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These supplementary notes review the notion of an inductive definition
and give some examples of rule induction. References to Robert Harper’s
draft book on Programming Languages: Theory and Practice are given in square
brackets, by chapter or section.

Given our general goal to define and reason about programming lan-
guages, we will have to deal with a variety of description tasks. The first is
to describe the grammar of a language. The second is to describe its static
semantics, usually via some typing rules. The third is to describe its dy-
namic semantics, often via transitions of an abstract machine. On the sur-
face, these appear like very different formalisms (grammars, typing rules,
abstract machines) but it turns out that they can all be viewed as special
cases of inductive definitions [Ch. 1]. Following standard practice, inductive
definitions will be presented via judgments and inference rules providing
evidence for judgments.

The first observation is that context-free grammars can be rewritten in
the form of inference rules [Ch. 4.1]. The basic judgment has the form

s A

where s is a string and A is a non-terminal. This should be read as the
judgment that s is a string of syntactic category A.

As a simple example we consider the language of properly matched
parentheses over the alphabet Σ = {( , ) }. This language can be defined by
the grammar

M : : = ε | M M | ( M )

with the only non-terminal M . Recall that ε stands for the empty string.
Rewritten as inference rules we have:
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L2.2 Inductive Definitions

ε M (1)

s1 M s2 M
s1 s2 M (2)

s M
( s) M (3)

Our interpretation of these inference rules as an inductive definition of
the judgment s M for a string s means:

s M holds if and only if there is a deduction of s M using rules (1),
(2), and (3).

Based on this interpretation we can prove properties of strings in the syn-
tactic category M by rule induction. Here is a very simple example.

Theorem 1 (Counting Parentheses)
If s M then s has the same number of left and right parentheses.

Proof: By rule induction. We consider each case in turn.

(Rule 1) Then s = ε.

s has 0 left and 0 right parens Since s = ε

(Rule 2) Then s = s1 s2.

s1 M Subderivation
s2 M Subderivation
s1 has n1 left and right parens for some n1 By i.h.
s2 has n2 left and right parens for some n2 By i.h.
s has n1 + n2 left and right parens Since s = s1 s2
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(Rule 3) Then s = ( s′) .

s′ M Subderivaton
s′ has n′ left and right parens for some n′ By i.h.
s has n′ + 1 left and right parens Since s = ( s′)

�

The grammar we gave, unfortunately, is ambiguous [Ch. 4.2]. For ex-
ample, there are infinitely many derivations that ε M , because

ε = ε ε = ε ε ε = · · ·

In the particular example of this grammar we would be able to avoid rewrit-
ing it if we can show that the abstract syntax tree [Ch. 5.1] we construct will
be the same, independently of the derivation of a particular judgment.

An alternative is to rewrite the grammar so that it defines the same
language of strings, but the derivation of any particular string is uniquely
determined. In order to illustrate the concept of simultaneous inductive
definition, we use two non-terminals L and N , where the category L corre-
sponds to M , while N is an auxiliary non-terminal.

L : : = ε | N L
N : : = ( L)

One can think of L as a list of parenthesized expressions, while N is a
single, non-empty parenthesized expression. This is readily translated into
an inductive definition via inference rules.

ε L (4)

s1 N s2 L
s1 s2 L (5)

s L
( s) N (6)

Note that the definitions of s L and s N depend on each other. This is
an example of a simultaneous inductive definition.

Now there are two important questions to ask: (1) is the new grammar
really equivalent to the old one in the sense that it generates the same set of
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strings, and (2) is the new grammar really unambiguous. The latter is left
as a (non-trivial!) exercise; the first one we discuss here.

At a high level we want to show that for any string s, s M iff s L. We
break this down into two lemmas. This is because “if-and-only-if” state-
ment can rarely be proven by a single induction, but require different con-
siderations for the two directions.

We first consider the direction where we assume s M and try to show
s L. When writing out the cases we notice we need an additional lemma.
As is often the case, the presentation of the proof is therefore different from
its order of discovery.

Lemma 2 (Concatenation)
If s1 L and s2 L then s1 s2 L.

Proof: By induction on the derivation of s1 L. Note that induction on the
derivation on s2 L will not work in this case!

(Rule 4) Then s1 = ε.

s2 L Assumption
s1 s2 L Since s1 s2 = ε s2 = s2

(Rule 5) Then s1 = s11 s12.

s11 N Subderivation
s12 L Subderivation
s2 L Assumption
s12 s2 L By i.h.
s11 s12 s2 L By rule (5)

�

Now we are ready to prove the left-to-right implication.

Lemma 3
If s M then s L.

Proof: By induction on the derivation of s M .

(Rule 1) Then s = ε.

s L By rule (4) since s = ε
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(Rule 2) Then s = s1 s2.

s1 M Subderivation
s2 M Subderivation
s1 L By i.h.
s2 L By i.h.
s1 s2 L By concatenation (Lemma 2)

(Rule 3) Then s = ( s′) .

s′ M Subderivation
s′ L By i.h.
( s′) N By rule (6)
ε L By rule (4)
( s′) L By rule (5) and ( s′) ε = ( s′)

�

The right-to-left direction presents a slightly different problem, namely
that the statement “If s L then s M” does not speak about s N , even though
L and N depend on each other. In such a situation we typically have to
generalize the induction hypothesis to also assert an appropriate property
of the auxiliary judgments (s N , in this case). This is the first alternative
proof below. The second alternative proof uses a proof principle called
inversion, closely related to induction. We present both proofs to illustrate
both techniques.

Lemma 4 (First Alternative, Using Generalization)
1. If s L then s M .

2. If s N then s M .

Proof: By simultaneous induction on the given derivations. There are two
cases to consider for part 1 and one case for part 2.

