Assignment 2:
Implementing MinML

15-312: Foundations of Programming Languages
Joshua Dunfield (joshuad@cs.cmu.edu)

Out: Thursday, September 5, 2002
Due: Thursday, September 19, 2002 (11:59 pm)

100 points total

Revised September 10, 2002

This revised version corrects some typos and inaccuracies in the original handout. For a
summary of changes, refer to

http : //www.cs.cmu.edu/ fp/courses/312/assignments/asst2/index.html

1 MinML

For this assignment you will implement a typechecker and evaluator for MinML. In the assign-
ment folder you’ll find several files with support code; you will only need to fill in the missing
code in translate.sml ,typing.sml , and eval.sml

You will rarely, if ever, need to write long or complicated functions to complete this assign-
ment. Hence, you should strive for elegance.

Before you begin, you may wish to read through the provided code (especially the signatures)
to gain an understanding of the setup. All of the necessary SML files are listed in the sources.cm
file, and you can build the project in SML/N]J by typing CM.make() .

1.1 Parser and Concrete Syntax

The file parse.sml contains a parser for MinML. The parse function turns a Lex.token Stream.stream
into a MinML.exp Stream.stream by consuming programs (which are expressions followed by

a semicolon). For simplicity, we don’t do any error recovery; when the parser encounters an error

it just raises the exception ParseError with a (somewhat) informative message.

While we’ve written the parser for you, and the code you write will deal only with abstract
syntax, you still need to know the concrete syntax to write test programs. A grammar is given in
Figure 1. The grammar refers to tokens INT, BOOL etc. The tokens are defined in Figure 2; the
lexer takes a raw character stream and returns a stream of tokens.

This syntax should be mostly self-explanatory. Application of a function e; to an argument e,
is written by juxtaposition (e e2). Primitive operations are infix, with the usual precedence levels
(negation has the highest precedence, followed by juxtaposition (for function application), then

1

BaseType := INT | BOOL | LPAREN Type RPAREN
Type ::= BaseType | BaseType ARROW Type

ExpSeq ::= Exp | Exp COMMA ExpSeq
Var = VAR(S)

AddOp ::= PLUS | MINUS
MulOp ::= TIMES

RelOp := EQUALS | LESSTHAN
UnaryOp ::= NEGATE

FactorA ::= LPAREN Exp RPAREN
| NUMBER(N)

| Var

| TRUE

| FALSE

| IF Exp THEN Exp ELSE Exp FlI

| LET Var EQUALS Exp IN Exp END

| FUN Var LPAREN Var COLON Type RPAREN COLON Type IS Exp END
| UnaryOp Factor

Factor ::= FactorA
| Factor Exp
Term ::= Factor

Factor MulOp Term

Exp’ = Term
| Term AddOp Exp

Exp = Exp

| Exp’ RelOp Exp

Program ::= Exp SEMICOLON

Figure 1: MinML concrete syntax.

Symbol Lexer.token

int INT

bool BOOL

-> ARROW
true TRUE

false FALSE

fun FUN

is IS

end END

if IF

then THEN

else ELSE

fi FI

let LET

in IN

, COMMA

(LPAREN

) RPAREN

) SEMICOLON
~ NEGATE
= EQUALS
< LESSTHAN
* TIMES

- MINUS

+ PLUS

: COLON

n NUMBER(n)

any other string s VAR(S)

Figure 2: MinML tokens.

multiplication, then addition and subtraction, and finally equality). All primitive operations are
left-associative. (The grammar is actually right-associative, since that’s easier to implement in a
recursive-descent style, so we have to do some work in the parser to produce the correct abstract
syntax. If you're interested, look at the parse _exp, parse _exp’ , parse _term , parse _factor ,
parse _factora and build _primop functionsin parse.sml .)

The type constructor -> ’ is infix and right-associative, just as in SML.

Here are some examples along with their translation into MinML abstract syntax (type MinML.exp).

