Robust Regression

Method of least absolute deviation (I₁ -regression)

- Find x* that minimizes |Ax-b|₁ = Σ |b_i <A_{i*}, x>|
- Cost is less sensitive to outliers than least squares
- Can solve via linear programming

Solving I₁ -regression via Linear Programming

- Minimize $(1,...,1) \cdot (\alpha^{+} + \alpha^{-})$
- Subject to:

$$A x + \alpha^{+} - \alpha^{-} = b$$

$$\alpha^{+}, \alpha^{-} \ge 0$$

- Generic linear programming gives poly(nd) time
- Want much faster time using sketching!

Well-Conditioned Bases

- For an n x d matrix A, can choose an n x d matrix U with orthonormal columns for which A = UW, and $|Ux|_2 = |x|_2$ for all x
- Can we find a U for which A = UW and $|Ux|_1 \approx |x|_1$ for all x?
- Let A = QW where Q has full column rank, and define $|z|_{Q,1} = |Qz|_1$
 - |z|_{Q,1} is a norm
- Let C = $\{z \in R^d : |z|_{Q,1} \le 1\}$ be the unit ball of |. |_{Q,1}
- C is a convex set which is symmetric about the origin
 - Lowner-John Theorem: can find an ellipsoid E such that: $E \subseteq C \subseteq \sqrt{d}E$, where $E = \{z \in R^d : z^TFz \le 1\}$
 - $(z^{\mathrm{T}}\mathrm{Fz})^{.5} \le |z|_{\mathrm{Q},1} \le \sqrt{\mathrm{d}} (z^{\mathrm{T}}\mathrm{Fz})^{.5}$
 - F = GG^T since F defines an ellipsoid
- Define $U = QG^{-1}$

Well-Conditioned Bases

- Recall $U = QG^{-1}$ where $(z^TFz)^{.5} \le |z|_{Q,1} \le \sqrt{d}(z^TFz)^{.5} \text{ and } F = GG^T$
- $|Ux|_1 = |QG^{-1}x|_1 = |Qz|_1 = |z|_{Q,1}$ where $z = G^{-1}x$
- $z^{T}Fz = (x^{T}(G^{-1})^{T}G^{T}G(G^{-1})x) = x^{T}x = |x|_{2}^{2}$
- So $|x|_2 \le |Ux|_1 \le \sqrt{d}|x|_2$
- So $\frac{|x|_1}{\sqrt{d}} \le |x|_2 \le |Ux|_1 \le \sqrt{d} |x|_2 \le \sqrt{d} |x|_1$

Net for ℓ_1 – Ball

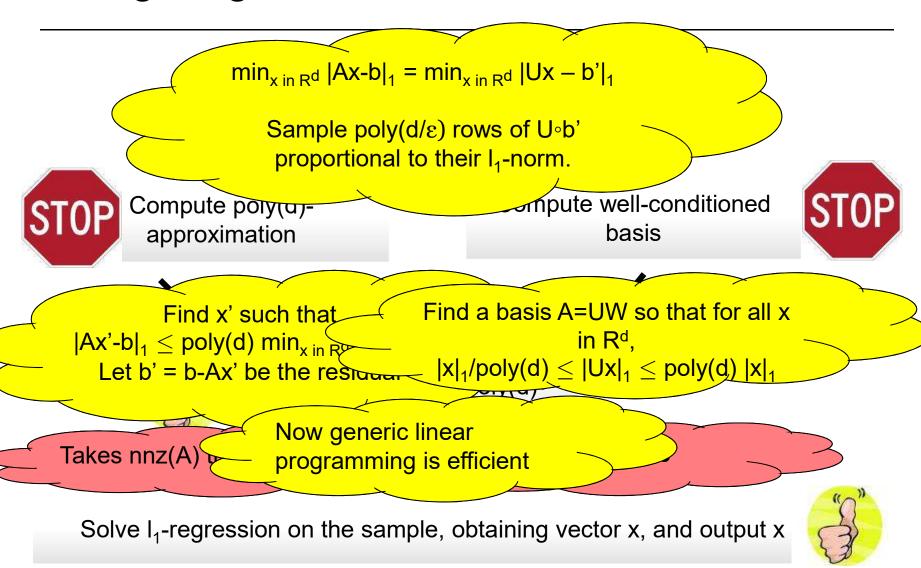
- Consider the unit ℓ_1 -ball B = $\{x \in R^d : |x|_1 = 1\}$
- Subset N is a γ -net if for all $x \in B$, there is a $y \in N$, such that $|x y|_1 \le \gamma$
- Greedy construction of N
 - While there is a point x ∈ B of distance larger than γ from every point in N, include x in N
- The ℓ_1 -ball of radius $\gamma/2$ around every point in N is contained in the ℓ_1 -ball of radius 1+ $\gamma/2$ around 0^d
- Further, all such ball are disjoint
- Ratio of volume of d-dimensional similar polytopes of radius 1+ γ/2 to radius γ/2 is (1 + γ/2)^d/(γ/2)^d, so |N| ≤ (1 + γ/2)^d/(γ/2)^d

