15-312 Foundations of Programming Languages

Final Examination

December 17, 2002

Name:

Andrew User ID:

This is an open book, open notes exam.

Write your answer legibly in the space provided.

There are 16 pages in this exam, including 4 worksheets.

It consists of 4 problems worth a total of 250 points and one extra credit question
worth 25 points.

e The extra credit is recorded separately, so only attempt this after you have com-
pleted all other questions.

e You have 3 hours for this exam.

Problem 1 | Problem 2 | Problem 3 | Problem 4 Total EC

70 50 60 70 250 25

1. Subtyping and Effects (70 pts)

In this problem we explore adding vectors and arrays to MinML and the possibilities for
extending the subtyping relation in a sound way. Vectors are immutable, while arrays are
mutable. We show here the typing rules for accessing vector and arrays, and updating
array elements. We do not show the language expressions needed to create vectors or
arrays (which are unimportant for this problem), nor do we show the new sets of values.

I'e; :7vector T'F ey :int
['Fsuby(eg,es) i 7

I'Fey:7array I'Fey:int I'Fey:7Tarray I'Feg:int T'heg: 7
['Fsuby(eg,es) : 7 [' - update, (e, eq,€3) : T

For the first set of question we adopt the subset interpretation of subtyping, that is, we
assume vectors and arrays have identical representations.

For each of the following proposed rules, state whether it satisfies the Fundamental
Principle of Subtyping (FPS) as discussed in lecture.

Note that MinML is designed as a statically typed language, and the language exten-
sion should preserve this property.

1.1 (5 pts) Vector/vector subtyping.

T<o0
7 vector < o vector

Satisfies FPS? (circle one) Yes No

1.2 (5 pts) Array/array subtyping.

T<o0
T array < o array

Satisfies FPS? (circle one) Yes No

1.3 (5 pts) Vector/array subtyping.

T<o
T vector < o array

Satisfies FPS? (circle one) Yes No

1.4 (5 pts) Array/vector subtyping.

T<o0o
T array < o vector

Satisfies FPS? (circle one) Yes No

In the second half of this problem, we adopt the coercion interpretation of subtyp-
ing and explore whether it is possible to exploit subtyping to eliminate those pesky “!”
operators from MinML with mutable store. We propose the following rule

T<0
Tref <o

1.5 (5 pts) Give the type of A\z.z := x + 1, assuming assignment returns the value of its
second argument.

1.6 (10 pts) Show the typing derivation, assuming the context is empty and + is a prim-
itive operator on integers returning an integer.

1.7 (10 pts) Complete the coercion interpretation of the subtyping rule.

f:7<o

cTref <o

1.8 (10 pts) Does the proposed rule satisfy the Fundamental Principle of Subtyping? Briefly
explain or show a counterexample.

1.9 (15 pts) Is the resulting system coherent? Briefly explain or show a counterexample.

2. Bisimulation (50 pts)

For each of the following, indicate whether the two transition systems are strongly bisim-
ilar, weakly bisimilar, or not bisimilar. Of course, strongly bisimilar states are also weakly
bisimilar, so circle only the strongest property that is satisfied. If a strong or weak bisim-
ulation exists, exhibit the bi-simulation by writing out which named nodes in the two
diagrams it relates. You do not need to write that 0 is bisimilar to itself, which is always
satisfied.

2.1 (15 pts) Processes P and () are (circle one): (i) strongly (ii) weakly (iii) not

bisimilar
Bisimulation (if it exists)
P Q
a / \a Tl
P B Q1
S U A
0 0 0 0

2.2 (15 pts) Processes P and () are (circle one): (i) strongly (ii) weakly (iii) not

bisimilar
Bisimulation (if it exists)
P Q
a / \7’ T / \b
P Py Ql QQ
T J{ ib al iT
0 0 0 0

2.3 (20 pts) Processes P and () are (circle one): (i) strongly (ii) weakly (iii) not

bisimilar
Bisimulation (if it exists)
P Q
g /N
Py Q1 Q2
/N
0 P, 0 Qs 0
| |
0 0

3. Futures and Types (60 pts)

Futures the way we discussed them in class are safe in a statically typed language. How-
ever, the type system does not track them in the sense that we cannot distinguish if a
given value is an actual value or a future. An alternative is to introduce a type 7 future
with constructs future(e) and touch(e) with the typing rules

NFe:7 't e: 7 future
[' - future(e) : 7 future [' - touch(e) : 7

The intended operational semantics of future(e) is to start computation of ¢ and immedi-
ately return a promise [(this is sometimes called a future, but we find this confusing, so
we use the terminology of Assignment 8). touch(e) evaluates e to a promise ! and then
blocks until the computation denoted by [has finished computing a value which is then
returned.

