Lecture 30. Other Eigenvalue Algorithms

There is more to the computation of eigenvalues than the QR algorithm. In
this lecture we briefly mention three famous alternatives for real symmetric
eigenvalue problems: the Jacobi algorithm, for full matrices, and the bisection
and divide-and-conquer algorithms, for tridiagonal matrices.

Jacobi

One of the oldest ideas for computing eigenvalues of matrices is the Jacobi al-
gorithm, introduced by Jacobi in 1845. This method has attracted attention
throughout the computer era, especially since the advent of parallel comput-
ing, though it has never quite managed to displace the competition.

The idea is as follows. For matrices of dimension 5 or larger, we know that
eigenvalues can only be obtained by iteration (Lecture 25). However, smaller
matrices than this can be handled in one step. Why not diagonalize a small
submatrix of A, then another, and so on, hoping eventually to converge to a
diagonalization of the full matrix?

The idea has been tried with 4 x 4 submatrices, but the standard ap-
proach is based on 2 x 2 submatrices. A 2 x 2 real symmetric matrix can be
diagonalized in the form

JT[; ﬂJ:[?;D ;0], (30.1)

225

LLd
L}

\

(]
vl

226 PArT V. EIGENVALUES

where J is orthogonal. Now there are several ways to choose J. One could
take it to be a 2 x 2 Householder reflection of the form

F = [*C 5], (30.2)

§ C

where s = sin @ and ¢ = cos# for some 6. Note that det F = —1, the hallmark
of a reflection. Alternatively, one can use not a reflection but a rotation,

J:{ CS], (30.3)

—8 C

with detJ = 1. This is the standard approach for the Jacobi algorithm. It
can be shown that the diagonalization (30.1) is accomplished if # satisfies

2d
b—a'

and the matrix J based on this choice is called a Jacobi rotation. (It has the
same form as a Givens rotation (Exercise 10.4); the only difference is that ¢
is chosen to make JTAJ diagonal rather than JTA triangular.)

Now let A € R™™ be symmetric. The Jacobi algorithm consists of the
iterative application of transformations (30.1) based on matrices defined by
(30.3) and (30.4). The matrix J is now enlarged to an m X m matrix that is
the identity in all but four entries, where it has the form (30.3). Applying 2
on the left modifies two rows of A, and applying J on the right modifies two
columns. At each step a symmetric pair of zeros is introduced into the matrix,
but previous zeros are destroyed. Just as with the QR algorithm, however,
the usual effect is that the magnitudes of these nonzeros shrink steadily.

Which off-diagonal entries a,; should be zeroed at each step? The ap-
proach naturally fitted to hand computation is to pick the largest off-diagonal
entry at each step. Analysis of convergence then becomes a triviality, for one
can show that the sum of the squares of the off-diagonal entries decreases
by at least the factor 1 — 2/(m? — m) at each step (Exercise 30.3). After
O(m?) steps, each requiring O(m) operations, the sum of squares must drop
by a constant factor, and convergence t0 aCCUTACY €pachine 1S assured after
O(m®10g(€nachine)) OPerations. In fact, it is known that the convergence is
better than this, ultimately quadratic rather than linear, so the actual opera-
tion count is O(m?1og(|10g(€nachine)|)) (Exercise 25.2).

On a computer, the off-diagonal entries are generally eliminated in a cyclic
manner that avoids the O(m?) search for the largest. For example, if the
m(m — 1)/2 superdiagonal entries are eliminated in the simplest row-wise
order, beginning with a,,,a,3, ..., then rapid asymptotic convergence is again
guaranteed. After one sweep of 2 x 2 operations involving all of the m(m—1)/2
pairs of off-diagonal entries, the accuracy has generally improved by better
than a constant factor, and again, the convergence is ultimately quadratic.

tan(20) = (30.4)

LECTURE 30. OTHER EIGENVALUE ALGORITHMS 297

The Jacobi method is attractive because it deals only with pairs of rows
and columns at a time, making it easily parallelizable (Exercise 30.4). The
matrix is not tridiagonalized in advance; the Jacobi rotations would destroy
that structure. Convergence for matrices of dimension m < 1000 is typically
achieved in fewer than ten sweeps, and the final componentwise accuracy is
generally even better than can be achieved by the QR algorithm. Unfortu-
nately, even on parallel machines, the Jacobi algorithm is not usually as fast as
tridiagonalization followed by the QR or divide-and-conquer algorithm (dis-
cussed below), though it usually comes within a factor of 10 (Exercise 30.2).

