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PROOF OF SPECTRAL THEOREM

Theorem 1 (Spectral Theorem). Let A € R™" be a real symmetric
matriz. Then

(1) All eigenvalues of A are real.
(2) There egists an orthogonal matriz Q and a diagonal matriz A
such that A = QAQT.

Proof. We have proved (1) in the class. Only need to prove (2). We
make an induction on n.

When n = 1, the claim is obvious. Now assume that the claim is valid
for n = m, that is, for any m x m-real symmetric matrix A, there exists
an orthogonal matrix @ and diagonal matrix A such that A = QAQT.
Let us consider (m + 1) x (m + 1)-real symmetric matrix A. By (1), A
has a real eigenvalue A with eigenvector a. We see that all entries of
o must be real numbers. By Gram-Schmidt process, we may assume
that there exists an orthonormal basis qi,...,qn with ¢ = a. Let
P = (q1q2 " ¢n) and C := PTAP = (cij)(m+1)x(m+1)- We claim that
c;1 = A and ¢z = 0 for i # 1. In fact, note that P is an orthogonal
matrix, we have AP = PC, that is, Aliga++ qn) = (g2 @)C.
Therefore, we have Ag; = Z:’:{l ¢;1g;- But ¢ = o is an eigenvector,so

Aqy = Z:’:{l ¢i1¢i- Since gy, - - - , gn are linearly independent. So ¢y = A
and ¢; = 0 for i # 1. So C has four blocks like (;)\ :1) Note that

C = PTAP is symmetric(why ?), thus x = 0. So C = (3 %) and

A has to be symmetric matrix with the size m X m. By induction,
there exists an orthogonal matrix @ and diagonal matrix A such that
A = QAQT. Therefore
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and we easily check P (1 ) is an orthogonal matrix and we are




