,UQ)) + w//RTZ_((Ul,UQ)).

The two eliminated edges get replaced by the edge (u1,us) with weight w’ 4+ w”. The contribution of the
new edge to the total stretch in G,y is equal to

S2 = w/R:ﬁL.H((uh?Q)) + w”RT,L-H((uh?Q))-

We have RTZ_+1((’U/1,U2)) = Ry ((u1,u2)) < Ry ((v,uz)) since all the edges in the tree-path of (u1,uz) are
not affected by the elimination. We also have w(v,ug) > w', hence s1 > s3. The claim follows from the
fact that no other edges are affected by the elimination, so

]stretchﬁ(@i)\ —]stretchﬁﬂ(@iﬂ)] =51 —s2 > 0.

We now consider the case where both edges eliminated in Steps 5-13 are in T;. Tt is clear that ﬁ+1 is a
spanning tree of Gi+1- Consider any off-tree edge e not in TZ’_H. One of its two endpoints must be different
than either u; or us, so its endpoints and weight w, are the same in T;. However the elimination of v may
affect the stretch of e if Tj[e] goes through v. Let

o= (> Ywe) = (L/w(ur,v) + 1/w(ug,v))

e’GTi[e}
-1
= (Y Yw)- <(1/w(u1,v) 4 1/w(uz,)" —|—w6> .
SIGTi+1[6]
We have
stretehy, (¢) _ We Loetg L/ _ (1w, o) + 1wl) +7
tretch; (€) we>. , 7 1/we ~1 -1 -
5 Tita € Lue’€Tiqle] /€ ((1/w(u1,v) + 1/w(ug,v))” " + we) +7
Since individual edge stretches only decrease, the total stretch also decreases and the claim follows. |

A preconditioning chain of graphs must certain properties in order to be useful with R-P-CHEBYSHEV.

Definition 4.2 [Good Preconditioning Chain]

Let C ={G = Gy,H1,Go,...,Gy} be a chain of graphs and K = {k1,K2,...,k4—1} a list of numbers. We
say that {C,K} is a good preconditioning chain for G, if there exist a list of numbers U = {u1, a2, ... pa}
such that:

1. G; =X H; =X k;G;.

Gi+1 = GREEDYELIMINATION(H;).

Wi is at least the number of edges in G;.

w1, o < m, where m is the number of edges in G = Gy.

i/ piv1 > [er/ki] for all i > 1 where ¢, is an explicitly known constant.

Ki 2 Kit1-

NS G e

g is a smaller than a fixzed constant.

Spielman and Teng [ST06] analyzed the recursive preconditioned Chebyshev iteration R-P-CHEBYSHEV
that can be found in the appendix of [KMP10a] and showed that the solution of an arbitrary SDD system
can be reduced to the computation of a good preconditioning chain. This is captured more concretely by
the following Lemma which is adapted from Theorem 5.5 in [STO06].

Lemma 4.3 Let A be an SDD matriz with A = Lo + D where D is a diagonal matriz with non-negative
elements, and L is the Laplacian of a graph G. Given a good preconditioning chain {C,K} for G, a vector
x such that ||z — ATb||a < €||ATb||a can be computed in time O(m+/k1 + m/kikz)log(1/e)).

Before we proceed to the algorithm for building the chain we will need a modified version of a result
by Abraham, Bartal, and Neiman [ABNO0S8], which we prove in Section 5.

Theorem 4.4 There is an algorithm LOWSTRETCHTREE that, given a graph G = (V, E,w), outputs a
spanning tree T of G such that

Z stretchr(e) < O(mlognloglog®n).
eck

The algorithm runs in O(mlogn + nlognloglogn) time.

Algorithm BUILDCHAIN generates the chain of graphs.

BuiLDCHAIN
Input: Graph G, scalar p with 0 < p < 1
Output: Chain of graphs C = {G = Gy, H1,Go,...,G4}, List of numbers K.

: (* cstop and k. are explicitly known constants *)

G =G

T := LOWSTRETCHTREE(G)

. Hy =G+ O(log?n)T

G2 = H1

K:=0; C:=0; i:=2

& :=2logn

Er, .= Er

: (*n; denotes the number of nodes in G;*)

: while n; > cg0p do

H; = (V;, E1, U L;) := INCREMENTALSPARSIFY(G;, BT}, K¢, DE)
{Gi+1,Ti41} := GREEDYELIMINATION(H;, T;)
C=CU{G;, H;}

1:=1+1

: end while

. K ={0(log?n), ke, ke, . . ., ke}

: return {C,K}

© XD w2

e e e e

It remains to show that our algorithm indeed generates a good preconditioning chain.