Concrete Syntax Lexer Tokens Abstract Syntax
true TRUE Bool(true)
1 NUMBER(1) Int(1)
if true then 4 IF TRUE THEN NUMBER(4) If(Bool(true), Int(4),
else 5 fi ELSE NUMBER(5) FI Int(5))
f3 VAR("f") NUMBER(3) Apply(Var("f"),
Int(3))
1+2 NUMBER(1) PLUS Primop(Plus, [Int(1),
NUMBER(2) Int(2)])
1+g2*3 NUMBER(1) PLUS Primop(Plus, [Int(1),
Var("g") NUMBER(2) Primop(Times,
TIMES NUMBER(3) [Apply(Var("g"), 2),
Int(3)D])
fun f(g : int -> FUN VAR('f") LPAREN Fun(ARROW(INT,ARROW(BOOL,INT)),
bool -> int) : VAR("g") COLON INT BOOL, ('f', "g",
bool is true end ARROW BOOL ARROW INT Bool(true)))
RPAREN COLON BOOL IS
TRUE END

The abstract syntax groups binders with their scope, in the style of higher-order abstract syn-
tax. However, variables are represented via their name as a string.
To play around with the parser and become familiar with MinML, type

Top.loop_print_noDB ();

or
Top.file_print_ noDB "test_file.mml";

These will print the program (with some redundant parentheses) in the named-variable form.

Task: Translation to deBruijn form (20 points)

In file translate.sml , complete the implementation of function Translate.translate . When
completed, it should translate a stream of closed MinML expressions in the named variable repre-
sentation (type MinML.exp) to a stream of closed expressions in the deBruijn representation (type
DBMiInML.exp). (Hint: Use the function Stream.map .)

4

To get started, read Section 5.4 of Harper’s notes, then think about how to translate the abstract
syntax. Most cases are very straightforward; variables, let , and fun require a little thought. For
fun , which binds two variables at once (the function and its argument), use the convention that
the de Bruijn index refers to the argument and the de Bruijn index to the function itself.
For example:

Named deBruijn

fun fact (x : int) : int is fun _ (_ :int) :int is

if x=0 then 1 else x*fact(x-1) if [1]=0 then 1 else [1]*[2]([1]-1) fi
fi end

end

In the translator, you will need to maintain an environment of variable names. Use the simplest
representation possible; don’t worry about efficiency.

1.2 Typechecker

Next, implement a typechecker for MinML. The static semantics for MinML, given in Figure 3,
assures that every expression has at most one type. Therefore, your typechecker will return the
unique type for an expression if it is well-typed, or raise the exception TypeError otherwise.

Recall that the specification of MinML uses a typing judgment to classify MinML expressions as
ill- or well-typed. The typing judgment is defined inductively by the inference rules. Therefore,
in order to decide whether a given expression has a type, we need to search for a derivation using
the typing rules. However, a moment of thought realizes that if we could classify an expression as
ill- or well-typed through a typing judgment, then we could also retrieve its type easily, because
the derivation itself would tell exactly how to determine the type of the expression. So, in fact,
deciding the type of an expression is no harder than deciding if the expression is ill- or well-typed.

In general, we cannot assume that an expression matches only one typing rule and thus,
the search strategy for a derivation can be non-deterministic. Fortunately, the search strategy for
MinML is syntax directed: the form of expression we are typing determines uniquely which rule to
apply. Therefore, if the typechecker finds that no rule can be applied to an expression, it knows
that the expression is ill-typed and can raise an exception immediately without backtracking. Your
code will probably have one function clause for each constructor of the datatype DBMinML.exp .

We provide a function MinML.typeOfPrimop that returns the domain and range types for
a primop. Your typechecker should use this function, but should not rely on the fact that the
primops currently have a maximum of two arguments; it should be possible to add primops to
MinML without modifying your type checker.

Task: Typechecker (35 points)

Complete the code in typing.sml to produce a structure Typing :> TYPING which imple-
ments the behavior specified. You should not modify any other files. Remember that the expres-
sion to be typechecked will be in deBruijn form. This file contains some code to get you started;
we recommend using it. We recommend that you write a function called typing , with type (typ
env) * exp -> typ and specification as follows:

Given a type environment I" and an expression e, typing returns 7, the type of e under I, if 7
exists. If e is ill-typed in I" then typing raises the exception Typing.Error

You can test your typechecker before you complete the evaluator. Run Top.loop_type ()
or Top.file_type "test_file.mml"

1.3 Evaluator

Finally, you'll implement the MinML dynamic semantics in the file eval.sml . The dynamic
semantics is given in Figure 4 as a relation “i—" for single-step evaluation. There are many more
efficient ways of evaluating MinML programs (as we’ll see later in the class), but we require that
you strictly follow the specified semantics for this assignment.