Net for ℓ_1 – Subspace

- Let A = UW for a well-conditioned basis U
 - $|x|_1 \le |Ux|_1 \le d|x|_1$ for all x
- Let N be a (γ/d) –net for the unit ℓ_1 -ball B
- Let M = {Ux | x in N}, so $|M| \le (1 + \gamma/(2d))^d/(\gamma/(2d))^d$
- Claim: For every x in B, there is a y in M for which $|Ux y|_1 \le \gamma$
- Proof: Let x' in N be such that |x x'|₁ ≤ γ/d
 Then |Ux Ux'|₁ ≤ d|x x'|₁ ≤ γ, using the well-conditioned basis property. Set y = Ux'

$$|M| \le \left(\frac{\mathrm{d}}{\gamma}\right)^{\mathrm{O}(\mathrm{d})}$$

Rough Algorithm Overview



Will focus on showing how to quickly compute

- 1. A poly(d)-approximation
- 2. A well-conditioned basis

Sketching Theorem

Theorem

There is a probability space over (d log d) × n matrices R such that for any n×d matrix A, with probability at least 99/100 we have for all x:

$$|Ax|_1 \le |RAx|_1 \le d \log d \cdot |Ax|_1$$

Embedding

- is linear
- is independent of A
- preserves lengths of an infinite number of vectors

Application of Sketching Theorem

Computing a d(log d)-approximation

- Compute RA and Rb
- Solve x' = argmin_x |RAx-Rb|₁
- Main theorem applied to A∘b implies x' is a d log d approximation
- RA, Rb have d log d rows, so can solve l₁-regression efficiently

Application of Sketching Theorem

Computing a well-conditioned basis

- 1. Compute RA
- 2. Compute W so that RAW is orthonormal (in the l₂-sense)
- 3. Output U = AW

U = AW is well-conditioned because

$$|AWx|_1 \le |RAWx|_1 \le (d \log d)^{1/2} |RAWx|_2 = (d \log d)^{1/2} |x|_2 \le (d \log d)^{1/2} |x|_1$$

and

 $|AWx|_1 \ge |RAWx|_1/(d \log d) \ge |RAWx|_2/(d \log d) = |x|_2/(d \log d) \ge |x|_1/(d^{3/2} \log d)_{13}$

Sketching Theorem

Theorem:

There is a probability space over (d log d) x n matrices R such that for any nxd matrix A, with probability at least 99/100 we have for all x:

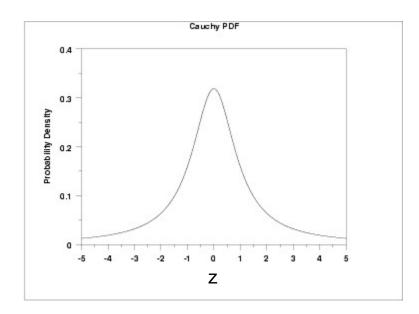
$$|Ax|_1 \le |RAx|_1 \le d \log d \cdot |Ax|_1$$

A dense R that works:

The entries of R are i.i.d. Cauchy random variables, scaled by 1/(d log d)

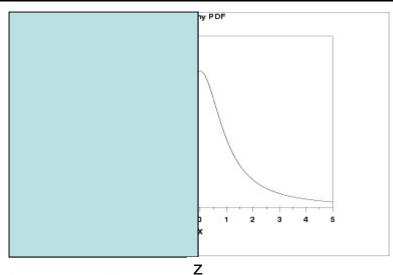
Cauchy Random Variables

- pdf(z) = $1/(\pi(1+z^2))$ for z in $(-\infty, \infty)$
- Undefined expectation and infinite variance



