
CS 15-859: Algorithms for Big Data Fall 2019

Lecture 4 (part 2) — September 26, 2019
Prof. David Woodruff Scribe: Anthony Hsu

1 Leverage Score Sampling (continued)

As a reminder, our leverage score sampling matrix is defined as follows:

Definition. (Leverage score sampling matrix) Define the k × n sampling matrix S = D · ΩT where
D is k × k and Ω is n× k, and

• Ω is a sampling matrix where for each column j, we independently, and with replacement,
pick a row index i in [n] with probability qi and set Ωi,j = 1

• D is a rescaling matrix with Dj,j = 1/
√
qik, where qi is the probability of the row index i

picked by Ω in column j

Claim 1. Leverage score sampling gives a subspace embedding (i.e. ‖SUy‖22 = (1± ε) ‖y‖22).

Proof. We prove this by showing the equivalent statement
∥∥∥UTSTSU − I∥∥∥

2
≤ ε with high probability.

We will do this by applying the matrix Chernoff bound. As a reminder, the matrix Chernoff bound
states:

Theorem 1. (Matrix Chernoff Bound) Let X1, ..., Xk be independent copies of a symmetric random
matrix X ∈ Rd×d with E[X] = 0, ‖X‖2 ≤ γ, and

∥∥∥E[XTX]
∥∥∥

2
≤ σ2. Let W = 1

k

∑
j∈[k]Xj. For any

ε > 0,

Pr[‖W‖2 > ε] ≤ 2d · e−kε2/(σ2+ γε
3)

where ‖W‖2 = sup ‖Wx‖2
‖x‖2

, which is equal to sup‖x‖2=1 x
TWx since W is symmetric.

For our proof that leverage score sampling gives a subspace embedding, we defined the following:

• i(j) denotes the index of the row of U sampled in the j-th trial

• Xj = Id −
UT
i(j)Ui(j)
qi(j)

, where Ui(j) is the j-th sampled row of U

We showed that

• The Xj ’s are independent copies of a symmetric matrix random variable

• E[Xj] = 0d×d

• ‖Xj‖2 ≤ 1 + d
β (where β was defined so that qi ≥ β`(i)

d for all i)

1

• E[XTX] ≤
(
d
β − 1

)
Id (where A ≤ B means xTAx ≤ xTBx for all x)

Now we can apply the matrix Chernoff bound with γ = 1 + d
β and σ2 = d

β − 1.

W = 1
k

k∑
j=1

Xj

= 1
k

k∑
j=1

(
Id −

UTi(j)Ui(j)

qi(j)

)

= Id −
1
k

k∑
j=1

UTi(j)Ui(j)

qi(j)

To see what the summation evaluates to, note that

UTSTSU =

[
UT

] Ω

[
DT

] [
D
] [

ΩT
] U

d× n n× k k × k k × k k × n n× d

Our sampling matrix S = D ·ΩT chooses some rows of U and scales each Ui(j) by 1/
√
kqi(j). So the

j-th row of SU is just

(SU)j = 1√
kqi(j)

Ui(j)

⇔ Ui(j) =
√
kqi(j)(SU)j

Plugging in, we get

W = Id −
1
k

k∑
j=1

(√
kqi(j)(SU)j

)T (√
kqi(j)(SU)j

)
qi(j)

= Id −
k∑
j=1

((SU)j)T (SU)j

= Id − UTSTSU

Substituting into the matrix Chernoff bound, we get

Pr
[∥∥∥Id − UTSTSU∥∥∥2

> ε
]
≤ 2d · e−kε2Θ(β/d)

Set k = Θ(d log d
βε2) and we can get an arbitrarily small bound, implying that SU is a subspace

embedding with high probability. �

However, we still have a problem: how do we calculate the leverage scores `(i)?

2

2 Fast Computation of Leverage Scores

As a reminder, the leverage score of a matrix is defined as follows:

Definition. (Leverage score) Given an n× d matrix A with rank d and its SVD UΣV T , the i-th
leverage score `(i) of A is defined to be ‖Ui,∗‖22.

Naively, we could calculate the leverage scores by computing the SVD of A, but this requires O(nd2)
time. Instead, we will compute a subspace embedding SA and use it to compute the leverage scores.

Definition. (Approximate leverage score) Let SA = QR−1 such that Q is an s × d matrix with
orthonormal columns and R−1 is a d× d matrix. We define an approximate leverage score to be
`′i =

∥∥∥eTi AR∥∥∥2

2

Claim 2. `′i is a 1±O(ε) approximation of `i.