Bisection

Our next eigenvalue algorithm, the method of bisection, is of great practical
importance. After a symmetric matrix has been tridiagonalized, this is the
standard next step if one does not want all of the eigenvalues but just a subset
of them. For example, bisection can find the largest 10% of the eigenvalues,
or the smallest thirty eigenvalues, or all the eigenvalues in the interval [1,2].
Once the desired eigenvalues are found, the corresponding eigenvectors can be
obtained by one step of inverse iteration (Algorithm 27.2).

The starting point is elementary. Since the eigenvalues of a real symmetric
matrix are real, we can find them by searching the real line for roots of the
polynomial p(x) = det(A — z/). This sounds like a bad idea, for did we not
mention in Lectures 15 and 25 that polynomial rootfinding is a highly unstable
procedure for finding eigenvalues? The difference is that those remarks per-
tained to the idea of finding roots from the polynomial coefficients. Now, the
idea is to find the roots by evaluating p(zx) at various points z, without ever
looking at its coefficients, and applying the usual bisection process for nonlin-
ear functions. This could be done, for example, by Gaussian elimination with
pivoting (Exercise 21.1), and the resulting algorithm would be highly stable.

This much sounds useful enough, but not very exciting. What gives the
bisection method its power and its appeal are some additional properties of
eigenvalues and determinants that are not immediately obvious.

Given a symmetric matrix A € R™*™, let A ... A™) denote its prin-
cipal (i.e., upper-left) square submatrices of dimensions 1,...,m. It can be
shown that the eigenvalues of these matrices interlace. Before defining this
property, let us first sharpen it by assuming that A is tridiagonal and irre-
ducible in the sense that all of its off-diagonal entries are nonzero:

a, b

I
=
3
=
(%]

A , b #0. (30.5)

228 PART V. EIGENVALUES

A

A

s

A®)

-l---¢
—--

——-—
- =%
~- -9

A@®

-9
-4
-9
-9

Figure 30.1. Illustration of the strict eigenvalue interlace property (30.6) for
the principal submatrices {AD)} of an irreducible tridiagonal real symmetric
matriz A. The eigenvalues of A® interlace those of A®*)). The bisection
algorithm takes advantage of this property.

(If there are zeros on the off-diagonal, then the eigenvalue problem can be
deflated, as in Algorithm 28.2.) By Exercise 25.1, the eigenvalues of A*) are
distinct; let them be denoted by A < A" < ... < A®. The crucial prop-
erty that makes bisection powerful is that these eigenvalues strictly interlace,
satisfying the inequalities
AL o B9 2 nlERD (30.6)

fork=1,2,...,m—-1andj= 1,2,...,k — 1. This behavior is sketched in
Figure 30.1.

It is the interlacing property that makes it possible to count the exact
number of eigenvalues of a matrix in a specified interval. For example, consider
the 4 x 4 tridiagonal matrix

11
1 0 1
4 12

From the numbers
det(AM) =1, det(A®) = _1, det(A®) = -3, det(A®) = 4,

we know that A) has no negative eigenvalues, 4A® has one negative eigen-
value, A® has one negative eigenvalue, and A® has two negative eigenvalues.
In general, for any symmetric tridiagonal A € R™*™ the number of negative
etgenvalues is equal to the number of sign changes in the sequence

1, det(AM), det(A®),..., det(A™), (30.7)

which is known as a Sturm sequence. (This prescription works even if zero
determinants are encountered along the way, if we define a “sign change” to

LECTURE 30. OTHER FIGENVALUE ALGORITHMS 229

mean a transition from + or 0 to — or from — or 0 to + but not from + or
—to 0.) By shifting 4 by a multiple of the identity, we can determine the
number of eigenvalues in any interval [a, b): it is the number of eigenvalues in
(—00,b) minus the number in (—0,a).

One more observation completes the description of the bisection algorithm:
for a tridiagonal matrix, the determinants of the matrices {A™®)} are related by
a three-term recurrence relation. Expanding det(A™)) by minors with respect
to its entries b, , and @ in row k gives, from (30.5),

det(A®) = a,det (A1) _ bi_1det(A*-2)), (30.8)
Introducing the shift by z/ and writing p*)(z) = det(A® — zl), we get
P(2) = (a, - 2)p*1(z) — bi_ 1 p* 2 (z). (30.9)

If we define p(-1(z) = 0 angd P%(z) = 1, then this recurrence is valid for all
k=1,2,... m.

By applying (30.9) for a succession of values of z and counting sign changes
along the way, the bisection algorithm locates eigenvalues in arbitrarily small
intervals. The cost is O(m) flops for each evaluation of the sequence, hence
O(m 10g(€machine)) flops in total to find an eigenvalue to relative accuracy
€machine: 1f @ small number of eigenvalues are needed, this is 3 distinct im-
provement over the O(m?) operation count for the QR algorithm. On a mul-

tiprocessor computer, multiple eigenvalues can be found independently on
Separate processors.