Lemma 4.5 Given a graph G, BUILDCHAIN(Q7 p) produces with probability at least 1 — p, a good precon-
ditioning chain {C,K} for G, such that k1 = O(log?n) and for all i > 2, k; = k. for some constant k..
The algorithm runs in time proportional to the running time of LOWSTRETCHTREE(G).

Proof Let l; denote the number of edges in G and [; = |£;| the number of off-tree samples for i > 1. We
prove by induction on 7 that:

(a) li+1 S 2[1'/160.

(b) stretchry,, (Giy1) < 1i/(Cslogt;log(1/(p€))) = keti, where Cg,#; and t; are as defined in Theorem
3.2 for the graph Gj.

For the base case of i = 1, by picking a sufficiently large scaling factor x; = O(log2 n) in Step 4, we can
satisfy claim (b). By Theorem 3.2 it follows that lo < 2l;/k., hence (a) holds. For the inductive argument,

10

Lemma 3.3 shows that stretchg, (H;) is at most ;/(Cslogt;log(1/(p§))). Then claim (b) follows from
Lemma 4.1 and claim (a) from Theorem 3.2.

We now exhibit the list of numbers U = {u1,pz2 ... puqg} required by Definition 4.2. A key property
of GREEDYELIMINATION is that if G is a graph with n — 1 + j edges, the output G of GREEDYELIM-
INATION(G) has at most 2j — 2 vertices and 35 — 3 edges [ST06]. Hence the graph G;;1 returned by
GREEDYELIMINATION(H;) has at most 6l;/k. edges. Therefore setting u; = 6l; /. gives an upper bound
on the number of edges in G;41 and:

pi 6li/ke S 3lit1
Pit1 6liz1/ke — 6lip1/ke

> e
=7

At the same time we have G; = H; = b4k.G;. By picking k. to be large enough we can satisfy all the
requirements for the preconditioning chain.

The probability that H; has the above properties is by construction at least 1 —p/(2logn). Since there
are at most 2logn levels in the chain, the probability that the requirements hold for all 7 is then at least

(1—p/(2log n))zlog” >1-—p.

Finally note that each call to INCREMENTALSPARSIFY takes O(u; lognlog(1/p)) time. Since p; decreases
geometrically with ¢, the claim about the running time follows. |
Combining Lemmas 4.3 and 4.5 proves our main Theorem.

Theorem 4.6 On input an n xn symmetric diagonally dominant matriz A with m non-zero entries and a
vector b, a vector x satisfying ||x—ATb||a < €||ATb||4 can be computed in expected time O(mlognlog(1/e)).

5 Speeding Up Low Stretch Spanning Tree Construction

We improve the running time of the algorithm for finding a low stretch spanning tree given in [EESTO05,
ABNO8] by a factor of logn, while retaining the O(mlogn log log?® n) bound on total stretch given in
[ABNO8|. Specifically, we claim the following Theorem.

Theorem 5.1 There is an algorithm LOWSTRETCHTREE that given a graph G = (V, E,w), outputs a
spanning tree T of G in O(mlogn + nlognloglogn) time such that

Z stretchr(e) < O(mlognloglog®n).
eck

We first show that if the graph only has k distinct edge weights, Dijkstra’s algorithm can be modified to
run in O(m + nlogk) time. Our approach is identical to the algorithm described in [OMSW10]. However,
we obtain a slight improvement in running time over the O(mlog %k) bound given in [OMSW10].

The low stretch spanning tree algorithm in [EEST05, ABNO8| makes use of Dijkstra’s, as well as
intermediate stages of it in the routines BALLCUT and CONECUT. We first improve the underlying data
structure used by these routines.

Lemma 5.2 There is a data structure that given a list of non-negative values L = {ly ...l;;} (the distinct
edge lengths), maintains a set of keys (distances) starting with {0} under the following operations:

1. FINDMIN(): returns the element with minimum key.
2. DELETEMIN(): delete the element with minimum key.

3. INSERT(j): insert the minimum key plus l; into the set of keys.

11

4. DECREASEKEY(v, j): decrease the key of v to the minimum key plus ;.

INSERT and DecreaseKey have O(1) amortized cost and DELETEMIN has O(log k) amortized cost.

