
Sublinear Time Orthogonal Tensor Decomposition∗

Zhao Song‡ David P. Woodruff† Huan Zhang?
‡Dept. of Computer Science, University of Texas, Austin, USA

†IBM Almaden Research Center, San Jose, USA
?Dept. of Electrical and Computer Engineering, University of California, Davis, USA
zhaos@utexas.edu, dpwoodru@us.ibm.com, ecezhang@ucdavis.edu

Abstract

A recent work (Wang et. al., NIPS 2015) gives the fastest known algorithms
for orthogonal tensor decomposition with provable guarantees. Their algorithm
is based on computing sketches of the input tensor, which requires reading the
entire input. We show in a number of cases one can achieve the same theoretical
guarantees in sublinear time, i.e., even without reading most of the input tensor.
Instead of using sketches to estimate inner products in tensor decomposition
algorithms, we use importance sampling. To achieve sublinear time, we need
to know the norms of tensor slices, and we show how to do this in a number of
important cases. For symmetric tensors T =

∑k
i=1 λiu

⊗p
i with λi > 0 for all i, we

estimate such norms in sublinear time whenever p is even. For the important case
of p = 3 and small values of k, we can also estimate such norms. For asymmetric
tensors sublinear time is not possible in general, but we show if the tensor slice
norms are just slightly below ‖T ‖F then sublinear time is again possible. One of
the main strengths of our work is empirical - in a number of cases our algorithm is
orders of magnitude faster than existing methods with the same accuracy.

1 Introduction

Tensors are a powerful tool for dealing with multi-modal and multi-relational data. In recommendation
systems, often using more than two attributes can lead to better recommendations. This could occur,
for example, in Groupon where one could look at users, activities, and time (season, time of day,
weekday/weekend, etc.), as three attributes to base predictions on (see [13] for a discussion). Similar
to low rank matrix approximation, we seek a tensor decomposition to succinctly store the tensor and
to apply it quickly. A popular decomposition method is the canonical polyadic decomposition, i.e.,
the CANDECOMP/PARAFAC (CP) decomposition, where the tensor is decomposed into a sum of
rank-1 components [9]. We refer the reader to [23], where applications of CP including data mining,
computational neuroscience, and statistical learning for latent variable models are mentioned.

A natural question, given the emergence of large data sets, is whether such decompositions can be
performed quickly. There are a number of works on this topic [17, 16, 7, 11, 10, 4, 20]. Most related
to ours are several recent works of Wang et al. [23] and Tung et al. [18], in which it is shown how to
significantly speed up this decomposition for orthogonal tensor decomposition using the randomized
technique of linear sketching [15]. In this work we also focus on orthogonal tensor decomposition.
The idea in [23] is to create a succinct sketch of the input tensor, from which one can then perform
implicit tensor decomposition by approximating inner products in existing decomposition methods.

Existing methods, like the power method, involve computing the inner product of a vector, which is
now a rank-1 matrix, with another vector, which is now a slice of a tensor. Such inner products can
∗Full version appears on arXiv, 2017. ‡Work done while visiting IBM Almaden.
†Supported by XDATA DARPA Air Force Research Laboratory contract FA8750-12-C-0323.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

be approximated much faster by instead computing the inner product of the sketched vectors, which
have significantly lower dimension. One can also replace the sketching with sampling to approximate
inner products; we discuss some sampling schemes [17, 4] below and compare them to our work.
1.1 Our Contributions
We show in a number of important cases, one can achieve the same theoretical guarantees in the
work of Wang et al. [23] (which was applied later by Tung et al. [18]), in sublinear time, that is,
without reading most of the input tensor. While previous work needs to walk through the input at
least once to create a sketch, we show one can instead perform importance sampling of the tensor
based on the current iterate, together with reading a few entries of the tensor which help us learn the
norms of tensor slices. We use a version of `2-sampling for our importance sampling. One source of
speedup in our work and in Wang et al. [23] comes from approximating inner products in iterations
in the robust tensor power method (see below). To estimate 〈u, v〉 for n-dimensional vectors u and v,
their work computes sketches S(u) and S(v) and approximates 〈u, v〉 ≈ 〈S(u), S(v)〉. Instead, if
one has u, one can sample coordinates i proportional to u2i , which is known as `2-sampling [14, 8].
One estimates 〈u, v〉 as vi‖u‖22

