
Supplementary Notes on
Continuations

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 10
September 26, 2002

In this lecture we introduce continuations, an advanced control construct
available in some functional languages [Ch. 12]. Most notably, they are part
of the definition of Scheme and are implemented as a library in Standard
ML of New Jersey, even though they are not part of the definition of Stan-
dard ML. Continuations have been described as the goto of functional
languages, since they allow non-local transfer of control. While they are
powerful, programs that exploit continuations can difficult to reason about
and their gratuitous use should therefore be avoided.

There are two basic constructs, given here with concrete and abstract
syntax. We ignore issues of type-checking in the concrete syntax.1

letcc x in e end letcc (τ, x.e)
throw e1 to e2 throw (τ, e1, e2)

In brief, letcc x in e end captures the stack (= continuation) k in effect
at the time the letcc is executed and substitutes cont (k) for x in e. we can
later transfer control to k by throwing a value v to k with throw v to cont (k).
Note that the stack k we capture can be returned passed point in which it
was in effect. As a result, throw can effect a kind of “time travel”. While
this can lead to programs that are very difficult to understand, it has multi-
ple legitimate uses. One pattern of usage is an an alternative to exceptions,
another is to implement co-routines or thread. Another use is to affect back-
tracking.

As a starting example we consider simple arithmetic expressions.

1See Assignment 4 for details on concrete syntax.

SUPPLEMENTARY NOTES SEPTEMBER 26, 2002



L10.2 Continuations

(a) 1 + letcc x in 2 + (throw 3 to x) end 7→∗
c 4

(b) 1 + letcc x in 2 end 7→∗
c 3

(c) 1 + letcc x in if (throw 2 to x) then 3 else 4 fi end
7→∗

c 3

Example (a) shows an upward use of continuations similar to excep-
tions, where the addition of 2 + � is bypassed and discarded when we
throw to x.

Example (b) illustrates that captured continuations need not be used in
which case the normal control flow remains in effect.

Example (c) demonstrates that a throw expression can occur anywhere;
its type does not need to be tied to the type of the surrounding expres-
sion. This is because a throw expression never returns normally—it al-
ways passes control to its continuation argument.

With this intuition we can describe the operational semantics, followed
by the typing rules.

k > letcc (τ, x.e) 7→c k > {cont (k)/x}e

k > throw (τ, e1, e2) 7→c k . throw (τ,�, e2) > e1

k . throw (τ,�, e2) < v1 7→c k . throw (τ, v1,�) > e2

k . throw (τ, v1,�) < cont (k2) 7→c k2 < v1

k > cont (k′) 7→c k < cont (k′)

The typing rules can be derived from the need to make sure both preser-
vation and progress to hold. First, the constructs that can appear in the
source.

Γ, x:τ ` e : τ

Γ ` letcc (τ, x.e) : τ

Γ ` e1 : τ1 Γ ` e2 : τ1 cont

Γ ` throw (τ, e1, e2) : τ

Finally, the rules for continuation values that can only arise during com-
putation. They are needed to check the machine state, even though they are
not needed to type-check the input.

k : τ stack
Γ ` cont (k) : τ cont

SUPPLEMENTARY NOTES SEPTEMBER 26, 2002



Continuations L10.3

As a more advanced example, consider the problem of composing a
function with a continuation. This can also be viewed as explicitly pushing
a frame onto a stack, represented by a continuation. Even though we have
not yet discussed polymorphism, we will phrase it as a generic problem:

Write a function

compose : (’a -> ’b) -> ’b cont -> ’a cont

so that compose F K returns a continuation K1. Throwing
a value v to K1 should first compute F v and then throw the
resulting value v′ to K.

To understand the solution, we analyze the intended behavior of K1.
When given a value v, it first applies F to v. So

K1 = K2 . apply (F,�)

for some K2. Then, it needs to throw the result to K. So

K2 = K3 . throw ( ,�,K)

and therefore

K1 = K3 . throw ( ,�,K) . apply (F,�)

for some K3.
How can we create such a continuation? The expression

throw ( F . . .) to K

will create a continuation of the form above. This continuation will be the
stack precisely when the hole “. . .” is reached. So we need to capture it
there:

throw ( F (letcc k1 in . . . end)) to K

The next conundrum is how to return k1 as the result of the compose func-
tion, now that we have captured it. Certainly, we can not just replace . . . by
k1 , because the F would be applied (which is not only wrong, but also not
type-correct). Instead we have to throw k1 out of the local context! In or-
der to throw it to the right place, we have to name the continuation in effect
when the compose is called.

SUPPLEMENTARY NOTES SEPTEMBER 26, 2002



L10.4 Continuations

letcc r
in

throw ( F (letcc k1 in throw k1 to r end)) to K
end

Now it only remains to abstract over F and K, where we take the liberty of
writing a curried function directly in our language.

fun compose (f:’a -> ’b) (k:’b cont) : ’a cont is
letcc r
in

throw (f (letcc k1 in throw k1 to r end)) to k
end

end

In order to verify the correctness of this function, we can just calculate,
using the operational semantics, what happens when compose is applied
to two values F and K under some stack K0. This is a very useful exercise,
because the correctness of many opaque functions can be verified in this
way (and many incorrect functions discovered).

K0 > apply (apply (compose, F ),K)
7→∗

c K0 > letcc ( , r.throw ( , apply (F, letcc ( , k1.throw ( , k1, r))),K))
7→c K0 > throw ( , apply (F, letcc ( , k1.throw ( , k1, cont (K0)))),K)
7→c K0 . throw ( ,�,K) > apply (F, letcc ( , k1.throw ( , k1, cont (K0))))
7→∗

c K0 . throw ( ,�,K) . apply (F,�) > letcc ( , k1.throw ( , k1, cont (K0)))

At this point, we define

K1 = K0 . throw ( ,�,K) . apply (F,�)

and continue
7→c K1 > throw ( ,K1, cont (K0))
7→c K0 < K1

By looking at K1 we can see hat it exactly satisfies our specification.
Interestingly, K3 from our earlier motivation turns out to be K0, the con-
tinuation in effect at the evaluation of compose. Note that if F terminates
normally, then that part of the continuation is discarded because K is in-
stalled instead as specified. However, if F raises an exception, control is
returned back to the point where the compose was called, rather than to

SUPPLEMENTARY NOTES SEPTEMBER 26, 2002



Continuations L10.5

the place where the resulting continuation was invoked (at least in our se-
mantics). This is an example of the rather unpleasant interactions that can
take place between exceptions and continuations.

See the code2 for a rendering of this in Standard ML of New Jersey,
where we have slightly different primitives. The translations are as given
below. Note that, in particular, the arguments to throw are reversed which
may be significant in some circumstances because of the left-to-right eval-
uation order.

Concrete MinML Abstract MinML SML of NJ

letcc x in e end letcc (τ, x.e) callcc (fn x => e)
throw e1 to e2 throw (τ, e1, e2) throw e2 e1

For a simpler and quite practical example for the use of continuation
refer to the implementation of threads given in the textbook [Ch. 12.3]. A
runnable version of this code can be found at the same location as the ex-
ample above.

2http://www.cs.cmu.edu/˜fp/courses/312/code/10-continuations/

SUPPLEMENTARY NOTES SEPTEMBER 26, 2002