(Rule 4) Then s = ε.

s M By rule (1) since s = ε
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(Rule 5) Then s = s1 s2.

s1 N Subderivation
s2 L Subderivation
s1 M By i.h.(2)
s2 M By i.h.(1)
s1 s2 M By rule (2)

(Rule 6) Then s = ( s′) .

s′ L Subderivation
s′ M By i.h.(1)
( s′) M By rule (3)

�

For this particular lemma, we could have avoided the generalization
and instead proven (1) directly by using a new form of argument called in-
version. Since it is an important principle, we will also show this alternative
proof.

Lemma 4 (Second Alternative, Using Inversion)
If s L then s M

Proof: By induction on the given derivation. Note the there are only two
cases to consider here instead of three, because there are only two rules
whose conclusion has the form s L.

(Rule 4) Then s = ε.

s M By rule (1) since s = ε

(Rule 5) Then s = s1 s2.

s1 N Subderivation
s1 = ( s′

1) and s′
1 L for some s′

1 By inversion
s′
1 M By i.h.

( s′
1) M By rule (3)

s2 L Subderivation
s2 M By i.h.
( s′

1) s2 M By rule (2)
s M Since s = s1 s2 = ( s′

1) s2
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In this last case, the first line reminds us that we have a subderivation of
s1 N . By examining all inference rules we can see that there is exactly one
rule that has a conclusion of this form, namely rule (6). Therefore s1 N must
have been inferred with that rule, and s1 must be equal to ( s′

1) for some
s′
1 such that s′

1 L. Moreover, the derivation of s′
1 L is a subderivation of the

one we started with and we can therefore apply the induction hypothesis
to it. The rest of the proof is routine. �

Now we can combine the preceding lemmas into the theorem we were
aiming for.

Theorem 5
s M if and only if s L.

Proof: Immediate from Lemmas 3 and 4. �

Some advice on inductive proofs. Most of the proofs that we will carry
out in the class are by induction. This is simply due to the nature of the
objects we study, which are generally defined inductively. Therefore, when
presented with a conjecture that does not follow immediately from some
lemmas, we first try to prove it by induction as given. This might involve a
choice among several different given objects or derivations over which we
may apply induction. If one of them works we are, of course, done. If not,
we try to analyse the failure in order to decide if (a) we need to seperate out
a lemma to be proven first, (b) we need to generalize the induction hypothesis,
or (c) our conjecture might be false and we should look for a counterexample.

Finding a lemma is usually not too difficult, because it can be suggested
by the gap in the proof attempt you find it impossible to fill. For example, in
the proof of Lemma 3, case (Rule 2), we obtain s1 L and s2 L by induction
hypothesis and have to prove s1 s2 L. Since there are no inference rules
that would allow such a step, but it seems true nonetheless, we prove it as
Lemma 2.

Generalizing the induction hypothesis can be a very tricky balancing
act. The problem is that in an inductive proof, the property we are trying
to establish occurs twice: once as an inductive assumption and once as
a conclusion we are trying to prove. If we strengthen the property, the
induction hypothesis gives us more information, but conclusion becomes
harder to prove. If we weaken the property, the induction hypothesis gives
us less information, but the conclusion is easier to prove. Fortunately, there
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are easy cases such as the first alternative of Lemma 4 in which the nature
of the mutually recursive judgments suggested a generalization.

Finding a counterexample greatly varies in difficulty. Mostly, in this
course, counterexample only arise if there are glaring deficiencies in the
inductive definitions, or rather obvious failure of properties such as type
safety. In other cases it might require a very deep insight into the nature
of a particular inductive definition and cannot be gleaned directly from a
failed proof attempt. An example of a difficult counterexample is given by
the extra credit Question 2.2 in Assignment 1 of this course. The conjecture
might be that every tautology is a theorem. However, there is very little in
the statement of this theorem or in the definition of tautology and theorem
which would suggest means to either prove or refute it.

Three pitfalls to avoid. The difficulty with inductive proofs is that one
is often blinded by the fact that the proposed conjecture is true. Similarly,
if set up correctly, it will be true that in each case the induction hypothesis
does in fact imply the desired conclusion, but the induction hypothesis may
not be strong enough to prove it. So you must avoid the temptation to
declare something as “clearly true” and prove it instead.

The second kind of mistake in an inductive proof that one often encoun-
ters is a confusion about the direction of an inference rule. If you reason
backwards from what you are trying to prove, you are thinking about the
rules bottom up: “If I only could prove J1 then I could conclude J2, because I
have an inference rule with premise J1 and conclusion J2.” Nonetheless, when
you write down the proof in the end you must use the rule in the proper
direction. If you reason forward from your assumptions using the infer-
ence rules top-down then no confusion can arise. The only exception is the
proof principle of inversion, which you can only employ if (a) you have
established that a derivation of a given judgment J exists, and (b) you con-
sider all possible inference rules whose conclusion matches J . In no other
case can use use an inference rule “backwards”.

The third mistake to avoid is to apply the induction hypothesis to a
derivation that is not a subderivation of the one you are given. Such rea-
soning is circular and unsound. You must always verify that when you
claim something follows by induction hypothesis, it is in fact legal to apply
it!

How much to write down. Finally, a word on the level of detail in the
proofs we give and the proofs we expect you to provide in the homework
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assignments. The proofs in this handout are quite pedantic, but we ask
you to be just as pedantic unless otherwise specified. In particular, you
must show any lemmas you are using, and you must show the generalized
induction hypothesis in an inductive proof (if you need a generalization).
You also must consider all the cases and justify each line carefully. As we
gain a certain facility with such proofs, we may relax these requirements
once we are certain you know how to fill in the steps that one might omit,
for example, in a research paper.

SUPPLEMENTARY NOTES AUGUST 29, 2002