Proof. Since AR has the same column span as A, we can write AR = UT−1, where U is from A’s
SVD and T−1 is some matrix. We know

(1− ε) ‖ARx‖2 ≤ ‖SARx‖2 = ‖Qx‖2 = ‖x‖2

and also

(1 + ε) ‖ARx‖2 ≥ ‖SARx‖2 = ‖Qx‖2 = ‖x‖2

Thus,

(1±O(ε)) ‖x‖2 = ‖ARx‖2 =
∥∥∥UT−1

∥∥∥
2

=
∥∥∥T−1x

∥∥∥
2∥∥T−1x

∥∥
2 = (1±O(ε)) ‖x‖2 implies T−1 is well-conditioned, i.e. all its singular values must be about

1. Therefore,

`i =
∥∥∥eTi U∥∥∥2

2

=
∥∥∥eTi ART∥∥∥2

2

= (1±O(ε))
∥∥∥eTi AR∥∥∥2

2
since T is well-conditioned

= (1±O(ε))`′i

We have now shown that `′i is a (1±O(ε)) approximation of the actual leverage score `i. �

So we can compute a single leverage score in poly(d) time. But how do we calculate all the leverage
scores quickly? We’d like something about nnz(A) time.

Naively, we could compute AR, but this takes too long. Instead, we’d like to sketch R while preserving
row norms. We take advantage of the following lemma (used to prove the Johnson-Lindenstrauss
lemma), which we state without proof:

3

Lemma 1. Let G be a d×O(logn) matrix of i.i.d. normal random variables. Then, for all vectors
z,

Pr
[∥∥∥zTG∥∥∥2

2
= (1± ε) ‖z‖22

]
≥ 1− δ

Substituting in eTi AR for z, we get

Pr
[∥∥∥eTi ARG∥∥∥2

2
= (1± ε)

∥∥∥eTi AR∥∥∥2

2

]
≥ 1− δ

Claim 3. We can now compute the approximate leverage scores `′i in (nnz(A) + d2) logn time.

Proof.

Definition. Set `′i =
∥∥∥eTi ARG∥∥∥2

2
.

We can calculate RG in O(d2 logn) time, which results in a d×O(logn) matrix. We can multiply
that matrix by A in nnz(A) logn time. Thus, the total time to compute the approximate leverage
scores `′i is (nnz(A) + d2) logn. �

We can thus solve regression in (nnz(A) + poly(d/ε)) logn time.

3 Distributed low rank approximation

We have shown some fast algorithms for doing low-rank approximation. A natural follow-up question
is: are there such algorithms for a distributed setting? A matrix A might be distributed among
s servers because it either can’t fit on a single machine or because there are multiple machines
collecting data.

Suppose we have s servers. If each is collecting customer-product information, then each server t has
its own customer-product matrix At. The full customer-product matrix is then A = A1 +A2 +...+As.
This is known as the arbitrary partition model. Another model is the row partition model, where
each server just gets a subset of rows of A. The arbitrary partition model is more general than the
row partition model.

3.1 Communication Model

Before discussing low-rank approximation algorithms in a distributed setting, we first need to define
our communication model. We will consider a setting where each of the s servers only communicates
with a special coordinator machine. Servers cannot talk to one another directly. All communication
must pass through the coordinator. Communication is two-way, meaning each server can talk to the
coordinator, and the coordinator can talk to each server.

We can simulate point-to-point (server-to-server) communication up to a factor of 2 (since for
each message we need to do an additional hop through the coordinator) and an additive O(log s)
bits per message (since we also need to append the destination server to each message sent to the
coordinator).

4

3.2 Communication cost of low rank approximation

Now consider the following problem:

Input: An n×dmatrix A is split across s servers, each with its n×dmatrix At. A = A1+A2+...+A2.
Assume the entries of At are O(log(nd))-bit integers.

Output: Each server outputs its part of the matrix projected onto the same k-dimensional subspace
W of Rd. Server t will output AtPW , where PW is a projection matrix ontoW . Note that PW = V V T

for some basis V with k columns. V is d× k. The final output is

C = A1PW +A2PW + ...+AsPW = APW

and should satisfy

‖A− C‖F ≤ (1 + ε) ‖A−Ak‖F

where Ak is the optimal k-dimensional approximation of A.

Resource Goals: We want to minimize the amount of communication and computation. Ideally,
we want O(1) rounds of communication and input sparsity time.

Remark 1. One such application of a distributed low rank approximation algorithm is for doing
k-means clustering.

3.3 Prior work on distributed low rank approximation

• [FSS13]: This introduced the first protocol for the row-partition model. The protocol uses
O(sdk/ε) real numbers (bit complexity is not analyzed, though) and depends linearly on the
number of servers s and the matrix dimension d but does not depend on n. For info on SVD
running time, see [BKLW14].

• [KVW13]: Introduced the arbitrary partition model. Provides a communication protocol that
uses O(skd/ε) words of size log(nd) bits.

• [BWZ16]: Presents a communication protocol for the arbitrary partition model that requires
O(skd) + poly(sk/ε) words. Notice the first term does not depend on ε. It also proves that
Ω(skd) is an optimal lower bound.

• Other variants include kernel low rank approximation [BLS+15], low rank approximation of
an implicit matrix [WZ16], and low rank approximation of sparse matrices [BWZ16].

