Assignment 1:
Grammars and Induction

15-312: Foundations of Programming Languages
Joshua Dunfield (joshuad@cs.cmu.edu)

Out: Thursday, August 29, 2002
Due: Thursday, September 5, 2002 (1:30 pm)

50 points total

Welcome to 15-312! This assignment focuses on context-free grammars
and inductive proofs. It is due September 5th at the start of lecture. You
are encouraged, but not required, to typeset your answers; if you write by
hand, write legibly. If I can’t read it, I can’t give credit for it.

Please make sure you understand the policy on collaboration; refer to

http://www.cs.cmu.edu/ fp/courses/312/assignments.html

1 Grammars (35 points)
Consider the grammar G (which should look familiar) over the alphabet

Y ={int ,list ,-> (,) }, with nonterminals tycon and type:

tycon ::=int |tyconlist | (type)
type ::= tycon | type -> type

Question 1.1 (5 points).

The first production for tycon can be written in rule notation as
int tycon

Write grammar G in rule notation.

1

Grammar G is flawed: it does not pin down the associativity of -> . For
example, there are two different derivations of the string int->int->int
We can fix the ambiguity by changing the second production of type from

type ::= type -> type
to
type ::= tycon -> type

Making this change results in the grammar G’ below. To avoid confu-
sion, we rename tycon to tycon’ and type to type’.

tycon’ :=int |tycon’list | (type’)
type’ ::= tycon’ | tycon’ -> type’

Question 1.2 (5 points).
Write grammar G’ in rule notation.

However, we haven’t proved that this new grammar G’ really is equiva-
lent to G, that is, that the languages of type and type’ are the same: L(type) =
L(type’). This can be proved in two steps: first prove L(type’) C L(type),
then prove L(type) C L(type’).

Question 1.3 (10 points).
Prove L(type’) C L(type) by proving
If s type’ then s type

by induction. If you need to generalize the induction hypothe-
sis, be sure to clearly state your generalized induction hypoth-
esis. If you need any lemmas, state them explicitly and prove
them.

Question 1.4 (15 points).
Prove L(type) C L(type’) by proving
If s type then s type’

As in the previous question, clearly state any generalized in-
duction hypothesis and prove any lemmas you need.

2 Propositional logic (15 points)

In this question we will look at a subset of Propositional Logic. Our universe
of terms consists of an infinite number of arity 0 operators Py, P,. .., P,
(“propositional variables”), and the binary operator = (“implication”). We
define the sets prop and thm over this universe:

A prop B prop
A= (B=A)thm

P, prop V4"

A prop B prop I A prop B prop C prop
A=Bpop P (A= (B=C) = (A= B)= (A= C) thm

S

A= Bthm A thm
B thm

App

Truth Value. If we have assignments (to true or false) for all of the propo-
sitional variables in a proposition, its truth value (either true or false)
can be computed recursively using the following familiar truth table for =:

Proposition Truth Value
false = false true

false = true true

true = false false

true = true true

Tautology. A proposition is a tautology iff for every assignment of truth
values (true , false) to the propositional variables F,..., P,, the truth
value of the proposition is true .

Question 2.1 (15 points).

Prove, using rule induction, that if A thm then A is a tautology.

Question 2.2 (EXTRA CREDIT).

Find a proposition A that is a tautology, but not a theorem (that
is, the judgment A thm cannot be derived). You do not need to
prove that it is not a theorem!

