Assignment 8:
Concurrent Programming with Futures

15-312: Foundations of Programming Languages
Joshua Dunfield (joshuad@cs.cmu.edu)

Out: Thursday, November 14, 2002
Due: Thursday, December 5 (11:59:59 pm)

150 points total + possible extra credit

Revised December 2, 2002

Introduction

In this assignment, you will construct an interpreter for a version of MinML
extended with futures (see the supplementary notes), instrument the interpreter
to allow certain measurements to be taken, run your interpreter on standard
algorithms parallelized in different ways, and analyze the results.

Note: In the .sml files, most changes from Assignment 6 are indicated like
this:

(* new asst8 code: *)

(* end asst8 code *)

The state of MinML

Some things have become obsolete (and have either been removed or left in a
semi-supported state), in which case you need not worry about them. Some
things have been added. This section summarizes the changes from previous
assignments.

e A non-recursive function constructlam x in e end hasbeen added.

e Programs can take input, in the following sense: typing

Top.evaluate "foo.mml" e

where e has type DBMinMLand foo.mml is a file containing a MinML
program of the form

lam arg in
body
end : taul -> tau2

will cause e (which should be a MinML value of type taul) to be substi-
tuted for arg in body before evaluation. This comes in handy for the last
part of this assignment.

As in Assignment 6, exceptions and continuations are not supported.

Floats are not supported. Since this eliminates most of the utility of sub-
typing, subtyping is not supported either.

Existential types are not supported.

Sums are not supported, but one particular recursive type has been added:
atypetau tree for any type tau . This is essentially equivalent to the
following SML datatype of binary trees with records at branch nodes:

datatype 'a tree = Leaf
| Node of 'a * 'a tree * 'a tree

It is polymorphic, so you can build trees containing integers, pairs of
integers, and so on.

Trees can be created in the way you would expect from using SML:
Leaf Node(3, Leaf, Node(2 + 2, Leaf, Leaf))
and so forth. Trees can be taken apart with case :

case tree of

Leaf => el
| Node(x, I, r) => e2
end

It will come as no surprise (at least to Lisp and Scheme hackers) that
this type does double duty as a list type, since one can represent a list
containing x1, x2, . . ., x5 by a severely unbalanced (“rightist”) tree:

x1

[\
X2
[\

\
Xn
I\

The constructor of the exp datatype is Treecase(e,el,(x,l,r,e2))
where X, |, r are bindings.

o Typing is still done bidirectionally, so there are various type annotations
floating around the code. The function erase in c-mach.sml removes
the type annotations so they don’t get in the way during evaluation.

e Some other new constructs are discussed below.

Semantics of futures

The assignment hinges on an extension of the C-machine formalism and inter-
preter (Assignment 4) to support futures.

Futures: static semantics. A nice property of futures is that they do not com-
plicate the type system. If e has type 7, future (e) also has type 7. So the
bidirectional typing rules are just
'kelr
'+ future (e) 7

I'kFelr
I+ future (e) | 7

(Futurellp) (FutureDown)
-

Futures: informal dynamic semantics. As discussed in lecture, the expres-
sion future(e) returns immediately with a future, here called a promise. Eval-
uation of e begins immediately, in parallel, in a new thread; the original thread
continues. The promise is a value, and the original thread will block wait-
ing for the new thread only when (and if) the promise is touched—which hap-
pens when a value is actually required. For example, the promise returned by
future(3 + 5) in the expression

future(3 + 5) - 2

will be touched almost immediately, because the primop - needs the actual
values of both arguments to compute the difference. Of course, the new thread
may have computed the value of e by that time, in which case the original
thread immediately retrieves the computed value and continues.

As another example, suppose f is a function returning a tree of some kind.

let t = future(f(e))
in

case t of Leaf => ... | Node(x,l,r) => ... end
end

Evaluating the above case expression touches the promise returned by
future(f(e)) , since we cannot know which branch of the case to evalu-
ate unless we know what't is.

