13 |
The Laplacian of a Graph

The Laplacian is another important matrix associated with a graph, and
the Laplacian spectrum is the spectrum of this matrix. We will consider
the relationship between structural properties of a graph and the Laplacian
spectrum, in a similar fashion to the spectral graph theovy of previous
chapters, We will meet Kirchhoff’s expression for the number of spanning
trees of a graph as the determinant of the matrix we get by deleting a row
-and column from the Laplacian. This is one of the oldest results in algebraic
graph theory. We will also see how the Laplacian can be used in a number
of ways to provide interesting geometric representtations of a graph. This is
related to work on the Colin de Verdidre nurmber of a graph, which is one
of the most important recent developments in graph theory.

131 The Laplacian Matrix -

Let o be an arbitrary orientation of a graph X, and let D be the incidence
matrix of X7. Then the Laplacian of X is the matrix Q(X y=DDT. It is
a consequence of Lemma 8.3.2 that the Laplacian does not depend on the i
orientation ¢, and hence is well-defined. o

Lemma 13.1.1 Let X be o groph with n vertices and ¢ connected
components. If @ is the Laplacian of X, then tkQ =n — c. ]

Proof. Let D be the incidence matrix of an arbitrary orientation of X. A
We shall show that rk D = rk DT = 1k DDT, and the result then follows ‘ B
from Theorem 8.3.1. If z € R™ is a vector such that DDTz — 0, then
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#TDDT z = 0. But this is the squared length of the vector D¥z, and hence
we must have DT z = 0. Thus any vector in the null space of DDT is in the
null space of DT, which implies that tk DDT =1k D. m]

Let X be a graph on n vertices with Laplacian . Since @ is symmetric,
its eigenvalues are real, and by Theorem 8.4.5, R™ has an orthogonal basis
consisting of eigenvectors of Q. Since Q = DD, it is positive semidefinite,
and therefore its eigenvalues are all nonnegative. We denote them by A1 (@),
<. o An(@) with the assumption that

A(Q) < X(@Q) £ - 2 (@)

We use M;(X) as shorthand for A(Q(X)), or simply A; when @ is clear
from the context or unimportant, We will also use A to denote A,. For
any graph, A; = 0, because Q1 = 0. By Lemma 13.1.1, the multiplicity
of zero as an eigenvalue of @ is equal to the number of components of X,
and so for connected graphs, A is the smallest nonzero eigenvalue. Much
of what follows will concentrate on the information determined by this
particular eigenvalue. ' .

If X is a regular graph, then the eigenvalues of the Laplaman are
determined by the eigenvalues of the adjacency matrix.

Lemma 13:1.2 Let X be a regular graph with valency k. If the adjacency
matriz A has eigenvalues 81, ..., 6y, then the Laplacion Q has eigenvalues
k-0,...k— 0.

Proof. If X is k-regular, then @ = A(X) — A = kI — A. Thus every
eigenvector of A with eigenvalue £ is an eigenvector of () with eigenvalue

E—¢6. O

This shows that if two regular graphs are cospectral, then they also have
the same Laplacian spectrum. However, this is not true in general; the two
graphs of Figure 8.1 have different Laplacian specira.

The next result describes the relation between the Laplacian spectrum
of X and the Laplacian spectrum of its complement X

Lemma 13.1.3 If X is a graph onn vermces and 2 < i < n, then \(X) =
7 — )\n—'z—I-Z(X)

Proof. We start by observing that
QIX)+QX)=nl—J (13.1)

The vector 1 is an eigenvector of Q(X) and Q(X) with eigenvalue 0. Let
 be another eigenvector of Q(X) with eigenvalue A; we may assume that
z is orthogonal to 1. Then Jz =0, so

nz = (nl — Nz = QX)z + Q(X)z = Iz + Q(X)z.

Therefore, Q(X )z = (n — A)z, and the lemma follows. a

~n

N et

[

R S ]




13.2. Trees 281

Note that nf ~- J = Q(K,); thus (13.1) can be rewritten as
QM) +Q(X) = Q(Kx).

From the proof of Lemma 13.1.3 it follows that the eigenvalues of Q(K,)
are 1, with multiplicity n — 1, and 0, with multiplicity 1. Since K, , is the

“complement of K, U K,,, we can use this fact, along with Lemma 13.1.3,
to determine the eigenvalues of the complete bipartite graph, We leave the
pleasure of this computation to the reader, noting only the result that the
characteristic polynomial of QK n) is

Bt —m)" 7t~ )™t —m—n).
We note another useful consequence of Lemma 13.1.5.

Corollary 13.1.4 If X is o graph on n vertices, then A,(X) < n. Frx
has & connected components, then the multiplicity of n as an eigenvalue of
QX)ise—1. G

Our last result in this section is a property of the Laplacian that will provide
us with a lot of information about its eigenvalues.

Lemma 13.1.5 Let X be g graph on n vertices with Laplacian . Then
for any vector x, —

27 Qx = Z (T — 20)%.

uvCE{X)
Proof. This follows from the observations that
2T Q= T DDTy = (DV2)T (D7)

and that if wv € E(X ), then the entry of D7y corresponding to uw is
F(24 — zy). ]

13.2 Trees

In this section we consider a, classical result of algebraic graph theory, which
shows that the number of spanning trees in a graph is determined by the
Laplacian.

First we need some preparatory definitions. Let X be a graph, and let
e = uv be an edge of X. The graph X'\ e with vertex set V(X) and edge
set B{X)\ ¢ is said to be obtained by deleting the edge e. The graph
X/e constructed by identifying the vertices u and v and then deleting
e is said to be obtained by contracting e. Deletion and contraction are
Hlustrated in Figure 13.1. If a vertex = is adjacent to both % and v, then
there will be multiple edges between ¢ and the newly identified vertex in
X/e. Furthermore, if X itself has multiple edges, then any edges between
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u and v other than e itself become loops on the newly identified vertex in
X/e. Depending on the situation, it is sometimes possible to ignore loops,
multiple edges, or both.

Figure 13.1. Graph Y, deletion ¥ \ e, and contraction Y/e

If M is a symmetric matrix with rows and columns indexed by the sct
V and if § C V, then let M|[S] denote the submatrix of M obtained by
deleting the rows and columns indexed by elements of 5.

Theorem 13.2.1 Let X be a graph with Laplacion matriz Q. If u is an
arbitrary vertez of X, then det Qlu] is equal to the number of spanning trees
of X.

Proof. We prove the theorem by induction on the number of edges of X

Let 7(X) denote the number of spanning trees of X. If e is an edge
of X, then every spanning tree either contains e or does not contain e,
80 we can count them according to this distinction. There is a one-to-one
correspondence between spanning trees of X that conlbain e and spanning
trees of X/e, so there are 7{X/e) such trees. Any spanning tree of X that
does not contain ¢ is & spanning tree of X \ e, and so there are 7(X \ ) of
these. Therefore,

T(X) =7(X/e) + (X \e). (13.2)

In this situation, multiple edges are retained during confraction, but we
may ignore loops, because they cannot oceur in a spanning tree.