- 1-stable:
 - If z₁, z₂, ..., z_n are i.i.d. Cauchy, then for a ∈ Rⁿ,
 a₁·z₁ + a₂·z₂ + ... + a_n·z_n ~ |a|₁·z, where z is Cauchy
- Can generate as the ratio of two standard normal random variables

- By 1-stability,
 - For all rows r of R,
 - $\langle r, Ax \rangle = |Ax|_1 \cdot Z / (d \log d),$ where Z is a Cauchy



- RAx = $(|Ax|_1 \cdot Z_1, ..., |Ax|_1 \cdot Z_{d \log d}) / (d \log d)$, where $Z_1, ..., Z_{d \log d}$ are i.i.d. Cauchy
- $|RAx|_1 = |Ax|_1 \sum_i |Z_i| / (d \log d)$
 - The |Z_j| are half-Cauchy
- $\sum_{i} |Z_{i}| = \Omega(d \log d)$ with probability 1-exp(-d log d) by Chernoff
- But the |Z_i| are heavy-tailed...

- $\sum_{j} |Z_{j}|$ is heavy-tailed, so $|RAx|_{1} = |Ax|_{1} \sum_{j} |Z_{j}| / (d \log d)$ may be large
- Each $|Z_i|$ has c.d.f. asymptotic to 1-Θ(1/z) for z in [0, ∞)
- There exists a well-conditioned basis of A
 - Suppose w.l.o.g. the basis vectors are A_{*1}, ..., A_{*d}
- $|RA_{i}|_{1} = |A_{i}|_{1} \cdot \sum_{j} |Z_{i,j}| / (d \log d)$
- Let $E_{i,j}$ be the event that $|Z_{i,j}| \le d^3$
 - Define $Z'_{i,j} = |Z_{i,j}|$ if $|Z_{i,j}| \le d^3$, and $Z'_{i,j} = d^3$ otherwise
 - $E[Z_{i,j} | E_{i,j}] = E[Z'_{i,j} | E_{i,j}] = O(\log d)$
- Let E be the event that for all i,j, E_{i,j} occurs
 - $\Pr[E] \ge 1 \frac{\log d}{d}$
- What is E[Z'_{i,j} | E]?

- What is $E[Z'_{i,j} \mid E]$?
- $E[Z'_{i,j}|E_{i,j}] = E[Z'_{i,j}|E_{i,j}, E] Pr[E \mid E_{i,j}] + E[Z'_{i,j}|E_{i,j}, \neg E] Pr[\neg E \mid E_{i,j}]$ $\geq E[Z'_{i,j}|E_{i,j}, E] Pr[E \mid E_{i,j}]$ $= E[Z'_{i,j}|E] \cdot \left(\frac{Pr[E_{i,j}|E] Pr[E]}{Pr[E_{i,j}]}\right)$ $\geq E[Z'_{i,j}|E] \cdot \left(1 \frac{\log d}{d}\right)$
- So, $E[Z'_{i,j}|E] = O(\log d)$
- $|RA_{i}|_{1} = |A_{i}|_{1} \cdot \sum_{i} |Z_{i,i}| / (d \log d)$
- With constant probability, ∑_i |RA_{*i}|₁ = O(log d) ∑_i |A_{*i}|₁

- With constant probability, ∑ | |RA_{*i}|₁ = O(log d) ∑ | |A_{*i}|₁
- Recall A_{*1}, ..., A_{*d} is a well-conditioned basis, and we showed the existence of such a basis earlier
- We will use the Auerbach basis which always exists:
 - For all x, $|x|_{\infty} \leq |Ax|_1$
 - $\sum_{i} |A_{*i}|_{1} = d$
- For all x, $|RAx|_1 \le \sum_i |RA_{*_i} x_i| \le |x|_{\infty} \sum_i |RA_{*_i}|_1$ = $|x|_{\infty} O(d \log d)$ = $O(d \log d) |Ax|_1$