The evaluation algorithm is straightforward. First it will use the “search rules” OpArg, IfCond,
AppFun, AppArg, and LetArg to recursively scan the input expression for the proper subexpression
to modify. Once the proper subexpression has been located, one of the “instruction rules” OpVals,
IfTrue, IfFalse, CallFun, Let can be applied. If no rule applies (as might happen if the expression is
already fully evaluated, or is ill-typed), the evaluator will raise an exception.

For example, on the expression e e, the evaluator will try to apply an evaluation step to the
function expression e;. If itis already a value, the evaluator will try to apply a step to the argument
expression ey. If it is already a value as well, the evaluator will try to use the instruction rule for
application, CallFun.

Since the CallFun and Let rules involve substitutions, you will also need to properly implement
substitutions. This isn’t hard, but as usual, think before you code.

Task: Evaluator (45 points)

In eval.sml , fill in the structure Eval :> EVAL to implement the behavior specified. You
should not modify any other files. Most of the work that you do will be in the function step ,
which has type exp -> exp and the specification:

Given an expression e in deBruijn form, step returns the unique €’ such that e — ¢’. If no such
¢’ exists, step raises the exception Stuck .

Test Cases

We've provided a few test cases. Once your evaluator is complete, these may be run in the follow-
ing manner:

Top.file_eval "test file.mml";

Filename Expected Result Description
if.mml 3 :int Simple test of if
fun.mml fun ident(x : int) : int is Simple test of fun

x end : int -> int
factorial.mml 120 : int The factorial function
self.mml ill-typed Ill-typed function
hof.mml 7 o int Simulates pairs using

functions

These test files are (obviously) not exhaustive, so you should develop your own in order to
test your program thoroughly. Remember, however, that passing test cases is only a necessary
condition for getting a good grade on your homework. The elegance of your solution is important
and will be taken into account when grading.

You are encouraged to submit test cases to us. We will test everyone’s code against a subset of
the submitted test cases, in addition to our own. So, even though you will not receive any points
specifically for handing in test cases, it’s in your interest to send us tests that your code handles
correctly: it will tend to improve your grade. See below for submission instructions.

2 Hand-in Instructions

Turn in the three files translate.smi ,typing.sml , and eval.sml by copying them to your
handin directory

/afs/andrew/scs/cs/15-312/students/ Andrew user ID/asst2/

by 11:59 pm on the due date. Immediately after the deadline, we will run a script to sweep through
all the handin directories and copy your files elsewhere. We will also sweep 24, 48, and 72 hours
after the deadline, for anyone using late days on this assignment.

Also, please turn in any test cases you'd like us to use by copying them to your handin direc-
tory. To ensure that our scripts notice the files, make sure they have the suffix .mml .

For more information on handing in code, refer to

http://mwww.cs.cmu.edu/ fp/courses/312/assignments.html

I',z:r, gz :7 VarTyp

NumTi
I' F num(n) : int liatls

T+ true : bool TrueTyp
I' - false : bool FalseTyp
I fim—mn,zmbFe:n FunTyp

I'Ffun (11,7, fx.e): 7 — T

I'tei:7mp1 ... T'ke,

T,
OnOT
I'to(er,... en): 7o pyp

I'ter:mnn TDyxmbes:n
I't let (61,:6.62) D)

LetTyp

I'kFe:bool T'Fe:7 T'hFeg:T

LHif (e,er,e2):7

Figure 3: Static semantics for MinML

IfTyp

e — e

OpA
o(V1, ... €. n) = 0(U1,... €, ...) pAIg
b .
(by primop o) OpVals
o(v1,... ,p) — v
er—é
IfCond
if (e er,eq)—if (€, e1,e2) fcon
I
if (true ,ej,e2) — e fTrue
IfFal
T (false c1.ea) g OIS
e e AppFun
APPlY (€1, e2) — Apply (el ez) 17
eg — €
AppAr
Apply (vr, e2) — Apply (vr,ep) ¢
vy = fun (1, 7o, f.z.€)
CallF
Apply (v, v1) = {va/FH{vr/ate ~ "
/
e LetArg

let (e1,z.e2) — let (e, z.e2)

let (vi,z.e2) — {vi/x}es Let

Figure 4: Dynamic semantics for MinML: v, v;, etc. denote expressions that are values