Now, assume that e = uv, and let E be the n x n diagonal matrix with
Eyy equal to 1, and all other entries equal to 0. Then

Qu] = QX \e)[u] + E,
from which we deduce that
det Q[u] = det Q(X \ €)[u] + det Q(X \ e)|u,v]. (13.3)

Note that Q(X \ e)iu,v] = Qfu, v].

Asgume that in forming X/e we contract u onto v, so that V(X/e) =
V(X)\u. Then Q(X/e){v] has rows and columns indexed by V{X)\ {x, v}
with the zy-entry being equal to Qy,, and so we also have that Q(X/e)[v] =

Qlu, vl.
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Thus we can rewrite (13.3) as
det Qfu] = det Q(X \ e)fu] + det Q(X/e)[u].

By induction, det Q(X\e)[u] = r(X\e) and det Q(X/e)[v] = 7(X/ e); hence
(13.2) implies the theorem. ]

It follows from Theorem 13.2.1 that det Q[u] is independent of the choice
of the vertex u.

Corollary 13.2.2 The number of spanning trees of K, isn™ 32,

Proof. This follows directly from the fact that Q[u} = nl,_, — .J for any
vertex u. O

If M is a square matrix, then denote by M (1,7) the matrix obtained by
deleting row ¢ and column j from M. The ij-cofactor of M is the value

(—1)i+j det M(ir .7)

The transposed matrix of cofactors of M is called the adjugate of M and
denoted by adj M. The ij-entry of adj M is the ji-cofactor of M, The most
important property of the adjugate is that

M adj(M) = (det M)I.

It M is imvertible, it implies that M—' = (det M)~!adj{M). Theo-
rem 13.2.1 implies that if () is the Laplacian of s graph, then the disgonal
entries of adj{@) are all equal. The full truth is somewhat surprising: All
of the entries of adj(@) are equal.

Lemma 13.2.3 Let 7(X) denote the number of spanning trees in the graph
X and let Q be its Laplacian. Then adj(Q) = 7(X)J.

Proof. Suppose that X has n vertices. Assume first that X is not con-
nected, so that 7(X) = 0. Then @ has rank at most n—2, so any submatrix
of @ of order (n — 1) x (n — 1) is singular and adj(€)) = 0.

Thus we may assume that X is connected. Then adj(@) # 0, but nonethe-
less Qadj(Q) = 0. Because X is conmected, ker() is spanned by 1, and
therefore each column of adj(Q) must be a constant vector. Since adj {#)]
is symmetric, it follows that it is a nonzero multiple of J ; now the result
follows at once from Theorem 13.2.1. a

To prove the next result we need some information about the character-
istic polynomial of & matrix. If A and B are square 1 X n matrices, then
det(A-+ B) may be computed as follows. For each subset § of {1,...,n}, let
Ag be the matrix obtained by replacing the rows of 4 indexed by elements
of S with the corresponding rows of B. Then

det(A+B) =Y det As.
g
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Applying this to tI + (—A), we deduce that the coefficient of tm—F in
det(t] — A) is (—1)* times the sum of the determinants of the principal
k x k submatrices of A. (This is a classical result, due to Laplace.)

Lemma 18.2.4 Let X be a graph on n vertices, and let M1,..., A, be the
eigenvalues of the Laplacian of X. Then the number of sponning trees in

o 1 n A
Xzs; o Ade

Proof. The result clearly holds'if X is not connected, so we may assume
without loss that X is connected. Let ¢(t) denote the characteristic poly-
nomiel det(t/ — @) of the Laplacian Q of X. The zeros of ¢{t) are the

eigenvalues of Q. Since A; = 0, its constant term is zero and the coefficient
of tis

On the other hand, by our remarks Jjust above, the coefficient of the linear
term in ¢(t) is

(=11 Z det Qul.
ueV{X)

This yields the lemma iminediately. O

13.3 Representations

Define a representation p of a graph X in R™ to be a map p from V{X) into
R™. Informally, we think of a representation as the positions of the vertices

in an m-dimensional drawing of a graph, Figure 13.2 shows a representation
of the cube in B3,

Figure 13.2. The cube in R? .
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We regard the vectors p(u} as row vectors, and thus we may represent
p by the |V(X)] x m matrix R with the images of the vertices of X as its
rOWS.

Suppose then that p maps V(X) into R™. We say p is balanced if

3 plw) =0

wEV({X}

Thus p is balanced if and only if 17R = 0. The representation of Fig-
ure 13.2 is balanced. A balanced representation has its “centre of gravily”
at the origin, and clearly we can translate any representation so that it is
balanced without losing any information. Henceforth we shall assume that
a representation is balanced. 7

If the columns of the mairix R are not linearly independent, then the
image of X is contained in a proper subspace of B™, and p is just a
Jower-dimensional representation embedded in R™. Any maximal linearly
independent subset of the columns of £ would suffice to determine all the
properties of the representation. Therefore, we will furthermore assume
that the columuns of R are linearly independent,

We can imagine building a physical model of X by placing the vertices
in the-positions specified by p and connecting adjacent vertices by identical
springs. It is natural to consider a representation to be better if it requires
the springs to be less extended. Letting ||z| denote the Euclidean length
of a vector z, we define the energy of a representation g to be the value

Ep)=" >, lp@)—p@)?

wveE(X}

and hope that natural or good drawings of graphs correspond to represen-
tations with low energy. {Of course, the representation with least energy is
the one where each vertex is mapped to the zero vector. Thus we need to
add further constraints, to exclude this.)

We can go further by dropping the assumption that the springs are iden-
tical, To model this, let w be a function from the edges of X to the positive
real numbers, and define the energy £(p) of a representation p of X by

€)= > wullolw)— p()II%,

wvEB(X)

where wy, denotes the value of w on the edge uv. Let W be the diagonal
matrix with rows and columns indexed by the edges of X and with the
diagonal entry corresponding to the edge uv equal t0 wyy.

The next result can be viewed as a considerable generalization of
Lemma 13.1.5.

Lemma 13.3.1 Let p be a representation of the edge-weighted groph X,
given by the |V(X)| X m matriz B. If D is an orienfed incidence matriz

R A S
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for X, then

E(p) =t RTDWDTR,
Proof. The rows of DTR afe indexed
then the wu-row of DTR is d(p(w)

entries of DT RRTD have the form
the edges of X. Hence

by the edges of X, and ifuv € E(X),
— p(v}). Consequently, the diagonal
lle(u) — p(v))?, where uv ranges over

Elp) =te WD'RRTD =t RTDW DT R

as required.