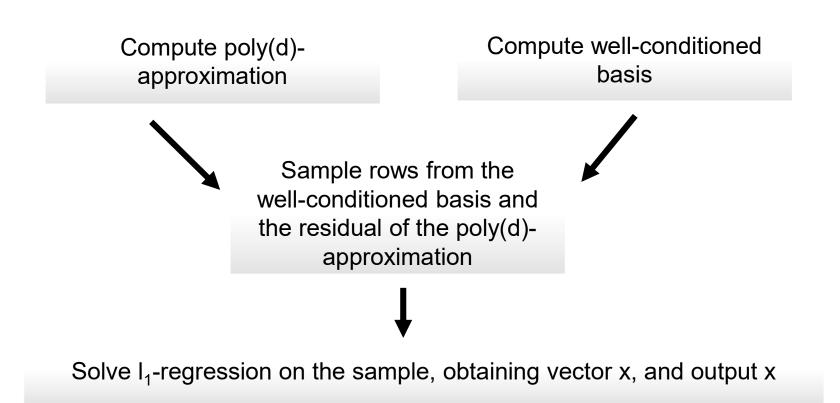
Where are we?

- Suffices to show for all x with $|x|_1 = 1$, that $|Ax|_1 \le |RAx|_1 \le d \log d \cdot |Ax|_1$
- We know
 - (1) there is a γ -net M, with $|M| \le \left(\frac{d}{\gamma}\right)^{O(d)}$, of the set $\{Ax \text{ such that } |x|_1 = 1\}$
 - (2) for any fixed x, $|RAx|_1 \ge |Ax|_1$ with probability $1 \exp(-d \log d)$
 - (3) for all x, $|RAx|_1 = O(d \log d)|Ax|_1$
- Set $\gamma = 1/(d^3 \log d)$ so $|M| \le d^{O(d)}$
 - By a union bound, for all y in M, $|Ry|_1 \ge |y|_1$
- Let x with $|x|_1 = 1$ be arbitrary. Let y in M satisfy $|Ax y|_1 \le \gamma = 1/(d^3 \log d)$
- $|RAx|_1 \ge |Ry|_1 |R(Ax y)|_1$ $\ge |y|_1 - O(d \log d)|Ax - y|_1$ $\ge |y|_1 - O(d \log d)\gamma$ $\ge |y|_1 - O(\frac{1}{d^2})$ $\ge |y|_1/2$ (why?)

Outline

- Quick recap of ℓ_1 -regression, and how to speed it up
- Introduction to the Streaming Model and Estimating Norms

L₁ Regression Algorithm Recap



We saw how to solve the above problems by sketching by a matrix of i.i.d. Cauchy random variables

Sketching to solve I₁-regression [CW, MM]

- Most expensive operation is computing R*A where R is the matrix of i.i.d.
 Cauchy random variables
- All other operations are in the "smaller space"
- Can speed this up by choosing R as follows:

$$\begin{array}{c} 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0 \\ 0\ 0\ 0\ -1\ 1\ 0\ -1\ 0 \\ 0\ -1\ 0\ 0\ 0\ 0\ 1 \\ \end{array} \qquad \begin{array}{c} \boldsymbol{C_1} \\ \boldsymbol{C_2} \\ \boldsymbol{C_3} \\ \boldsymbol{C_n} \\ \end{array}$$

- For all x, $\left(\frac{1}{d^2 \log^2 d}\right) |Ax|_1 \le |RAx|_1 \le O(d \log d) |Ax|_1$
- Overall time for ℓ_1 -regression is nnz(A) + poly(d/ ϵ)

Further sketching improvements [WZ]

- Can show you need a fewer number of sampled rows in later steps if instead choose R as follows
- Instead of diagonal of Cauchy random variables, choose diagonal of reciprocals of exponential random variables

For all x, $\left(\frac{1}{d^{.5} \text{poly}(\log(\text{nd}))}\right) |Ax|_1 \le |RAx|_1 \le O(d \log d) |Ax|_1$

Fun Fact about Cauchy Random Variables

- Suppose you have i.i.d. copies $R_1, ..., R_n$ of a random variable with mean 0 and variance σ^2
- What is the distribution of $\frac{\sum_{i} R_{i}}{n}$?
- By Central Limit Theorem, this approaches a normal random variable $N(0, \sigma^2/n)$
- Intuitively, the variance is decreasing and the average is approaching its expectation
- Now suppose you have i.i.d. copies R₁, ..., R_n of a standard Cauchy random variable
- What is the distribution of $\frac{\sum_{i} R_{i}}{n}$?
- It's still a standard Cauchy random variable!