Divide-and-Conquer

not well understood for a decade after Cuppen’s original paper.

Let T € R™™ with m = 2 be symmetric, tridiagonal, and irreducible in
the sense of having only nonzeros on the off-diagonal. (Otherwise, the problem
can be deflated.) Then for any n in the range 1 < p < m, T can be split into

A :;.‘“--. e

L P T

230 PART V. EIGENVALUES

submatrices as follows:

=)
@

™
=™

(30.10)

Here T, is the upper-left n x n principal submatrix of 7', T, is the lower- -right
(m —mn) x (m — n) principal submatrix, and § = tatin = taas1 # 0. The only
difference between T and T} is that the lower- -right entry ¢, , has been replaced
by t.. — 0, and the only difference between T, and T, is that the upper-left
entry ¢, .1 has been replaced by ¢,,, .., — 8. These modifications of two
entries are introduced to make the rightmost matrix of (30.10) have rank one.

Here is how (30.10) might be expressed in words. A tridiagonal matriz can
be writien as the sum of a 2 x 2 block-diagonal matriz with tridiagonal blocks
and a rank-one correction.

The divide-and-conquer algorithm proceeds as follows. Split the matrix
T as in (30.10) with n ~ m/2. Suppose the eigenvalues of T, and T, are
known. Since the correction matrix is of rank one, a nonlinear but rapid
calculation can be used to get from the eigenvalues of T} and T, to those of T
itself. Now recurse on this idea, finding the eigenvalues of T, and T, by further
subdivisions with rank-one corrections, and so on. In this manner an m x m
eigenvalue problem is reduced to a set of 1 x 1 eigenvalue problems together
with a collection of rank-one corrections. (In practice, for maximal efficiency,
it is customary to switch to the QR algorithm when the submatrices are of
sufficiently small dimension rather than to carry the recursion all the way.)

In this process there is one key mathematical point. If the eigenvalues of
f“l and T2 are known, how can those of T be found? To answer this, suppose
that diagonalizations

Tl = Q1D1 ,i,,’ Tz = QzDng

have been computed. Then from (30.10) it follows that we have

e [P o7 nlee)[*] o

with 2T = (¢T,¢7), where q7 is the last row of Q, and ¢f is the first row of
@Q,. Since this equation is a similarity transformation, we have reduced the
mathematical problem to the problem of finding the eigenvalues of a diagonal
matrix plus a rank-one correction.

LECTURE 30. OTHER EIGENVALUE ALGORITHMS 231

Figure 30.2. Plot of the function f()) of (30.12) for a problem of dimension 4.
The poles of f()\) are the etgenvalues {d;} of D, and the roots of f(A) (solid
dots) are the eigenvalues of D+wwT. The rapid determination of these roots
is the basis of each recursive step of the divide-and-conquer algorithm.

To show how this is done, we simplify notation as follows. Suppose we wish
to find the eigenvalues of D + ww”, where D € R™™ is 4 diagonal matrix
with distinct diagonal entries {d;} and w € R™ is a vector. (The choice of a
plus sign corresponds to B > 0 above; for 8 < 0 we would consider D — T,
We can assume w; # 0 for all j, for otherwise, the problem is reducible. Then
the eigenvalues of D + wuT are the roots of the rational function

2

fA) = 1+fd__’/\, (30.12)

as illustrated in Figure 30.2. This assertion can be justified by noting that if
(D + wwT)q = Aq for some g # 0, then (D — Al)g + w(wTq) = 0, implying
¢+ (D — M) w(wTq) = 0, that is, wTq + wT(D - Al 'w(wTq) = 0. This
amounts to the equation F(A)(wTq) = 0, in which wTq must be nonzero, for
otherwise ¢ would be an eigenvector of D, hence nonzero in only one position,
implying w”q # 0 after all. We conclude that if q is an eigenvector of D + T
with eigenvalue), then f(A) must be 0, and the converse follows because the
form of f()\) guarantees that it has exactly m zeros. The equation f(A) =0
is known as the secular equation.

At each recursive step of the divide-and-conquer algorithm, the roots of
(30.12) are found by a rapid iterative process related to Newton’s method.
Only O(1) iterations are required for each root (or O(log(] 1og(€ aeninc)l)) it-
erations if e, .. is viewed as a variable), making the operation count O(m)
flops per root for an m x m matrix, or O(m?) flops all together. If we imagine
a recursion in which a matrix of dimension m is split exactly in half at each
step, the total operation count for finding eigenvalues of a tridiagonal matrix

232 PART V. EIGENVALUES

by the divide-and-conquer algorithm becomes

O(m2+2(%)2+4(%)2+8(%)2+---+m(g)2), (30.13)

a series which converges to O(m?) (not O(m?logm)) thanks to the squares in
the denominators. Thus the operation count would appear to be of the same
order O(m?) as for the QR algorithm.