1

We may view Q = DW DT as a weighted Laplacian. If uv ¢ E(X), then
ww = —~Wyy, and for each vertex ¢ in X ,

Quu = Z Wy
vy

Thus @1 = Q. Conversely, any symmetric matrix } with nonpositive off-
diagonal entries such that Q1 =0 is a weighted Laplacian,

Note that RTDWD?TR is an m x m symmetric matrix; hence its eigen-
values are real. The sum of the eigenvalues is the trace of the matrix, and

hence the energy of the representation is given by the sum of the eigenvalues
of REDWDTR,

For the normalized representation of the cube we have (with W = 7)

11 =1 -1 1 1 _1 _g

I =1 -1 1 1 -1 1 1],
VBl 1 1 -1 —1 -1 —1

which implies that

20 0
' RTQr=10 2 o - ,
00 2

and £(p) = 6. This can be confirmed directly by noting that each of the 12
edges of the cube has Jength 1/ \/§._ :
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134 Energy and Eigenvalues

We now show that the energy of certain representations of a graph X are
determined by the ejgenvalues of the Laplacian of X. If M is an invertible
m X m matrix, then the map that sends u to p(u)M is another represen-
tation of X. This representation is given by the matrix RM and provides
as much information about X as does p. From this point of view the rep-
resentation is determined by its column space. Therefore, we may assume
that the columns of R are orthogonal to each other, and as above that each
column has norm 1. In this situation the matrix R satisfies RTR = I, and
the representation is called an orthogonal representation.

Theorem 13.4.1 Let X be a graph on n vertices with weighted Laplacian
Q. Assume that the eigenvalues of Q are Ay < - - - < Ay and that Mg > 0.
The minimum energy of a balanced orthogonal representation of X in g™
equals 371 A,

Proof. By Lemma 13.3.1 the energy of a representation is tr RTQR. From
Corollary 9.5.2, the energy of an orthogonal representation in % is bounded
below by the sum of the £ smallest eigenvalues of (). We can realize this
lower bound by taking the columns of R to be vectors T1, ..., x¢ such that
Qxi = }\;.:xi. )

Since Ay > 0, we must have z; = 1, and therefore by deleting x1 we ob-
tain a balanced orthogonal representation in R, with the same energy.
Conversely, we can teverse this process to obtain an orthogonal represen-
tation in R from a balanced orthogonal representation in R~ such that
these two representations have the same energy. Therefore, the minimum
energy of a balanced orthogonal representation of X in R™ equals the min-
imum energy of an orthogonal representation in R™+1 and this minimum
equals Ag + - Ay, 0

This result provides an intriguing automatic method for drawing a
graph in any number of dimensions. Compute an orthonormal basis of
eigenvectors zy,...,%, for the Laplacian Q and let the columns of B
be Zg,...,Tmy1. Theorem 13.4.1 implies that this yields an orthogonal
balanced representation of minimum energy. 'The representation is not nec-
essarily unique, because it may be the case that Amtl = Ama2, in which
case there is no reason to choose between Tzt a0d Zyppa.

Figure 13.3 shows that such a representation (in R?) can look quite
‘appealing, while Figure 13.4 shows that it may be less appealing.

Both of these graphs are planar graphs on 10 vertices, but in both cases
the drawing is not planar. Worse still, in general there is no guarantee that
the images of the vertices are even distinct. The representation of the cube
in R? given above can be obtained by this method. _

More generally, any pairwise orthogonal triple of eigenvectors of ¢} pro-
vides an orthogenal representation in R3, and this representation may have
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Figure 13.3. A planar triangulation represented in R?

Figure 13.4. A plansr triangulation represented in R?

pleasing properties, even if we do not choose the eigenvectors that minimize
the energy. )
We finish this section with a corollary to Theorem 13.4.1.

Corollary 13.4.2 Let X be a graph on n vertices. Then the minimum
value of
ZMUEE(X)(mU - "T'U)z
D ’
a8 & ranges over all nonzero wvectors orthogonal to 1, is Xa(X). The
mazimum value is Ao (X). . 5]

13.5  Connectivity

Our main result in this section is a consequence of the following bound. - - -

Theorem 13.5.1 Suppose that S is a subsel of the vertices of the graph -
K. Then A(X) < Aa(X\S) + 8. -
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Proof. Let z be a wunit vector of length n such that (when viewed as a
function on V(X)) its restriction to § is zero, and its restriction to V (X)\§
is an eigenvector of Q{X\ S} orthogonal to 1 and with eigenvalue 8. Then
by Corollary 13.4.2

X)) S Y (-2

urCB(X)

Hence by dividing the edges into those with none, one, or two endpoints in
X\ S we get )

X)) <D N2 Y (—m) < (S| +0

uesS vron uwvEBE{X\9)
We may take 6 = A3(X'\ $), and hence the result follows. o

If S is a vertex-cutset, then X \ S is disconnected, so A2{X\S) =0, and
we have the following bound on the vertex connectivity of a graph.

Corollary 13.5.2 For any graph X we have A2 (X) < ko(X). 0

It follows from our observation in Section 13.1 or from Exercise 4 that the
characteristic polynomial of QK1) ist{t— )t —n— 1). This provides
one family of examples where Az equals the vertex connectivity,

Provided that X is not complete, the vertex connectivity of X is bounded
above by the edge connectivity, which, in turn, is bounded above by the
minimum valency § (X) of a vertex in X. We thus have the following useful
inequalities for noncomplete graphs: '

Aa(X) < wo(X) < K1(X) < 6(X).

Note that deleting a vertex may increase Az. For example, suppose X = K,,,
where n > 3, and Y is constructed by adding a new vertex adjacent to two
distinct vertices in X, Then ), (Y) <2, since 6(¥) = 2, but A, (X)=n.

Recall that a bridge is an edge whose removal disconnecis a graph, and
thus a graph has edge-connectivity one if and only if it has a bridge. In
this case, the above result shows that A2(X) <1 unless X = Ky. Tt has
been noted empirically that Az seems to give & fairly natural measure of
the “shape” of a graph. Graphs with small values of Ay tend to be elon-
gated graphs of large diameter with bridges, whereas graphs with larger
values of Az tend to be rounder with smaller diameter, and larger girth and
connectivity,

For cubic graphs, this observation can be made precise, at least as regards
the minimum values for A2. Ifn > 10 and n = 2 mod 4, the graphs shown
in Figure 13.5 have the smallest value of Ay among all cubic graphs on
n vertices. If n > 12 and n = 0 mod 4, the graphs shown in Figure 13.6
have the smallest value of Az among all cubic graphs on n vertices. In both
cases these graphs have the maximum diameter among all cubic graphs on
7t verbices.
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Figure 13.5. Cubic graph with minimum Az on n = 2 mod 4 vertices

Figure 13.6. Cubic graph with minimum Az on n = 0 mod 4 vertices

13.6 Interlacing

We now consider what happens to the elgenvalues of QX)) when we add
an edge to X.