Proof We maintain k queues @)1 ...(Q containing the keys with the invariant that the keys stored in
them are in non-decreasing order. We also maintain a Fibonacci heap as described in [F'T87] containing
the first element of all non-empty queues. Since the number of elements in this heap is at most k, we
can perform INSERT and DECREASEKEY in O(1) and DELETEMIN in O(log k) amortized time on these
elements. The invariant then allows us to support FINDMIN in O(1) time.

Since [, > 0, the new key introduced by INSERT or DECREASEKEY is always at least the minimum
key. Therefore the minimum key is non-decreasing throughout the operations. So if we only append
keys generated by adding /; to the minimum key to the end of @, the invariant that the queues are
monotonically non-decreasing is maintained. Specifically, INSERT(j) can be performed by appending a new
entry to the tail of @;.

For DECREASEKEY(v, j), suppose v is currently stored in queue @Q);. We consider two cases:

1. v has a predecessor in);. Then the key of v is not the key of); in the Fibonacci heap and we can
remove v from @; in O(1) time while keeping the invariant. Then we can insert v with its new key
at the end of @); using one INSERT operation.

2. v is currently at the head of ;. Then simply decreasing the key of v would not violate the invariant
of all keys in the queues being monotonic. As the new key will be present in the heap containing the
first elements of the queues, a decrease key needs to be performed on the Fibonacci heap containing
those elements.

DELETEMIN can be done by doing a delete min in the Fibonacci heap, and removing the element from
the queue containing it. If the queue is still not empty, it can be reinserted into the Fibonacci heap with
key equaling to that of its new first element. The amortized cost of this is O(log k) + O(1) = O(logk). B

The running times of Dijkstra’s algorithm, BALLCUT and CONECUT then follows.

Corollary 5.3 Let G be a connected weighted graph and xo be some vertexr. If there are k distinct values
of d(u,v), Dijkstra’s algorithm can compute d(xg,u) for all vertices u in O(m + nlogk) time.

Proof Same as the proof of Dijkstra’s algorithm with Fibonacci heap, except the cost of a DELETEMIN
is O(log k). [

Corollary 5.4 (Corollary 4.3 of [EEST05]) If there are at most k distinct distances in the graph, then
BALLCuUT returns ball Xy such that

cost(8(Xp)) < O <L> :

Tmaz — Tmin
in O(vol(Xo) + |V (Xo)|log k) time.

Corollary 5.5 (Lemma 4.2 of [EESTO05]) If there are at most k distinct values in the cone distance p,
then
For any two values 0 < 1y < 1., CONECUT finds a real v € [Fin, Tmaz) Such that

cost(3(B,(r,w0))) < LLED LT

Tmaz — Tmin
max |1,lo mAT
* | 082 Vol (E(By(r,min)) + 7/ |’

12

in O(vol(B,(r,x0)) + |V (B,(r,z0))| log k) time, where B,(r,xq) is the set of all vertices v within distance
r from xq in cone length p.

Proof The existence such a L, follows from Lemma 4.2 of [EESTO05] and the running time follows from
the bounds given in Lemma 5.2. [|

We now proceed to show a faster algorithm for constructing low stretch spanning trees by using the
data structure from Lemma 5.2. Our presentation is based on the algorithm described in [ABNO08], which
consists of HIERARCHICALSTARPARTITION at the top level that makes repeated calls to STARPARTITION.
STARPARTITION then in turn obtains a desired partition via. calls to BALLCUT and IMPCONEDECOMP
which uses CONECUT. Due to space limitations we refer to these routines without stating their parameters
and guarantees.

Lemma 5.6 Given a graph X that has k distinct edge lengths, The version of STARPARTITION that uses
IMPCONEDECOMP as stated in Corollary 6 of [ABNOS] runs in time O(vol(|X]) + |V (X)|log k).

Proof Finding radius and calling BALLCUT takes O(vol(|X|) 4+ |V (X)|log k) time. Since the X;s form
a partition of the vertices and IMPCONEDECOMP never reduce the size of a cone, the total cost of all calls
to IMPCONEDECOMP is

> (vol(X;) + |[V(X;)| log k) < wol(X) + [V(X)|log k.
[|
We now need to ensure that all calls to STARPARTITION are made with a small value of k. This can be

done by rounding the edge lengths so that at any iteration of HIERARCHICALSTARPARTITION, the graph
has O(logn) distinct edge weights.

