Supplementary Notes on Aggregate Data
Structures

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 7
Sep 17, 2002

Before we go into aggregate data structures (pairs, sums, and some re-
cursive types), we discuss how run-time errors can be handled in a type-
safe language [Ch. 9.3]. Consider extending our MinML language by a par-
tial division operator, div (e, e2). Besides the usual typing rules and search
rules for the operational semantics, we would also have the following re-
duction rule:

(n2 #0)

div (num(ny), num(nz)) — num(|ny/na|)

The condition ny # 0 means that there is no rule for div (num(n), num(0))
and evaluation gets stuck. Progress would be violated.

We can restore an amended progress theorem if we introduce a new
judgment e aborts to explicitly require that run-time errors will abort the
program rather than continuing in some random state. We add the rule

div (num(n),num(0)) aborts
However, we are not finished, because an expression such as
plus (div (num(3),num(0)), num(2))
must also abort, but we have no rule that allows us to conclude this. So in

addition to the search rules we have “abort propagation” rules that prop-
agate run-time errors up to the overall program we are trying to evaluate.

SUPPLEMENTARY NOTES SEP 17, 2002

L7.2 Aggregate Data Structures

We show the two rules for application as an example; similar rules are nec-
essary for all search rules to account for a possible abort.

e1 aborts
apply (e1,e2) aborts

v1 value ey aborts
apply (v1,e2) aborts

Now we can refine the statements progress and determinism to account for
the new judgment. Note that preservation does not change, because it only
has to account for a successful computation step.

1. (Preservation)If - +e:7and e ¢ then -+ ¢ : 7.
2. (Progress) If - - e : 7 then either

(i) e+ € for some ¢, or
(ii) e value, or

(iii) e aborts.
3. (Determinism) If - - e : 7 then exactly one of

(i) e — € for some unique €/, or
(ii) e value, or

(iii) e aborts.

We do not give her a proof of these properties, nor do we discuss how
the language might be extended withatry ...handle ...end constructin
order to catch error conditions.

Now we come to various language extensions which make MinML a
more realistic language without changing its basic character.

Products. Introducing products just means adding pairs and a unit ele-
ment to the language [Ch. 19.1]. We could also directly add n-ary prod-
ucts, but we will instead discuss records later when we talk about object-
oriented programming. MinML is a call-by-value language. For consistency
with the basic choice, the pair constructor also evaluates its arguments—
otherwise we would be dealing with lazy pairs.! In addition to the pair

See Assignment 3

SUPPLEMENTARY NOTES SEP 17,2002

Aggregate Data Structures L7.3

constructor, we can extract the first and second component of a pair.2

I'Fer:mp TPFey:m
Lk pair (er,es):cross (ri,7)

I'te:cross (rm,72) I'te:cross (m,72)
L-fst (e):m I'Fsnd(e): 72

For the unit type we only have a constructor but no destructor, since there
are no components to extract.

T unitel : unit

We often adopt a more mathematical notation according to the table
at the end of these notes. However, it is important to remember that the
mathematical shorthand is just that: it is just a different way to shorten
higher-order abstract syntax or make it easier to read.

A pair is a value if both components are values. If not, we can use the
search rules to reduce, using a left-to-right order. Finally, the reduction
rules extract the corresponding component of a pair.

e1 value eg value
pair (e1,ez) value

e — €} vy value eg — €,
pair (e1,ez) — pair (ej,e2) pair (vi,ez) — pair (vi,eh)

e— e er— e

fst (e) — fst (¢/) snd(e)+— snd(¢)

vy value vy value vy value vy value
fst (pair (v1,v2)) — v; snd(pair (vi,v2)) — vg

Since it is at the core of the progress property, we make the value inversion
property explicit.

If -+ v :cross (r1,72) and v value then v = pair (vy,vs) for
some v value and vy value.

2An alternative treatment is given in [Ch. 19.1], where the destructor provides access to
both components of a pair simultaneously. Also, the unit type comes with a corresponding
check construct.

SUPPLEMENTARY NOTES SEP 17, 2002

L7.4 Aggregate Data Structures

Unit Type. The unit types does not yield any new search or reduction
rules, only a new value. At first it may not seem very useful, but we will
see an application in the next section on sums.

unitel value

The value inversion property is also simple.

If -Fov:unit thenv= ().

Sums. Unions, as one might now them from the C programming lan-
guage, are inherently not type safe. They can be abused in order to access
the underlying representations of data structures and intentionally violate
any kind of abstraction that might be provided by the language. Consider,
for example, the following snippet from C.

union {
float f;
int i;

} unsafe;

unsafe.f = 5.67e-5;
printf("%d", unsafe.i);

Here we set the member of the union as a floating point number and then
print the underlying bit pattern as if it represented an integer. Of course,
much more egregious examples can be imagined here.

In a type-safe language we replace unions by disjoint sums. In the im-
plementation, the members of a disjoint sum type are tagged with their
origin so we can safely distinguish the cases. In order for every expression
to have a unique type, we also need to index the corresponding injection
operator with their target type.?

Fl—el:n F"@QSTQ
CHinl (71,72,e1) :sum(ry,72) THinr (71,72, e2) : sSUM(7y, 72)

F'ke:sum(ry, o) Dxpimber:o Tizomber:o
I' - case (e, z1.e1,22.€2) : 0

3‘Stric’cly speaking, some of this information is redundant, but it is easier read if we are
fully explicit here.

SUPPLEMENTARY NOTES SEP 17,2002

Aggregate Data Structures L7.5

Note that we require both branches of a case -expression to have the same
type o, just as for a conditional, because we cannot be sure at type-checking
time which branch will be taken.

e1 value eg value
inl (71, 72,e1) value inr (71,72, ez) value

er¢e
case (e, zy.e1,z2.62) — case (e, xy.e1,x9.€2)

vy value
case (Inl (7’1,7‘2,’1)1),:61.61,1‘2.62) = {Ul/xl}el

vy value
case (inr (71, 72,v2),x1.€1,x2.62) — {va/xz2}es

We also state the value inversion property.

If - = v : sum(ry, 2) then either v = inl (71, 79, v1) with v; value
orv =inr (1,72, vy) with vs value.

Empty Type. The empty type can be thought of as a zero-ary sum. It
has no values and a corresponding abort construct which should never be
executable unless we add an error value to the language.

I'te:void
't abort (r,e):7

There is only one search rule of computation, but no actual reduction rule.

e ¢
abort (7,e) — abort (7,¢’)

The value inversion property here just expresses that there are no values
of void type.

If -+ v :void then we have a contradiction.

SUPPLEMENTARY NOTES SEP 17, 2002

L7.6

Aggregate Data Structures

Higher-Order
Abstract Syntax

arrow (7, 72)
cross (7, 72)
unit
sum(ry, 72)
void

pair (ep,es)
fst (e)

snd (e)

unitel

inl (71, 72,e1)
inr (T1,7'2,62)
case (e, xj.e1,x3.€2)

abort (7,¢)

SUPPLEMENTARY NOTES

Concrete Syntax

T1 == To
T1* T
unit
T1+72
void

(e1, e2)
#le
#2e
()
inl (ep) : 1472
inr (eg) : 1+
case e
of inl (.rl) =>eq
| inr (372) => e9
esac
abort (e): 7

Mathematical Syntax

T1 — T2
T1 X T9
1
T1 + To
0

(e1,e2)

T e

9 €

()

ianl-i-TQ (61)

infr, 4 ry(€2)

case(e, z1.e1, T2.€2)

abort;(e)

SEP 17, 2002

