
15-312 Foundations of Programming Languages

Midterm Examination

October 17, 2002

Name:

Andrew User ID:

• This is a closed-book exam; only one double-sided sheet of notes is permitted.

• Write your answer legibly in the space provided.

• There are 11 pages in this exam, including 3 worksheets.

• It consists of 3 questions worth a total of 100 points and one extra credit question
worth 20 points.

• The extra credit is recorded separately, so only attempt this after you have com-
pleted all other questions.

• You have 85 minutes for this exam.

Problem 1 Problem 2 Problem 3 Total EC

45 25 30 100 20

1

1. Static and Dynamic Semantics (45 pts)

In order to add lazy evaluation uniformly and compositionally to a call-by-value lan-
guage such as MinML we add a new type τ susp and constructs delay(e) and force(e). In-
formally, delay(e) delays the evaluation of e by creating a suspension, while force(e) forces
the evaluation of a suspension. For the purpose of this problem, we do not memoize
suspensions.

The basis for the question below are the judgments Γ ` e : τ , e value and e 7→ e′, the
latter from a structured operational semantics.

1. (5 pts) Show the typing rules for delay and force using the new type τ susp.

2. (10 pts) Show the new rules for values and the transition rules for the new constructs
in a structured operational semantics.

3. (5 pts) State the new case for the value inversion lemma (also known as the canonical
forms lemma). You do not need to prove it.

2

4. (5 pts) State the type preservation theorem in its form appropriate for the judgments
considered here. It is proved by rule induction over which derivation?

5. (10 pts) Show the cases for the new constructs in the proof of the type preservation
theorem.

3

6. (10 pts) Assume that, in addition to suspensions, our language already has (non-
recursive) call-by-value functions τ1 → τ2 with abstraction λx.e and application
e1 e2. We would like to add a call-by-name function space τ1 ⇒ τ2 with abstrac-
tion λnx.e and application e1 · e2. Show how the call-by-name constructs can be
considered syntactic sugar by giving their expansion. You do not need to prove
correctness.

τ1 ⇒ τ2 expands to

λnx.e expands to

e1 · e2 expands to

4

2. Continuations (25 pts)

Assume we are in the MinML language extended with continuations, but not exceptions.

1. (10 pts) Explain, in words, the behavior of the continuation k returned by the fol-
lowing function when given two types and a pair of continuations (k1, k2).

Fun a in Fun b in
fun join (p:a cont * b cont): (a + b) cont is

letcc ret in
case (letcc r in throw r to ret end)

of inl(x1) => throw x1 to fst p
| inr(x2) => throw x2 to snd p

end
end

end
end end

2. (5 pts) Call the function above polyjoin and let

ijoin = polyjoin [int] [int] .

What is the type of ijoin ?

5

3. (5 pts) What is the value of the following expression?

1 + letcc k1 in 2 + letcc k2 in
throw inl(3) to ijoin (k1, k2)

end end

4. (5 pts) What is the value of the following expression?

1 + letcc k1 in 2 + letcc k2 in
throw inr(3) to ijoin (k1, k2)

end end

5. (20 pts EXTRA CREDIT) Write a function

polysplit : All a. All b. (a + b) cont -> a cont * b cont

that achieves the converse of the polyjoin function above. Explain in words what
this function accomplishes.

6

3. Recursive Types (30 pts)

Consider the ML data type

datatype Tree = Leaf | Unary of Tree | Binary of Tree * Tree

1. (5 pts) Give a definition of Tree as a recursive type using the µt.τ construct.

2. (5 pts) Give the definition of the constructors Leaf , Unary , and Binary .

7

3. (10 pts) On your representation, write a function count : Tree → int that counts
the number of leaves in a given tree.

4. (10 pts) Give a definition of Tree as an abstract type. Your operations on the type
should just be the three constructors and a destructor in the form of a case expres-
sion for trees. You do not need to give an implementation of the abstract type.

8

Worksheet

9

Worksheet

10

Worksheet

11