RouNDLENGTHS
Input: Graph G = (V, E, d)
Output: Rounded graph G = (V, E, cz)

1: Sort the edge weights of d so that
d(er) <d(e2) <--- <d(em)-

return G = (V,E,d)

2.4 =1

3: fori=1...m do

4: if d(e;) > 2d(e;r) then
5: i =1

6: end if

T CZ(BZ) =d(ey)

8: end for

9:

The cost of ROUNDLENGTHS is dominated by the sorting the edges lengths, which takes O(mlogm)
time. Before we examine the cost of constructing low stretch spanning tree on G, we show that for any
tree produced in the rounded graph G, taking the same set of edges in GG gives a tree with similar average
stretch.

Claim 5.7 For each edge e, 3d(e) < d(e) < d(e).

13

Lemma 5.8 Let T' be any spanning tree of (V, E), and u,v any pair of vertices, we have
1 -
§dT(u7U) < dT(u7U) < dT(u7U)‘
Proof Summing the bound on a single edge over all edges on the tree path suffices. |

Combining these two gives the following Corollary.

Corollary 5.9 For any pair of vertices u,v such that uv € FE,

JT(u,v)
v) d(u,v) — 2 J(u,fu) '

N

1 ~T(’U,,U) < dT(U,U)
2 d(u,

Hence calling HIERARCHICALSTARPARTITION(G,xo,Q) and taking the same tree in G gives a low
stretch spanning tree for G with O(mlogn log log? n) total stretch. It remains to bound the running time.

Theorem 5.10 HINERARCHICALSTARPARTITION(G, x0, Q) runs in O(mlogm + nlogmloglogm) time on
the rounded graph G.

Proof 1t was shown in [EESTO05] that the lengths of all edges considered at some point where the
farthest point from zq is r is between - n~3 and r. The rounding algorithm ensures that if J(ei) #*
d(e;) for some i < j, we have 2d(e;) < d(e;). Therefore in the range [r,r - n?] (for some value of r),
there can only be O(logn) different edge lengths in d. Lemma 5.6 then gives that each call of STAR-
PARTITION runs in O(vol(X) + |V(X)|loglogn) time. Combining with the fact that each edge appears
in at most O(logn) layers of the recursion (Theorem 5.2 of [EESTO05]), we get a total running time of
O(mlogn + nlognloglogn). [

6 Discussion

The output of INCREMENTALSPARSIFY is a graph of samples with a remarkable property as a direct
consequence of Lemma 3.3; its further incremental sparsification can be performed by a mere uniform
sampling of its off-tree multi-edges.

This leads naturally to the definition of a smooth sequence of (multi)-graphs on a common set of
vertices, with the following properties: (i) it is of logarithmic size, (ii) the first graph is spine-heavy, (iii)
every two subsequent graphs have a constant condition number, and (iv) the last graph is a tree. The
sequence can be obtained by applying one round of INCREMENTALSPARSIFY to the spine-heavy graph, and
then O(logn) rounds of uniform sampling.

Smooth sequences of graphs can be useful in an alternative way for building a chain of preconditioners,
which separates sparsification from greedy elimination. More concretely, the alternative algorithm first
builds a smooth sequence of graphs, starting from the spine-heavy version of the input graph. Then,
somewhat roughly speaking, the final chain is obtained by applying a slightly less aggressive version of
GREEDY ELIMINATION to each graph in the sequence; this version eliminates degree-one nodes as usually,
but restricts itself to degree-two nodes whose both adjacent edges are in the low-stretch tree. The simplicity
of this approach is particularly highlighted in the case of low-diameter unweighted graphs. Solving such
graphs has now been essentially reduced to the computation of a BFS tree followed by a number of rounds
of uniform sampling.

We believe that smooth sequences of graphs is a notion of independent interest that may found other
applications.

14

References

[ABNOS]

[BHO3]

[BHV04]

[BK6]

[Chu97]

[CKM*11]

[DSO0]
[EESTO5]

[FieT73]

[FT87]

[Gre96]

[GT83)

[IMD*07]

[KMO09]

[KMP10a]

Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearly tight low stretch spanning trees. In
49th Annual IEEE Symposium on Foundations of Computer Science, pages 781-790, 2008.
1.1,4,5,5,5,5.6

Erik G. Boman and Bruce Hendrickson. Support theory for preconditioning. SIAM J. Matriz
Anal. Appl., 25(3):694-717, 2003. 3