Lemma 13.6.1 Let X be a graph and let ¥ be obtained from X by adding
an edge joining two distinet vertices of X. Then

Do(X) € Aa(Y) € Aa(X) + 2.

Proof. Suppose we get Y by joining vertices r and s of X. For any vector
z we have T

QY )z = Z (2 — 2)* = (z,. — zg)? Z (70 — 20

wweB(Y) woeB(X)

If we choose z to be a unit eigenvector of Q(Y), orthogonal to 1, and with
eigenvalue Ay (Y'), then by Corollary 13.4.2 we get

A2(Y) 2 Xa(X) + (2 — 25)2 (13.4)

On the other hand, if we take z to be a unit eigenvector of Q(X),
orthogonal to 1, with eigenvalue Aa(X), then by Corollary 13.4.2 we get

Xa(¥) < 2alX) + (2 — 2). (13.5)

It follows from (13.4) that A(X) < Ao(Y). We can complete the proof
by appealing to (18.5). Since #2 + 22 < 1, it is straightforward to see that
(20 — 25)* < 2, and the result is proved. ad

A few comments on the above proof. If we add an edge joining the two
vertices in 2K) (fto get Kj), then )y increases from 0 to 2. Although this
example might not be impressive, it does show that the upper bound can
be tight, The full story is indicated in Exercise 8.

Next, the reader may well have thought that we forgot to insist that the
edge added to X in the lemma has to join two distinct and nonadjacent
vertices. In fact, the proof works without alteration even if the two ver-
tices chosen are adjacent. We say no more, because here we are not really
interested in graphs with multiple edges.
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Theorem 13.6.2 Let X be d graph with n vertices and let Y be obtained
Jrom X by adding an edge Joining two distinct vertices of X. Then A{X) <
(Y, for alli, and AlY) < M (XD if i < .

Proof. Suppose we add the edge wv to X to get Y. Let # be the vector
of length n with w-entry and v-entry 1 and —1, respectively, and all other
entries equal to 0. Then Q(Y) = Q(X) + 227, and if we use Q to denote
Q(X), we have '

H=Q)=tl - Q — 22" = (LI - Q)(I — (¢t] — Q)~'27).
By Lemma 8.2.4,
det(l — (3 — Q) "z2") = 1 — 27t — Q)
and therefore
det{t! — Q(Y)) _
det(t] — Q(X))

The result now follows from Theorem 8.13.3, applied to the rational
function $(t) = 1 — 2T (tI — @)z, and the proof of Theorem 9.1.1. - O

One corollary of this and Theorem 13.4.1 is that if X is a spanning
subgraph of Y, then the energy of any balanced orthogonal representation
of ¥ can never be less than the energy of the induced representation of X.

As another corollary of the theorem, we prove again that the Petersen
graph does not have a Hamilton cycle. The eigenvalues of the adjacency
matrix of the Petersen graph are 3, 1, and =2, with multiplicities 1, 5, and
4, respectively. Therefore, the eigenvalues of the Laplacian matrix for the
Petersen graph are 0, 2, and 5, with multiplicities 1, 5, and 4, respectively.
"The eigenvalues of the adjacency matrix of Cyp are 2cos{mr/5), for r =
- 0,1,...,9. It follows that

26(Cio) = (3+ VE)/2 > Ao (P) = 2.

Consequently, the eigenvalues of the Laplacian matrix of Cp do not in-
terlace the eigenvalues of the Laplacian matrix of the Petersen graph, and
therefore the Potersen graph does not have a Hamilton cycle.

We present two further examples in Figure 13.7; we can prove that these
graphs are not hamiltonian by considering their Laplacians in this fash-
ion. These two graphs are of some independent interest. They are cubic
hypohamiltonian graphs, which are somewhat rare. The first graph, on 18
vertices, is one of the two smallest cubic hypohamiltonian graphs after the

"Petersen graph. Like the Petersen graph it cannot be 3-edge coloured (it is
one of the Blanusa snarks). The second graph, on 22 vertices, belongs to
an infinite family of hypohamiltonian graphs.

It is interesting o note that the technique described in Section 9.2 using
the adjacency matrix is not strong enough to prove that these two graphs
are not hamiltonian. However, there are cases where the adjacéncy matrix
technique works, but the Laplacian technique does not,

127t — Q) ta
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Figure 13.7. Two nonhamiltonian graphs

13.7  Conductance and Cutsets
s i -
We now corme to some of the most important applications of Ay. KFXisa

graph and § C V(X), let 85 denote the set of edges with one end in 9 and
the other in V(X)\ S.

Lemma 13.7.1 Let X be o graph on n vertices and let S be a subset of
V(X). Then :

0S|
A(X) € o —
H)S Eim—18
Proof. Suppose |S| = a. Let 2 be the vector (viewed as a function on
V(X)) whose value is n— a on the vertices in § and —¢ on the vertices not
in §. Then z is orthogonal to 1, so by Corollary 13.4.2

a\ (x) < ZquE(X)(zu —~ 2)* _ |88|n?
S P Can—aP+(n—a)a
The lemma follows immediately from this, o

By way of a simple example, if §'is a single vertex with valency k, then the
lemma, implies that A2(X) < kn/(n—1). This is weaker than Fiedler's result
that Ay is no greater than the minimum valency of X~(Theorem 13.5.1),
although not by much. '

Our next application is much more important. Define the conductance
®(X)} of a graph X to be the minimum value of

185]
5]

where S ranges over all subsets of V(X) of size at most [V{X)|/2. (Many
authors refer to this quantity as the tsoperimetric number of a graph. We

follow Lovdsz, which seems safe.) From Lemma 13.7.1 we have at once the
following:

Corollary 13.7.2 For any graph X we have B(X) > Aa{X)/2. r
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The real significance of this bound is that Ay can be computed to a given
number of digits in polynomial time, whereas determining the conductance
of a graph is an NP-hard problem. A family of graphs with constant valency
and conductance bounded from below by a positive constant is called a
family of ezpanders. These are important in theoretical computer science,
if not in practice.

The bisection width of a graph on n vertices is the minimum value of
|8S], for any subset S of size [/2]: Again, this is NP-hard to compurte,
but we do have the following: :

Corollary 13.7.8 The bisection width of a graph X on 2m vertices is at
least mAg(X)/2. O

We apply this to the k-cube Q% In Exercise 13 it is established that
An (Qk) = 2, from which it follows that the bisection width of the k-cube
is af least 21 Since this value is easily realized, we have thus found the
exact value, ‘ :

Let bip(X) denote the maximum number of edges in a spanning bipartite
subgraph of X. This equals the maximum value of |88], where § ranges
over all subsets of V(X) with size at most W{x)/2.

Lemma 18.7.4 If X is a graph with n vertices, then bip(X) < ., (X}/4.
Proof. By applying Lemma 13.7.1 to the complement of X we get

1081 < 1S](n~ 15 Ao (X) /1 < nAao (X)/4,
which is the desired inequality. 0

13.8  How to Draw a Graph

We will describe a remarkable method, due to 'i‘utte, for determining
whether a 3-connected graph is planar.

