

15-859N — Spectral Graph Theory and Numerical Linear Algebra. — Fall 2011
 Gary Miller Richard Peng

Assignment 4 Due date: Monday Nov 21, 2011

Please turn in each problem on a separate sheet of paper for grading purposes. Each sheet should include your name.

1 Construction of Low Stretch Spanning Trees

[5+5+5=15 points]

This problem tries to show an algorithm for finding a spanning tree with $O(m^{1/2} \log^2 n)$ average stretch in an unweighted graph with m edges.

1. Suppose we have a BFS tree of the graph starting at some vertex. Let E_l be the number of edges going from vertices at distance l to $l + 1$ and B_l be the number of edges between vertices at distances $[0, l]$. Show that there exist $l \leq m^{1/2} \log n$ such that $E_l \leq m^{-1/2} B_l$.
2. Show that in an unweighted graph, we can decompose it into pieces of radius $O(m^{1/2} \log n)$ so that at most $m^{1/2}$ edges are between the pieces in $O(m)$ time.
3. Apply the above procedure twice to give an algorithm with running time $O(m)$ that generates a spanning tree with average stretch $O(m^{1/2})$.

2 2-level Recursive Solve

[5+7+3=15 points]

We analyze a 3-level recursive preconditioner in this problem. You may assume any result about Chebyshev polynomials or conjugate gradient shown in class or otherwise.

The setup is as follows: we have 3 matrices A , B and C such that:

$$\begin{aligned} B &\preceq A \preceq \kappa_1 B \\ C &\preceq B \preceq \kappa_2 C \end{aligned}$$

And we want to solve $Ax = b$ by only evaluating C^+

1. Observe that Preconditioned Chebyshev generates a linear operator. Show that one can find a linear operator $\text{PRECONCHEBY}(B, C)$ such that:

$$1/2B^+ \preceq \text{PRECONCHEBY}(B, C) \preceq 2B^+$$

Such that $\text{PRECONCHEBY}(B, C)$ can evaluated in $O(\sqrt{\kappa_2})$ forward multiplies in B and solves in C^+ .

2. Show that $\text{PRECONCHEBY}(B, C)^+$ can be used to precondition A , and give a bound on overall the iteration count in terms of κ_1 , κ_2 and the error in A norm, ϵ . The bound should have terms corresponding to forward multiplies in A , B , and solves in C .
3. Argue that preconditioned conjugate gradient can be used in the preconditioned solves at the topmost level. Why can't this be done at the second level?

3 A Bad Example for Spectral Partitioning

[6+6+8=20 points]

Define **threshold spectral partitioning** of a possibly weighted graph $G = (V, E)$ to be the vertex partition one gets by; 1) Finding the eigenvector x for λ_2 , 2) Sorting the vertices by their value in x , and 3) Returning the best threshold cut.

Let P_n^ϵ , for n even, be the weighted path graph on n vertices where all the edges have unit weight except the middle one which has weight ϵ .

Consider the Cartesian product $M_{cn}^\epsilon = P_{c\sqrt{n}} \otimes P_{\sqrt{n}}^\epsilon$

1. Show that threshold spectral partitioning on the graph M_{cn}^ϵ will generate a quotient cut of size $\Omega(1/\sqrt{n})$ for c sufficiently large and $\epsilon = 1/\sqrt{n}$ while the best cut is of size $O(1/n)$.
2. How big does c need to be for this to happen?
3. Show how to extend these results to the case when one uses the eigenvector from the normalized Laplacian.