We will now go through three of these protocols.

3.4 Constructing a coreset [FSS13]

Let A = UΣV T , m = k+ k/ε (where k is the target rank and k/ε is small compared to n or d), and
Σm be the singular value matrix in A’s SVD that agrees with Σ for the m largest singular values
and is 0 elsewhere.

5

Claim 4. For all projection matrices Y = Id −X (where X is a projection matrix WW T (where
W is d× k) onto a k-dimensional subspace) onto a (d− k)-dimensional subspace,∥∥∥ΣmV

TY
∥∥∥2

F
+ c = (1± ε) ‖AY ‖2F

where c = ‖A−Am‖2F (where Am is the m-rank approximation of A)
Remark 2. You can think of ΣmV

TY and A−Am as our coreset.
Remark 3. The claim says we can get a good k-dimensional approximation to AY (the distance
of A from X) while storing just an m-rank approximation ΣmV

T plus a scalar. You can think of
ΣmV

T as applying a sketching matrix S = UTm to A: SA = UTmUΣV T = ΣmV
T .

Proof.

‖AY ‖2F =
∥∥∥UΣmV

TY
∥∥∥2

F
+
∥∥∥U(Σ− Σm)V TY

∥∥∥2

F
We break AY up into two orthogonal components

=
∥∥∥UΣmV

TY
∥∥∥2

F
+ ‖(A−Am)Y ‖2F

≤
∥∥∥ΣmV

TY
∥∥∥2

F
+ ‖A−Am‖2F Projection can only reduce norms

=
∥∥∥ΣmV

TY
∥∥∥2

F
+ c

Now we want to bound
∥∥∥ΣmV

TY
∥∥∥2

F
+ c− ‖AY ‖2F :∥∥∥ΣmV

TY
∥∥∥2

F
+ ‖A−Am‖2F − ‖AY ‖

2
F

=
∥∥∥ΣmV

T
∥∥∥2

F
−
∥∥∥ΣmV

TX
∥∥∥2

F
+ ‖A−Am‖2F − ‖A‖

2
F + ‖AX‖2F

[
‖A‖2F = ‖AX‖2F + ‖AY ‖2F

]
= ‖AX‖2F −

∥∥∥ΣmV
TX

∥∥∥2

F

[
‖A+B‖2F = ‖A‖2F + ‖B‖2F + 2 Tr(ATB)

]
=
∥∥∥(Σ− Σm)V TX

∥∥∥2

F

≤
∥∥∥(Σ− Σm)V T

∥∥∥2

F
‖X‖2F

≤ σ2
m+1k

[
‖X‖2F =

∥∥∥WW T
∥∥∥2

F
= ‖W‖2F = k

]
= εσ2

m+1(m− k) [m = k + k/ε]

≤ ε
m+1∑
i=k+1

σ2
i

≤ ε ‖A−Ak‖2F

This implies ∥∥∥ΣmV
TY
∥∥∥2

F
+ ‖A−Am‖2F − ‖AY ‖

2
F ≤ ε ‖A−Ak‖

2
F

⇔
∥∥∥ΣmV

TY
∥∥∥2

F
+ c ≤ ‖AY ‖2F + ε ‖A−Ak‖2F
≤ ‖AY ‖2F + ε ‖AY ‖2F
= (1 + ε) ‖AY ‖2F

6

�

Next lecture we will see how to use coresets to build a an efficient distribution communication
protocol for low-rank approximation.

References

[BKLW14] Maria-Florina Balcan, Vandana Kanchanapally, Yingyu Liang, and David P. Woodruff.
Improved distributed principal component analysis. CoRR, abs/1408.5823, 2014.

[BLS+15] Maria-Florina Balcan, Yingyu Liang, Le Song, David P. Woodruff, and Bo Xie. Dis-
tributed kernel principal component analysis. CoRR, abs/1503.06858, 2015.

[BWZ16] Christos Boutsidis, David P. Woodruff, and Peilin Zhong. Optimal principal component
analysis in distributed and streaming models. In Proceedings of the Forty-eighth Annual
ACM Symposium on Theory of Computing, STOC ’16, pages 236–249, New York, NY,
USA, 2016. ACM.

[FSS13] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, pca and projective clustering. In Proceedings of
the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13,
pages 1434–1453, Philadelphia, PA, USA, 2013. Society for Industrial and Applied
Mathematics.

[KVW13] Ravi Kannan, Santosh S. Vempala, and David P. Woodruff. Principal component analysis
and higher correlations for distributed data. In COLT, 2013.

[WZ16] D. P. Woodruff and P. Zhong. Distributed low rank approximation of implicit functions
of a matrix. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE),
pages 847–858, May 2016.

7

	Leverage Score Sampling (continued)
	Fast Computation of Leverage Scores
	Distributed low rank approximation
	Communication Model
	Communication cost of low rank approximation
	Prior work on distributed low rank approximation
	Constructing a coreset FSS13

