
Assignment 1:
Grammars and Induction

15-312: Foundations of Programming Languages
Joshua Dunfield (joshuad@cs.cmu.edu)

Out: Thursday, August 29, 2002
Due: Thursday, September 5, 2002 (1:30 pm)

50 points total

Welcome to 15-312! This assignment focuses on context-free grammars
and inductive proofs. It is due September 5th at the start of lecture. You
are encouraged, but not required, to typeset your answers; if you write by
hand, write legibly. If I can’t read it, I can’t give credit for it.

Please make sure you understand the policy on collaboration; refer to

http://www.cs.cmu.edu/˜fp/courses/312/assignments.html

1 Grammars (35 points)

Consider the grammar G (which should look familiar) over the alphabet
Σ = {int , list , -> , (,) }, with nonterminals tycon and type:

tycon ::= int | tycon list | (type)

type ::= tycon | type -> type

Question 1.1 (5 points).

The first production for tycon can be written in rule notation as

int tycon

Write grammar G in rule notation.

1

Grammar G is flawed: it does not pin down the associativity of -> . For
example, there are two different derivations of the string int->int->int .
We can fix the ambiguity by changing the second production of type from

type ::= type -> type

to

type ::= tycon -> type

Making this change results in the grammar G′ below. To avoid confu-
sion, we rename tycon to tycon′ and type to type′.

tycon′ ::= int | tycon′ list | (type′)

type′ ::= tycon′ | tycon′ -> type′

Question 1.2 (5 points).

Write grammar G′ in rule notation.

However, we haven’t proved that this new grammar G′ really is equiva-
lent to G, that is, that the languages of type and type′ are the same: L(type) =
L(type′). This can be proved in two steps: first prove L(type′) ⊆ L(type),
then prove L(type) ⊆ L(type′).

Question 1.3 (10 points).

Prove L(type′) ⊆ L(type) by proving

If s type′ then s type

by induction. If you need to generalize the induction hypothe-
sis, be sure to clearly state your generalized induction hypoth-
esis. If you need any lemmas, state them explicitly and prove
them.

Question 1.4 (15 points).

Prove L(type) ⊆ L(type′) by proving

If s type then s type′

As in the previous question, clearly state any generalized in-
duction hypothesis and prove any lemmas you need.

2

2 Propositional logic (15 points)

In this question we will look at a subset of Propositional Logic. Our universe
of terms consists of an infinite number of arity 0 operators P0, P1, . . . , Pn

(“propositional variables”), and the binary operator ⇒ (“implication”). We
define the sets prop and thm over this universe:

Pi prop Var
A prop B prop

A ⇒ (B ⇒ A) thm
K

A prop B prop
A ⇒ B prop

Imp
A prop B prop C prop

(A ⇒ (B ⇒ C)) ⇒ (A ⇒ B) ⇒ (A ⇒ C) thm
S

A ⇒ B thm A thm
B thm

App

Truth Value. If we have assignments (to true or false) for all of the propo-
sitional variables in a proposition, its truth value (either true or false)
can be computed recursively using the following familiar truth table for ⇒:

Proposition Truth Value
false ⇒ false true
false ⇒ true true
true ⇒ false false
true ⇒ true true

Tautology. A proposition is a tautology iff for every assignment of truth
values (true , false) to the propositional variables P0, . . . , Pn, the truth
value of the proposition is true .

Question 2.1 (15 points).

Prove, using rule induction, that if A thm then A is a tautology.

Question 2.2 (EXTRA CREDIT).

Find a proposition A that is a tautology, but not a theorem (that
is, the judgment A thm cannot be derived). You do not need to
prove that it is not a theorem!

3