Assume a machine state (H,e) in the small-step operational semantics (also called
structured operational semantics) as given in lecture. Here H is a collection of process states
li=e;, where the labels [; also stand for promises, and e is a process singled out to make a
step. Note that this is more abstract than the C-machine used in Assignment 8.

3.1 (20 pts) Show all rules concerning future, touch, and promises for the judgment

(H,e) — (H' €.

Give an implementation of futures in CML, against the following signature. Note
that the type of future is slightly different since in ML we are implementing future as a
function under call-by-value.

signature FUTURE =

sig
type ’'a future
val future : (unit -> 'a) -> ’'a future
val touch : ’'a future -> ’a

end,;

You should only use pure CML constructs as discussed in lecture and employed in
sample code. In particular, you should not use mutable references, exceptions, or letcc.
You do not need to account for exceptions raised in the argument to future . Be careful
to obtain the intended concurrency. It might make it easier for us to assign partial credit
if you also briefly explain your functions.

3.2 (5 pts) Define the type 'a future

3.3 (20 pts) Define the function future

3.4 (15 pts) Define the function touch

3.5 (25 pts Extra Credit) Define a CML function

val future2 : (unit -> 'a) * (unit -> ’'a) -> ’'a future

which takes two functions f and g and immediately starts executing them both,
returning only a single promise. When the promise is touched, we block until at
least one of the values is available. Does your implementation always return the
same value if a promise is touched multiple times?

4. Pattern matching (70 pts)

In this question we explore adding pattern matching to MinML. We extend the language
as follows

Expressions e == ...|caseeof msend
Matches ms == -|(p=e|ms)
Patterns — p == @ | (p1,p2) | ()

We have the following new typing judgments

I'ms: o =7 incontextI, all branches of ms map a subject of type o
to a result of type 7
'kp:o pattern p matches o with context I'.

We only show the rules for the new constructs.

I'Fe:o TTkFms:o=1T1
I'+caseeof msend: 7

I'tp:o I''I"Fe:7 T'kms:o=71
'F-to=r71 'F(p=e|ms):oc=71

- 'ibEprior Tobpeiog) -
rzobkx:o [, To b (p1,p2) : 01 X 09 ()L

(*) The rule for pair patterns (p;, p2) has a side condition stating that the variables declared
inI'y and I'; must be disjoint. In other words, patterns may not contain repeated variables.

4.1 (10 pts) Write the function fst : V¢.Vs.t x s — ¢ using pattern matching.

4.2 (15 pts) Extend the language of patterns to handle disjoint sums oy + 02 and give the
new typing rules.

10

In the second part of this question we write out a big-step operational semantics (also
called an evaluation semantics) employing environments. The new judgments are:

nt vy >ms v inenvironment 7, evaluating a branch in ms matching v,
yields value v
v /pdn matching v, against pattern p yields environment 7.

We only show the rules concerned with the new constructs.

nkFedvy nFvy>ms o
1 F case e; of msend | v

vi/pdm nmbelwv nkuv>ms v
nkFv>p@=e|lms)dv nkFv>{@E=e|ms)dv

U1/p1 Im U2/p2 I
vi/x | 2=, (v1,v2) /{p1, p2) 4 1,72 O/O -

4.3 (15 pts) Show the new evaluation rules for disjoint sums.

11

4.4 (20 Pts) The resulting language should satisfy type preservation. State the invariants
that relate the new typing and the new evaluation judgments that are necessary for
an inductive proof. You may freely refer to the judgment » : I" introduced in class.
You do not need to show the proof.

4.5 (10 pts) Does the resulting language satisfy determinacy? If yes, give a brief expla-
nation; if not give a counterexample.

12

Worksheet

13

Worksheet

14

Worksheet

15

Worksheet

16