Keep in mind, however, that promises are values. Thus, despite remaining
in a call-by-value setting, simply passing a promise to a function, or construct-
ing a pair in which one component is a promise, or constructing a Node in
which both subtrees are promises, does not touch the promise.

The parallel C-machine. To model the various threads spawned by use of
futures, we extend the C-machine of Assignment 4 as follows. Instead of a
single state s of the form £ > e or k < v where £ is a stack, we have a set P of
threads, each of which we can represent by a thread identifier p (represented by
an integer in the implementation) and a state. The general picture is

p1:k1>61, p23k2<'U2> AR pn:kn>en

(where we could equally well have k; < v; for some vy, etc.) When an expres-
sion future(e) is evaluated, it should return a promise and spawn a new
thread:

/

P, p:k>future (e) —c P, p:k <promise (p'), p':e>e

where e is the empty stack and p’ is a fresh thread identifier. The rule leaves
the other threads P alone, returns a new promise to &, and begins evaluating e
with respect to an empty stack in the new thread p’.

Task: Semantics of Futures (30 points)
Write a set of transition rules for MinML with futures, in the above style. You
need not write rules that are unchanged (except for the addition of the thread
set P) from a language without futures, such as

P, k>numk) —. P, k<num(k)

To represent the state of a thread with stack k blocking on a promised value
being computed by a spawned thread p’, write

k blocked(p")

This notation, and the rule given above for evaluation of future(e) , are only
suggestions; if—for whatever reason—you need to maintain more information
in a blocked thread (besides p’), you are welcome to do so. In fact, you may
need to extend the possible states in other ways. Along with the rules, submit
a grammar for states s. Our proposed grammar so far would be written

su=k>e
|k <w
| k& blocked(p’)

Important: It’s useful to have a correct semantics before you start implementing
it. You are strongly encouraged to complete this question quickly and send me
your proposed semantics. I will read it; if it looks right I will tell you that, if
there are problems I will point them out. If possible, send! me your rules by
November 22 (but I can read them at any time). This is provided as a public
service; please take advantage of it!

Final hand-in should be on paper, or as a text, PostScript, or PDF file called
rules.txt (rules.ps ,rules.pdf)in your handin directory.

Task: Implementing Futures (60 points)

Take your rules and implement them in c-mach.sml . First, write down a
datatype state corresponding to your grammar for states. Then modify the
existing eval function to return a state instead of a value. For example, when
evaluating If (e, eq,ez), eval should actually return the state k> if(C), e1, e2) >
e. You can continue to represent the stack k¥ by an ML function (you may also
encode the stack by a datatype if you really want to).

Second, revise the outer part of the implementation (everything besides
eval)so that, instead of a single state, a set of states—along with integer thread
identifiers—is maintained. At this point, of course, you haven’t implemented
evaluation of future(e) ; this is preparation for the next step.

Finally, implement your rules. The relevant MinML abstract syntax con-
structors are Future of exp and Promise of int ; you can change the
latter to something other than int if absolutely necessary, but I don’t know
why you’d want to.

Imagine you have an unlimited number of processors available, so a pro-
cessor can be dedicated to each thread. Scheduling is almost beside the point
with this assumption; you can just go through the list of threads in round-robin
fashion and try to step each one.

Experimenting with Futures (60 points)

Once you have a working interpreter, you can start experimenting. We’re in-
terested in the performance increase (or decrease!) when a sequential program
running on a multiprocessor is changed to use futures.

Since the interpreter itself is a sequential program, what can we actually
measure? The running time of the interpreter doesn’t tell us much. To get
some interesting (though excessively optimistic) measurements, you need to
instrument your interpreter to collect some statistics. In particular, it should
collect the following:

1. Clock ticks: The number of times you looped through the set of threads.

2. Work: The number of times a step was taken.

LA text e-mail is fine; you can also give me the rules on paper, or use your handin directory as
a drop-box for text, PostScript, or PDF files. I prefer not to receive e-mail attachments.

Just before returning the value the program evaluated to, the function evaluate

in c-mach.sml should print the statistics, labeled appropriately.