Lemma 13.8.1 Let § be ¢ set of points in R™. Then the vector in R™
minimizes E'yES lz ~wli? i and only if :

1

yes ]
Proof. Let § be the centroid of the set 9, i.e.,.

1
y%EIZy-

Then
Sz -yl = Dole—9)+ @-y)?

yES yES
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1Sl =317+ S -l +23 (e — 5,9 - )

f

yES yES
=8| liz— 9>+ > llg— wll*.
yeS
‘Therefore, this is a minimum if and only if z = §. ]

We say that a representation p of X i barycentric relative to a subset
F of V(X} if for each vertex u not in F, the vector p(u) is the centroid of
the images of the neighbours of u. A barycentric representation can easily
be made balanced, but will normally not be orthogonal. If the images of
the vertices in J* are specified, then a barycentric embedding has minimum
energgz. Our next result formalizes the connection with the Laplacian.

Lemma 13.8.2 Let F be a subset of the vertices of X, let p be o vepre-
sentotion of X, and let R be the matriz whose rows are the images of the
vertices of X. Let Q) be the Laplacian of X. Then p is baryceniric relative

to F if and only if the rows of QR corresponding to the vertices in X\ F
are all zero. )

Proof. The vector  is the centroid of the vectors in § if and only if
d@—y)=0.
) yeS
If w has valency d, the u-row of QR is equal to

dp(u) ~ >~ p(w) = plu) — p(v).

ol Vo

The lermma follows. ) ]

Lemma 13.8.3 Let X be a connected graph, let F' be a subset of the ver-
tices of X, and let o be a map from F into R™. If X\ F is connected,

there is a unique m-dimensional representation p of X that extends o and
s barycentric relative to F, -

Proof. Tet ¢} be the Lé,placian of X. Assume that we havé
BT
Q = QBI Q y
2
where the rows and columns of @ are indexed by the vertices of F. Let R
be the matrix describing the representation p. We may assume

Y
Ry )’
where Ry gives the values of o on F. Then p extends o and is barycentric
(velative to F) if and only if
&1 BT\ /R Yy
B Q2 /\R/ \0)"

R:
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Then BR; + QoRy = 0, and so if (J2 is invertible, this yields that
Ry=~Q7'BR;, Yi=(Q,— BTQ,B)R,.

We complete the proof by showing that since X \ I is connected, Q5 is
invertible. Let ¥ = X\ F. Then there is a nonnegative diagonal matrix A,
such that

Q2 =Q(Y) + A,.

Since X is connected, Ap # 0. We prove that Q22 is positive definite. We
have i

2T Quz = ' Q(V)x + 27 Az,

Because z7Q(Y)zx = Yyenan(#i — ;)% we see that z7Q(Y)z > 0
and that 2"Q(Y)z = 0 if and only if = ¢l for some ¢. But now
T Agz = 21T Ay1, and thisis positive unless ¢ = 0. Therefore, 7 Qo2 > 0
unless & = 0; in other words, Qs is positive definite, and consequently it is
invertible. ' - O

Tutte showed that each edge in a 3-connected graph lies in a cycle ¢
such that no edge not in C joins two vertices of C' and X \ C is connected.
He called these peripheral cycles. For example, any face of a 3-connected
planar graph can be shown to be a peripheral cycle. '

Suppose that C is a peripheral cycle of size r in a 3-connected graph X
and suppose that we are given a mapping o from V(C) to the vertices to
a convex r-gon in R?, such that adjacent vertices in ¢ are adjacent in the
polygon. It follows from Lemma 13.8.3 that there is a unique barycentric
representation p of X relative to #. This determines a, drawing of X in the
plane, with all vertices of X \ C inside the image of C. Tutte proved the
truly remarkable result that this drawing has no crossings if and only if X
is planar. .

Peripheral cycles can be found in polynomial time, and given this,
Lemma 13.8.3 provides an automatic method for drawing 3-connected pla-
nar graphs. Unfortunately, from an aesthetic viewpoint, the quality of the
output is variable. Sometimes there is a good choice of outside face, maybe
» a large face as in Figure 13.8 or one that is preserved by an automorphism
as in Figure 13.0. .

However, particularly if there are a lot of triangular faces, the algorithm
tends to produce a large number of faces-within-faces, many of which are
minuscuie.

13.9 The Generalized Laplacian

The rest of this chapter is devoted to a generalization of the Laplacian
matrix of a graph. There are many generalized Laplacians associated with
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Figure 13.9. Different Tutte emheddings of the same graph

each graph, which at first sight seem only tenuously related. Nevertheless,
graph-theoretical properties of a graph constrain the algebraic properties of:
the entire class of generalized Laplacians associated with it. The next few
sections provide an introduction to this important and recent development.

Let X be a graph with n vertices. We call a symmetric n x n matrix Q a
generalized Laplacian of X if Q.. < 0 when u and v are adjacent vertices
of X and @uy = 0 when « and v are distinct and not adjacent. There are
noconstraints on the diagonal entries of ; in particular, we do not require
that @1 = 0. The ordinary Laplacian is a generalized Laplacian, and if A
is the adjacency matrix of X, then — A is a generalized Laplacian.

As with the usual Laplacian, we.will denote the eigenvalues of a
generalized Laplacian @ by

(@) £ A2{Q) <+ £ A (@)

We will be concerned with the eigenvectors in the Ag-eigenspace of ). If
@ is a generalized Laplacian of X, then for any ¢, the matrix Q — ¢l is a
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generalized Laplacian with the same eigenvectors as (}. Therefore, we can
freely assume that A2(Q}) = 0, whenever it is convenient to do so.

Lemma 13.9.1 Let X be a graph with a generalized Laplacian Q. If X is
connected, then A1(Q) is simple and the corresponding eigenvector can be
taken to have all its entries positive.

Proof. Choose a constant ¢ such that all diagonal entries of @@ — cI are
nonpositive. By the Perron-Frobenius theorem (Theorem 8.8.1), the largest
eigenvalue of —@ ¢l is simple and the associated eigenvector may be taken
to have only positive entries, |

If z is a vector with entries indexed by the vertices of X, then the positive
support supp, (z) consists of the vertices u such that Ty > 0, and the
negotive support supp_{z) of the vertices u such that @, < 0. A nodal
domain of z is o component of one of the subgraphs induced by supp, (z) -
or supp_{z). A nodal domain is positive if it is a component of supp +(m):
otherwise, it is negaiive.

If ¥ is a nodal domain of z, then zy is the vector given by

- _ ] lzel, weY;
(v ) = {0, otherwise.

II'Y and Z are distinct nodal domains with the same sign, then since no
edges of X join vertices in ¥ to vertices in Z,

T3 Qrz = 0. (13.6)

Lemma 13.9.2 Let z be an eigenvector of Q with eigenvalue A and let Y
be a positive nodal domain of z. Then (Q — Alzy < 0.