Erik G. Boman, Bruce Hendrickson, and Stephen A. Vavasis. Solving elliptic finite element
systems in near-linear time with support preconditioners. CoRR, cs.NA /0407022, 2004. 1

Andrés A. Benczir and David R. Karger. Approximating s-t Minimum Cuts in O(nQ) time
Time. In STOC, pages 47-55, 1996. 1.1

F.R.K. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series in Mathe-
matics. American Mathematical Society, 1997. 1

Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel Spielman, and Shang-Hua
Teng. Electrical Flows, Laplacian Systems, and Faster Approximation of Maximum Flow in
Undirected Graphs. In Proceedings of the 43" ACM Symposium on Theory of Computing,
2011. 1

Peter G. Doyle and J. Laurie Snell. Random walks and electric networks, 2000. 2, 3

Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-stretch spanning
trees. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages
494-503, 2005. 1, 1.1, 5,5, 5.4, 5.5, 5,5

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23(98):298-305,
1973. 1

Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34:596-615, July 1987. 5

Keith Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant
Linear Systems. PhD thesis, Carnegie Mellon University, Pittsburgh, October 1996. CMU CS
Tech Report CMU-CS-96-123. 2

Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of
disjoint set union. In STOC ’83: Proceedings of the 15th annual ACM symposium on Theory
of computing, pages 246-251, New York, NY, USA, 1983. ACM. 3

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. Harmonic coor-
dinates for character articulation. ACM Trans. Graph., 26(3):71, 2007. 1

Jonathan A. Kelner and Aleksander Madry. Faster generation of random spanning trees. In
Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2009, pages 13-21, 2009. 1

Toannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD
systems. CoRR, abs/1003.2958, 2010. 1, 1.1, 3, 3, 3, 4, 4

15

[KMP10b)]

[KMST09a]

[KMST09b)]

[KMT11]

[MPOg]

[OMSW10]

[SDOS]

[SpilOa]

[Spil0b]

[SS08]

[ST96]

[ST04]

[STO6]

[Tar79]

[Ten10]

Toannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD
systems. In FOCS ’10: Proceedings of the 51st Annual IEEE Symposium on Foundations of
Computer Science. IEEE Computer Society, 2010. 1.1

Alexandra Kolla, Yury Makarychev, Amin Saberi, and Shang-Hua Teng. Subgraph sparsifi-
cation and nearly optimal ultrasparsifiers. CoRR, abs/0912.1623, 2009. 1.1

Toannis Koutis, Gary L. Miller, Ali Sinop, and David Tolliver. Combinatorial preconditioners
and multilevel solvers for problems in computer vision and image processing. Technical report,
CMU, 2009. 1

Toannis Koutis, Gary L. Miller, and David Tolliver. Combinatorial preconditioners and mul-
tilevel solvers for problems in computer vision and image processing. Computer Vision and
Image Understanding, In Press:—, 2011. 1

James McCann and Nancy S. Pollard. Real-time gradient-domain painting. ACM Trans.
Graph., 27(3):1-7, 2008. 1

James B. Orlin, Kamesh Madduri, K. Subramani, and M. Williamson. A faster algorithm
for the single source shortest path problem with few distinct positive lengths. J. of Discrete
Algorithms, 8:189-198, June 2010. 1.1, 5

Daniel A. Spielman and Samuel I. Daitch. Faster approximate lossy generalized flow via
interior point algorithms. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, May 2008. 1

Daniel Spielman. Laplacian gems. Nevanlinna Prize Talk, FOCS 2010, October 2010. 1

Daniel A. Spielman. Algorithms, Graph Theory, and Linear Equations in Laplacian Matrices.
In Proceedings of the International Congress of Mathematicians, 2010. 1

Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 563-568,
2008. 1, 3

Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs and
finite element meshes. In FOCS, pages 96-105, 1996. 1

Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, pages 81-90, June 2004. 1

Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems. CoRR, abs/cs/0607105, 2006. 1,
1.1, 4, 4, 4

Robert Endre Tarjan. Applications of path compression on balanced trees. J. ACM, 26(4):690—
715, 1979. 3

Shang-Hua Teng. The Laplacian Paradigm: Emerging Algorithms for Massive Graphs. In
Theory and Applications of Models of Computation, pages 2—14, 2010. 1

16

	1 Introduction
	1.1 Overview of our techniques

	2 Background and notation
	3 Incremental Sparsifier
	4 Solving using Incremental Sparsifiers
	5 Speeding Up Low Stretch Spanning Tree Construction
	6 Discussion