So far, it is not clear why the divide-and-conquer algorithm is advanta-
geous. Since the reduction of a full matrix to tridiagonal form (“Phase 1”
in the terminology of Lecture 25) requires 4m?/3 flops (26.2), it would seem
that any improvement in the O(m?) operation count for diagonalization of
that tridiagonal matrix (“Phase 2”) is hardly important. However, the eco-
nomics change if one is computing eigenvectors as well as eigenvalues. Now,
Phase 1 requires 8m®/3 flops but Phase 2 also requires O(m3) flops—for the
QR algorithm, ~ 6m3. The divide-and-conquer algorithm reduces this fig-
ure, ultimately because its nonlinear iterations involve just the scalar function
(30.12), not the orthogonal matrices Q;, whereas the QR algorithm must ma-
nipulate matrices Q); at every iterative step.

An operation count reveals the following. The O(m?®) part of the divide-
and-conquer computation is the multiplication by Q; and Q;‘" in (30.11). The
total operation count, summed over all steps of the recursion, is 4m?3/3 flops,
a great improvement over =~ 6m® flops. Adding in the 8m3/3 flops for Phase 1
gives an improvement from ~ 9m? to 4m3.

Actually, the divide-and-conquer algorithm usually does even better than
this, for a reason that is not elementary. For most matrices A, many of the
vectors z and matrices Q; that arise in (30.11) turn out to be numerically
sparse in the sense that many of their entries have relative magnitudes less
than machine precision. This sparsity allows a process of numerical deflation,
whereby successive tridiagonal eigenvalue problems are reduced to uncoupled
problems of smaller dimensions. In typical cases this reduces the Phase 2
operation count to an order less than m® flops, reducing the operation count
for Phases 1 and 2 combined to 8m3/3. For eigenvalues alone, (30.13) becomes
an overestimate and the Phase 2 operation count is reduced to an order lower
than m? flops. The root of this fascinating phenomenon of deflation, which
we shall not discuss further, is the fact that most of the eigenvectors of most
tridiagonal matrices are “exponentially localized” (Exercise 30.7)—a fact that
has been related by physicists to the phenomenon that glass is transparent.

We have spoken as if there is a single divide-and-conquer algorithm, but in
fact, there are many variants. More complicated rank-one updates are often
used for stability reasons, and rank-two updates are also sometimes used.
Various methods are employed for finding the roots of f(\), and for large
m, the fastest way to carry out the multiplications by Q; is via multipole
expansions rather than the obvious algorithm. A high-quality implementation
of a divide-and-conquer algorithm can be found in the LAPACK library.

i el S e i

]
]
1
!
|
|
]
]
|

LECTURE 30. OTHER EIGENVALUE ALGORITHMS 233
Exercises

30.1. Derive the formula (30.4), and give a precise geometric interpretation
of the transformation (30.1) based on this choice of 6.

30.2. How many flops are required for one step (30.1) of the Jacobi algorithm?
How many flops for m(m — 1)/2 such steps, i.e., one sweep? How does the
operation count for one Sweep compare with the total operation count for

tridiagonalizing a real symmetric matrix and finding its eigenvalues by the
QR algorithm?

30.3. Show that if the largest off-diagonal entry is annihilated at each step of
the Jacobi algorithm, then the sum of the squares of the off-diagonal entries
decreases by at least the factor 1 — 2/(m® — m) at each step.

30.4. Suppose m is even and your computer has m/2 processors. Explain
how m/2 transformations (30.1) can be carried out in parallel if they involve
the disjoint row/column pairs (1,2),(3,4),(5,6),...,(m — L ni).

30.5. Write a program to find the eigenvalues of an m x m real symmetric
matrix by the Jacobi algorithm with the standard row-wise ordering, plotting
the sum of the squares of the off-diagonal entries on a log scale as a function of
the number of sweeps. Apply your program to random matrices of dimensions
20, 40, and 80.

30.6. How many eigenvalues does

00
10
2 1
1

e R e)
O = et e

3

have in the interval [1,2]? Work out the answer on paper by bisection, making
use of the recurrence (30.9).

30.7. Construct a random real symmetric tridiagonal matrix 7 of dimension
100 and compute its eigenvalue decomposition, T = Q@DQT. Plot a few of
the eigenvectors on a log scale (the absolute values of a few columns of Q)
and observe the phenomenon of localization. What proportion of the 10,000
entries of Q are greater than 10-10 ip magnitude? What is the answer if
instead of a random matrix, T is the discrete Laplacian with entries 1,-2,17

bl
P |

UL |

i

R e o L L S