Proof. Let y denote the restriction of z to V(Y§ and let z be the restriction
of # to V(X)\ supp,(z). Let Qv be the submatrix of @ with rows and
columns indexed by V(Y), and let By be the submatrix of ¢ with rows
indexed by V(Y) and with columns indexed by V(X) \ supp,(z). Since

Qz = Az, we have v "
Qvy -+ Byz=Ay. . (13.7)
Since By and #z are nonpositive, By z is nonnegative, and therefore
Qry < Ay.
¢ ]

It is not necessary for  to be an eigenvector for the conclusion of this
lemma to hold; it is sufficient that (@ — AZ)z < 0. Given our discussion in
Section 8.7, we might say that it suffices that z be A-superharmonic.

Corollary 13.9.3 Let = be an eigenvector of Q with eigenvalue X\, and
let U be the subspace spanned by the vectors xy, where Y ranges over the
positive nodal domains of . If u € U, then v*'(Q— M)u < 0.
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" Proof. Ifu =)} ayxy, then using (13.6), we find that
w(Q — Au = Zai zH(Q — Ay,
Y

and so the claim follows from the previous lemma. O

Theorem 13.9.4 Let X be a connected graph, let Q) be a generalized Lapla-
cian of X, and let © be an eigenvector for Q with eigenvalue A2(Q). Ifz has

mingmal support, then supp, (z) and supp_(z) induce connected subgraphs
of X.

Proof. Suppose that v is a Ag-eigenvector with distinet positive nodal
domains Y and Z. Because X is connected, X, is simple and the span of
vy and vz contains a vettor, u say, mthogonal to the A;-eigenspace.
Now, u can be expressed as a linear combination of eigenvectors of ¢
with eigenvalues at least Ao; consequently, 4% (Q — Aol Ju > 0 with equality
if and only if % is a linear combination of elgenvectors with eigenvalue Xg.
On the other hand, by Corollary 13.9.3, we have u”(Q — A2f)u < 0, and
50 w7 (Q — Ao )u = 0. Therefore, u is an eigenvector of ¢} with elgenva.lue
Az and support equal to V(¥Y) U V(Z). e
Any Ag-eigenvector has both positive and negative nodal domains, be-
cause it is orthogonal to the Aj-eigenspace. Therefore, the preceding
argument shows that an eigenvector with distinct nodal domains of the
same sign does not have minimal support. Therefore, since & has minimal
support, it must have precisely one positive and one negative nodal domain.
. a
Lemma 13.9.5 Let Q be .o generalized Laplacian of o graph X and let

@ be an eigenvector of Q. Then any vertex not in'supp(z) either has no
netghbours in supp(x), er has neighbours in both supp () and supp (x).

Proof. Suppose that u ¢ supp(z), so 2, = 0. Then ‘
= (Qfﬂ)u = QuuTu + Z Quu®y = Z Gy

VU veu

Since Quy < 0 when v is adjacent to u, either =, = 0 for all vertices adjacent -
to u, or the sum has both positive and negative terms. In the former case
u is not adjacent to any vertex in supp(z); in the latter it is adjacent to
vertices in both supp, (z) and supp_(z). o
&

13.10 Multiplicities

In this section we show that if X is 2-connected and outerplanar, thén :
Az has multiplicity at most two, and that if X is 3-connected and plan
then A has multiplicity at most three. In the next section we show th




13.10. Multiplicities 299

equality holds in the latter case, then the representation provided by the
Ag-elgenspace yields a planar embedding of X.

j Lemma 13.10.1 Let @@ be a generalized Laplacian for the graph X. If X
is 3-connected and planar, then no eigenvector of Q with eigenvalue Mo (Q)
vanishes on three vertices in the same face of any embedding of X.

Proof. Let z be an eigenvector of ) with eigenvalue Az, and suppose that
u, v, and w are three vertices not in supp(z) lying in the same face. We
may assume that « has minimal support, and hence supp, (z) and supp_ ()
induce connected subgraphs of X. Let p be a vertex in supp, (z}. Since X
i is 3-connected, Menger’s theorem implies that there are three paths in X
joining p to w, v,"and w such that any two of these paths have only the
vertex p in common, It follows that there are three vertex-digjoint paths
Py, Py, and Py, joining u, v, and w, respectively, to some triple of vertices
in N{supp. ()). Each of these three vertices is also adjacent to a vertex in
supp_(z). Since both the positive and nega.tlve support induce connected
graphs, we may now contract all vertices in supp, () to-a single vertex, all
vertices in supp_(z) to another vertex, and each of the paths P, Py, and
Py to u, v, and w, respectively. The result is a planar graph which Contams
a copy of Kg 3 with its three vertices of valency two all Iying on the same
face. This is impossible. ]

Corollary 13.10.2 Let () be a generalized Laplacian for the graph X. If
X is 3-eonnected and planar, then A2(Q) has multiplicity ot most three.

Proof. If Az has multiplicity at least four, then there is an eigenvector in
the associated eigenspace whose support is disjoint from any three given
vertices. Thus we conclude that Ag has multiplicity at most three. 0

The graph K, is 2-connected and planar. Its adjacency matrix A has
eigenvalues 2+/2n, both simple, and 0 with multiplicity n — 2. Taking @ =
—A, we see that we cannot drop the assumption that X is 3-connected in
the last resulf.

Lemma 13.10.3 Let X be a 2-connected plane graph with a generalized
Laplacien @, and let  be an eigenvector of Q with eigenvalue A{Q) and
j with minimal support. If u end v are adjacent vertices of a face F such that
Vi Ty = Xy = 0, then F does not contain vertices from both the positive and
& negative support of x.

Proof. Since X is 2 connected, the face I is a cycle. Suppose that F
contains vertices p %nd g such that x, > 0 and z; < 0. Without loss
of generality we can assume that they occur in the order w, v, g, and
p clockwise around the face F, and that the portion of F' from g to p
contams only vertices not in supp{(z). Let v' be the first vertex Ilot in
supp(z) encountered moving anticlockwise around F' from g, and let ' be
the first vertex not in supp(z) encountered moving clockwige around F
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from p. Then +/, v/, ¢, and p are distinet vertices of * and occur in that
order around F. Let P be a path from ' to p all of whose vertices other
than ¢ are in supp, (z), and let N be a path from 2’ to g all of whose
vertices other than «' are in supp_(z). The existence of the paths P and
N is a consequence of Corollary 13.9.4 and Lemma 13.9.5. Because Fisa
face, the paths P and N.must both lie outside 7, and since their endpoints
are interleaved around #, they must cross. This is impossible, since P and
N are vertex-disjoint, and .so we have the necessary cortradiction, O

We call a graph outerplanar if it has a planar embedding with a face
that contains all the vertices. Neither Ky 3 nor K is outerplanar, and it is
known that a graph is outerplanar if and only if it has no minor isomorphic
to one of these two graphs. {A minor of a graph X is a graph obtained by
contracting edges in a subgraph of X . :

Corollary 13.10.4 Let X be o graph on n vertices with o general-

ized Laplacion Q. If X is 2-connected and outerplanar, then A2{Q)) has
mulliplicity at most two.