As mentioned above, you can use Top.evaluate to pass in a “prefabri-
cated” input to the MinML program being experimented with.

First, gather statistics for collect.mml and collectf.mml (a version
with futures added), with the input as the complete and rightist trees returned
by the functions Top.complete and Top.seq . Run complete trees through
level 8 (Top.complete 2 through Top.complete(8)) and rightist trees at
all powers of 2 from 22 to 2.

Next, implement Quicksort in MinML (without futures). Then add futures
in whatever way seems most likely to be effective. Compare them on input

Top.random_seq (17,27) n

for n from 10 to 100.

Finally, implement sets represented as ordered trees in MinML, with insert,
union, and intersection operations. You may find it useful to write an SML
version first. Try the union and intersection of:

(1) tworightist trees (Top.seq) of the same size, of sizes from 22 to 2® (powers
of 2);

(2) two random trees (Top.ordered_random seed n) of size n, for all n up
to 64. Use a different seed for each tree!

Turn in the algorithms you implement as files gsort.mml , gsortf.mml
(with futures), sets.mml , and setsf.mml (with futures) in the handin direc-
tory.

Write a report on your results. Graphs are strongly encouraged. Discuss
and explain the results. If you don’t fully understand the behavior, analyze
possible explanations.

If your interpreter is too slow to run all the cases in a reasonable amount of
time, just run fewer cases (for example, you could take only every tenth n from
10 to 100).

Grading: This part is worth 60 points. Partial credit will be given for any or
all of the following;:

e instrumenting your interpreter

e implementing Quicksort in MinML

e implementing set functions in MinML

e adding futures to either or both

e collecting and handing in raw numbers without commenting on them
(but of course you can’t get full credit unless you carefully analyze and
discuss your results)

Exceptionally insightful work will lead to extra credit. Collecting statistics not
listed above (for variously shaped trees, or adding futures in more than one
way), and reporting on them, can get extra credit as well.

Extra credit: scheduling. One reason the simulation is unrealistic is that the
number of processors is assumed to be infinite, allowing hundreds of threads
to run simultaneously. For extra credit, revise your interpreter to schedule
threads for some number k (where k is a parameter to the interpreter) of pro-
Cessors.

Hand-in Instructions

Turn in the rules on paper, or as a text, PostScript, or PDF file called rules.txt
(rules.ps ,rules.pdf) in the handin directory

/afs/andrew/scs/cs/15-312/students/ Andrew user ID/asst8/

by 11:59 pm on the due date. Immediately after the deadline, we will run a
script to sweep through all the handin directories and copy your files else-
where. We will also sweep 24, 48, and 72 hours after the deadline, for anyone
using late days on this assignment.

Turnin c-mach.sml ,gsort.mml ,qgsortt.mml ,sets.mml ,and setsf.mml
by copying them to your handin directory.

Turn in the report on paper, or as a PostScript or PDF file report.ps
report.pdf in the handin directory.

WARNING: MAKE SURE YOUR TABS ARE SET TO 8 SPACES, or replace
tabs with spaces before submitting. I am sick of reading code with messed-
up indentation. This does not mean you have to indent by 8 spaces; indeed,
the point of this is to keep the width down to something reasonable, so please
indent by less than 8 spaces.

Turn in non-programming questions as text, PostScript, or PDF files in the
handin directory. Or, if you wish, you may turn in answers on paper, due
in WeH 1313 by 11:59 pm on December 5. If you are using late days, paper
handin is by arrangement only (send mail and we’ll figure something out).

NOTICE: This is the last assignment, so you're welcome to use up your
remaining late days. But please look at your grades on Blackboard to make
sure you really do have late days left! You cannot use more late days than you
have left. If you hand in 3 days (more than 72 hours) late, and you had fewer
than 3 days left, your assignment will not be graded. Likewise, if you have no
days left, you must hand in on time (11:59 pm, December 5) to receive a grade.

For more information on handing in code, refer to

http://www.cs.cmu.edu/ fp/courses/312/assignments.html