Outline

- Quick recap of ℓ_1 -regression, and how to speed it up
- Introduction to the Streaming Model and Estimating Norms

Outline

- Quick recap of ℓ_1 -regression, and how to speed it up
- Introduction to the Streaming Model
- Estimating Norms in the Streaming Model

Turnstile Streaming Model

- Underlying n-dimensional vector x initialized to 0ⁿ
- Long stream of updates $x_i \leftarrow x_i + \Delta_j$ for Δ_j in $\{-M, -M+1, ..., M-1, M\}$
 - $M \le poly(n)$
- Throughout the stream, x is promised to be in {-M, -M+1, ..., M-1, M}ⁿ
- Output an approximation to f(x) with high probability over our coin tosses
- Goal: use as little space (in bits) as possible
 - Massive data: stock transactions, weather data, genomes

Testing if $x = 0^n$

- How can we test, with probability at least 9/10, over our random coin tosses, if the underlying vector $\mathbf{x} = \mathbf{0}^{n}$?
- Can we use O(log n) bits of space?
- We saw that for any fixed vector x, if S is a CountSketch matrix with $O(\frac{1}{\epsilon^2})$ rows, then $|Sx|_2^2 = (1 \pm \epsilon)|x|_2^2$ with probability at least 9/10
- If we set $\epsilon = \frac{1}{2}$, we use O(log n) bits of space to store the O(1) entries of Sx
- We can store the hash function and sign function defining S using O(log n) bits

Testing if $x = 0^n$

- Is there a deterministic, i.e., zero-error, streaming algorithm to test if the underlying vector $\mathbf{x} = \mathbf{0}^{n}$ with o(n log n) bits of space?
- Theorem: any deterministic algorithm requires $\Omega(n \log n)$ bits of space
- Suppose the first half of the stream corresponds to updates to a vector a in $\{0, 1, 2, ..., poly(n)\}^n$
- Let S(a) be the state of the algorithm after reading the first half of the stream
 - If $|S(a)| = o(n \log n)$, there exist $a \ne a'$ for which S(a) = S(a')
- Suppose the second half of the stream corresponds to updates to a vector b in $\{0,-1,-2,\dots,-\text{poly}(n)\}^n$
- The algorithm must output the same answer on a+b and a'+b, so it errs in one case

Example: Recovering a k-Sparse Vector

- Suppose we are promised that x has at most k non-zero entries at the end of the stream
- k is often small maybe we see all coordinates of a vector a followed by all coordinates of a *similar* vector b, and a-b only has k non-zero entries
- Can we recover the indices and values of the k non-zero entries with high probability?
- Can we use k poly(log n) bits of space?
- Can we do it deterministically?

Example: Recovering a k-Sparse Vector

- Suppose A is an s x n matrix such that any 2k columns are linearly independent
- Maintain A · x in the stream
- Claim: from $A \cdot x$ you can recover the subset S of k non-zero entries and their values
- Proof: suppose there were vectors x and y each with at most k non-zero entries and $A \cdot x = A \cdot y$
- Then A(x-y) = 0. But x-y has at most 2k non-zero entries, and any 2k columns of A are linearly independent. So x-y = 0, i.e., x = y.
- Algorithm is deterministic given A. But do such matrices A exist with a small number s of rows?

Example: Recovering a k-Sparse Vector

• Vandermonde matrix A with s = 2k rows and n columns. $A_{i,j} = j^{i-1}$

1 1 1 ... 1 2 3 ... 1 4 9 ... 1 8 27 ...

- Determinant of 2k x 2k submatrix of A with set of columns equal to $\{i_1, ..., i_{2k}\}$ is: $\prod_j i_j \prod_{j < j'} (i_j i_{j'}) \neq 0$, so any 2k columns of A are linearly independent
- But entries of A are exponentially increasing how to store A and $A \cdot x$?
- Just store $A \cdot x$ mod p for a large enough prime p = poly(n)

Outline

- ullet Quick recap of ℓ_1 -regression, and how to speed it up
- Introduction to the Streaming Model
- Estimating Norms in the Streaming Model

Example Problem: Norms

- Suppose you want $|x|_p^p = \sum_{i=1}^n |x_i|^p$
- Want Z for which (1-E) $|x|_p^p \le Z \le (1+E) |x|_p^p$ with probability > 9/10
- p = 1 corresponds to total variation distance between distributions
- p = 2 useful for geometric and linear algebraic problems
- p = ∞ is the value of the maximum entry, useful for anomaly detection, etc.