Proof. If )\, had multiplicity greater than two, then we could find an
eigenvector z with eigenvalue Ay such that z vanished on two adjacent

vertices in the sole face of X, However, since = must be orthogonal to

the eigenvector with eigenvalue A1, both supp, () and supp_ {z} must be
nonempty, - 0

The tree K ,, is outerplanar, but if 4 is its adjacency matrix, then — A
is a generalized Laplacian for it with A2 having multiplicity greater than

two. Hence we cannot drop the assumption in the corollary that X be
2-connected. '

13.11 Embeddings

We have seen that if X is a 3-connected planar graph and @ is a generalized
Laplacian for X, then A2(¢) has multiplicity at most three. The main
result of this section is that if A2(Q) has multiplicity exactly three, then
the representation p provided by the Ao-eigenspace of Q) provides a planar
embedding of X on the unit sphere.

As a first step we need to verify that in the case just described, no vertex
is mapped to zero by p. This, and more, follows from the next result.

Lemma 13.11.1 Let X be o 3-connected planar graph with o generalized
Laplacian Q such that A2 (Q) has multiplicity three. Let p be o representa-
ton given by a matriz U whose columns Jorm a basis for the y-eigenspace
of Q. If F is a face in some planar embedding of X, then the images under
© of any two vertices in F are linearly independent,
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Proof. Assume by way of contradiction that u and v are two vertices in a
face of X such that p(u) = ap(v) for some real number «, and let w be a
third vertex in the same face. Then we can find a linear combination of the
columns of U that vanishes on the vertices u, v, and w, thus contradicting
Lemma 13.10.1. ’ Qa

If p is a representation of X that maps no vertex to zero, then we define
the normalized representation p by

b=l pla).

Suppose that X is a 3-connected planar graph with a generalized Laplacian
@ such that Ay(Q)) has multiplicity three, and let p be the representation
given by the Ag-eigenspace. By the previous lemma, the corresponding nor-
malized representation $ is well-defined and maps every vertex to a point of
the unit sphere. If u and v are adjacent in X, then j{u) # +5(»), so there
is a unique geodesic on the sphere joining the images of « and ». Thus we
have a well-defined embedding of the graph X on the unit sphere, and our
task is to show that this embedding is planar, i.e., distinct edges can meet
only at a vertex.

If ¢ CR™, then the conver cone generated by C is the set of all nonneg-
. ative linear combinations of the elements of C. A subset of the unit sphere
is spherically convex if whenever it contains points w and v, it contains all
points on any geodesic joining « to v. The intersection of the unit sphere
with a convex cone is spherically convex. Suppose that F'is & face in some
planar drawing of X, and consider the convex cone ¢ generated by the
images under p of the vertices of F. This meets the unit sphere in a convex
spherical polygon, and by Lemma 13.10.3, each edge of ¥ determines an
edge of this polygon.

This does not yet imply that our embedding of X on the sphere has no
crossings; for example, the images of distinct faces of X could overlap. Our
next result removes some of the difficulty.

Bemma 13.11.2 Let X be a 2-connected planar graph. Suppose it has o
planar embedding where the neighbours of the vertez w are, in eyclic order,
Vi, ..V Let @ be o generalized Laplacien for X such that \3(Q) has
mulmphczty three. Then the planes spanned by the pairs {p(u), plv)} are
arranged in the same cyclic order around the line spanned by p(u) as the
vertices v; are arranged around <.

Proof. Let  be an eigenvector with eigenvalue Ay with minimal support
such that z(u) = x(v1) = 0. (Herc we are viewing z as a function on V(X).)
By Lemma 13.10.1, we see that neither z(vs) nor z(vg) can be zero, and
replacing z by -z lf needed we may suppose that x(vs) > 0. Given this,
we prove that z(vg) < 0.

Suppose that there are some values h, %, and 7 such that 2<h<i<yi<
kand z(vn) > 0, ©(v;) > 0, and z(v;) < 0. Since supp_, (z) is connected, the
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vertices vy, and v; are joined in X by a path with all vertices in supp ().
Taken with u, this path forms a cycle in X that separates v; from v;. Since
X is 2-connected, there are two vertex-disjoint paths £ and F; joining w
and v; respectively to vertices in N{supp, (#)). The end-vertices of these
paths other than v, and v; arve adjacent to vertices in supp_(z), and thus
we have found two vertices in supp_ () that are separated by vertices in
supp, (#). This contradicts the fact that supp_ () is connected.

It follows that there is exactly one index i such that z{»;} > 0 and
#(vip1) < 0. Since z{u) = 0 and z{ve} > 0, it follows from Lemma 13.9.5
that u has a neighbour in supp_ (), and therefore z(u) must be negative.

From this we see that if we choose z such that z(u) = z(v;) = 0 and

“x(vip1) > O, then x(v;_1) < 0 (where the subscripts are computed modulo

k). The lemma follows at once from this. 0

We now prove that the embedding provided by p has no crossings. The
argument is topological.

Suppose that X is drawn on a sphere S, without crossings. Let Sp be
a unit sphere, with X embedded on it using p, as described above. The
normalized representation j provides an injective map from the vertices of
X in S, to the vertices of X in Sy. By our remarks preceding the previous
lemma, this map extends to a continuous map % from S, to S, which
injectively maps each face on S, to a spherically convex region on Sp. From
Lemma 13.11.2, it even follows that % is injective on the union of the faces

-of X that contain a given vertex. Hence ¢) is a continuous locally injective

map from S, to S

It is a standard resuli that such a map must be injective; we outline a
proof. First, since % is continuous and locally injective, there is an integer
k such that |¢p~1(2)| = & for each point = on S. Let ¥ be any graph
embedded on S, with v vertices, ¢ edges, and f faces. Then $~1(Y) is
a plane graph on S, with kv vertices, ke edges, and kf faces. By Euler’s
formula, '

2=kv— ket kf=FKuv—e+f) =2k,

and therefore k = 1.
Thus we have shown that 1 is injective, and therefore it is a
homeomorphism. We conclude that 5 embeds X without crossings.

Exercises
-1, If D is the incidence matrix of an oriented graph, then show that any
square submatrix of I} has determinant 0, 1, or —1.

2. Show that the determinant of a square submatrix of B(X) is equal
to 0 or £27, for some integer r.
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i1.
12.
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- If M is a matrix, let M (i]j) denote the submatrix we get by deleting

row % and column j. Define a 2-forest in a graph to be a spanning
forest with exé.cfsly two components. Let @ be the Laplacian of X. If
u, p, and g are vertices of X and p # g, show that det Qlu](p|q) is
equal to the number of 2-forests with « in one component and o and
g in the other. ’

- Determine the characteristic polynomial of Q(K,, ).

. An aerborescence is an acyclic directed graph with a root vertex u

such that « has in-valency 0 and each vertex other than u has in-
valency 1 and is joined to w by a. directed path. (In other words,
it is a tree oriented so that all arcs point away from the root.) Let
Y be a directed graph with adjacency matrix A and let I be the
diagonal matrix with ith diagonal entry equal to the in-valency of
the ith vertex of ¥. Show that the number of spanning arborescerces
in ¥ rooted at a given vertex  is equal to det({D — A)[u]).-

. Show that if X is connected and has n vertices, then

A2(X) = min — ijenpn(® — ;)
T

Dici(wi—m)? 7

where the minimum is taken over all nonconstant vectors z.

- Show that if T is a tree with at least three vertices, then A1) <1,

with equality if and only if 7 is a star (i.e., is isomorphic to K 1,n)-

. Let r and s be distinct nonadjacent vertices in the graph X. If e C

E(X), show that A2(X \e) = Ag(X) — 2 if and only if X is complete,

. Let 1) be an oriented incidence matrix for the graph X. Let d; denote

the valency of the vertex i in X. Show that the largest eigenvalue of
DTD is bounded above by the maximum value of d; + d;, for any
two adjacent vertices ¢ and 7 in X. Deduce that this is also an upper
bound on As. (And for even more work, show that this bound is tight
if and only if X is bipartite and semiregular.)

Let X be a connected graph on n vertices. Show that there is a subset
of V{X) such that 2{5| < n,
(28] :
o — P(X ):
R

and the subgraphs induced by S and V'\ § are both connected.
Let X be a graph on n vertices with diameter d. Show that Az = 1/nd.

If X is the Cartesian product of two graphs ¥ and Z, show that
A2(X) is the minimum of Ay (¥) and Ap(Z). (Hint: Find eigenvectors
for X, and hence determine all eigenvalues of X in terms of those of
its factors.)
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Use Exercise 12 to show that A2{(Qr) = 2.

If X is an arc-transitive graph with diameter d and valency r, show
that &(X) > r/2d.

Show that a cycle in a 3-connected planar graph is a peripheral cycle
if and only if it is a face in every planar embedding of the graph.

Let X be a connected graph and let z be an eigenvector of Q(X) with
cigenvalue Az. Call a path wy, . ..,u, strictly decreasing if the values
of z on the vertices of the path form a strictly decreasing sequence.
Show that if u € V(X) and z, > 0, then u is joined by a strictly
decreasing path to some vertex v such that z, <0.

Let X be a connected graph. Show that if Q(X) has exactly three :
distinct eigenvalues, then there is a constant.p such that any pair ‘
of distinct nonadjacent vertices in X have exactly y common neigh-
bours, Show further that there is a constant § such that any pair
of distinct nonadjacent vertices in X have exactly ji common neigh-
bours. Find a graph X with this property that is not regular. (A
regular graph would be strongly regular.)

Let @ be a generalized Laplacian for a connected graph X. If z is an
eigenvector for @ with eigenvalue Ag and u is a vertex in X such that
@, Is maximal, prove that

l Quu + Z Qwu S AZ-

Let @ be a generalized Laplacian for a connected graph X and con-
sider the representation p provided by the Ag-eigenspace. Show that
if p{u) does not lie in the convex hull of the set

N = {pv) 1 v ~u} U {0},

then there is a vector @ such that a” p(u) > a7 p(v), for any neighbour
v of u. (Do not struggle with this; quote a result from optimization.)
Deduce that if p(x) does not lie in the convex hull of N, then

Quu + Z Q'u.v < >\2:

Uy~

Let @ be a generalized Laplacian for a path. Show that all the
eigenvalues of () are simple.

Let Q be a generalized Laplacian for a connected graph X and let ©
be an eigenvector for @ with eigenvalue Ag. Show that if no entries
of  are zero, then both supp,, () and supp_(z) are connected.

Let @ be a generalized Laplacian for a connected graph X, let  be
an eigenvector for ) with eigenvalue Ay and let C be the vertex set
of some component of supp(z). Show that N(C) = N(supp(z)).
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Notes

Theorem 13.4.1 comes from Pisanski and Shawe-Taylor [8], and our dis-
cussion in Section 13.3 and Secétion 13.4 follows their treatment. Fiedler
[2] introduced the study of Az. He called it the algebraic eonnectivity of a
graph. In [3], Fiedler proves that if z is an eigenvector for the connected
graph X with eigenvalue Ay and ¢ < 0, then the graph induced by the set

fueV(X): 2 > c}

is connected. Exercise 16 shows that it suffices to prove this when c = 0.
Our work in Section 13.6 is a modest extension of an idea due to Mo-
har, which we treated in Section 9.2. Van den Heuvel [11} offers further
applications of this type.
Alon uses Lemma 13.7.4 to show that there is a positive constant ¢ such
that for every e there is a triangle-free graph with e edges and

bip(X) < g + eetl3,

Lovéasz devotes a number in exercises in Chapter 11 of [4] to conductance.
Section 13.8 is, of course, based on [9], one of Tutte’s many masterpieces.
The final sections are based on work of van der Holst, Schrijver, and

Lovész [12], [13], [5]. These papers are motivated by the study of the Colin

de Verdiére number of a graph. This is defined to be the maximum corank

of a generalized Laplacian @ that also satisfies the additional technical

condition that there is no nonzerc matrix B such that (JB = 0 and By, = 0

when u is equal or adjacent to ». For an introduction to this important

subject we recommend [13].

For a solution to Exercise 5, see [4]. The result in Exercise 9 comes from
[1]. Exercise 10 comes from Mohar [6]. B. D. McKay proved that if X
has n vertices and diameter d, then d > 4/n)s. This is stronger than the
result of Exercise 11, and is close to optimal for trees. For a proof of the
stronger result, see Mohar [7]; for the weaker bound, try [4]. Tt might appear
that we do not need lower bounds on the diameter, as after all, it can be
computed in polynomial time. The problem is that this is polynomial time
in the number of vertices of a graph. However, we may wish to bound the
diameter of a Cayley graph given by its connection set; in this case we need
to compute the diameter in time polynomial in the size of the connection
set, ie., the valency of the graph. Exercise 17 is based on van Dam and
Haemers [10].

The Colin de Verdidre number of a graph is less than or equal to three if
and only if the graph is planar, and in this case, we can find a generalized
Laplacian of maximum corank. The null space of this generalized Laplacian
then yields a planar representation of the graph, using the method described
in Section 13.11. However, for a general graph X, we do not know how to
find a suitable generalized Laplacian with corank equal to the Colin de
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Verdiere number of X, nor do we know any indirect method to determine
it.
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