ui
, which is unbiased and has variance O(‖u‖22‖v‖22). These guarantees

are similar to those using sketching, though the constants are significantly smaller (see below), and
unlike sketching, one does not need to read the entire tensor to perform such sampling.

Symmetric Tensors: As in [23], we focus on orthogonal tensor decomposition of symmetric tensors,
though we explain the extension to the asymmetric case below. Symmetric tensors arise in engineering
applications, for example, to represent the symmetric tensor field of stress, strain, and anisotropic
conductivity. Another example is diffusion MRI in which one uses symmetric tensors to describe
diffusion in the brain or other parts of the body. In spectral methods symmetric tensors are exactly
those that come up in Latent Dirichlet Allocation problems. Although one can symmetrize a tensor
using simple matrix operations (see, e.g., [1]), we cannot do this in sublinear time.

In orthogonal tensor decompostion of a symmetric matrix, there is an underlying n× n · · ·n tensor
T∗ =

∑k
i=1 λiv

⊗p
i , and the input tensor is T = T∗+E, where ‖E ‖2 ≤ ε. We have λ1 >

λ2 > · · · > λk > 0 and that {vi}ki=1 is a set of orthonormal vectors. The goal is to reconstruct
approximations v̂i to the vectors vi, and approximations λ̂i to the λi. Our results naturally generalize
to tensors with different lengths in different dimensions. For simplicity, we first focus on order p = 3.

In the robust tensor power method [1], one generates a random initial vector u, and performs T
update steps û = T(I, u, u)/‖T(I, u, u)‖2, where

T(I, u, u) =
[n∑
j=1

n∑
`=1

T1,j,` uju`,

n∑
j=1

n∑
`=1

T2,j,` uju`, · · · ,
n∑
j=1

n∑
`=1

Tn,j,` uju`

]
.

The matrices T1,∗,∗, . . . ,Tn,∗,∗ are referred to as the slices. The vector û typically converges to the
top eigenvector in a small number of iterations, and one often chooses a small number L of random
initial vectors to boost confidence. Successive eigenvectors can be found by deflation. The algorithm
and analysis immediately extend to higher order tensors.

We use `2-sampling to estimate T(I, u, u). To achieve the same guarantees as in [23], for typical
settings of parameters (constant k and several eigenvalue assumptions) naïvely one needs to take
O(n2) `2-samples from u for each slice in each iteration, resulting in Ω(n3) time and destroying our
sublinearity. We observe that if we additionally knew the squared norms ‖T1,∗,∗ ‖2F , . . . , ‖Tn,∗,∗ ‖2F ,

then we could take O(n2) `2-samples in total, where we take ‖Ti,∗,∗ ‖
2
F

‖T ‖2F
·O(n2) `2-samples from the

i-th slice in expectation. Perhaps in some applications such norms are known or cheap to compute in
a single pass, but without further assumptions, how can one obtain such norms in sublinear time?

If T is a symmetric tensor, then Tj,j,j =
∑k
i=1 λiv

3
i,j + Ej,j,j . Note that if there were no noise,

then we could read off approximations to the slice norms, since ‖Tj,∗,∗ ‖2F =
∑k
i=1 λ

2
i v

2
i,j , and so

T
2/3
j,j,j is an approximation to ‖Tj,∗,∗ ‖2F up to factors depending on k and the eigenvalues. However,

there is indeed noise. To obtain non-trivial guarantees, the robust tensor power method assumes
‖E ‖2 = O(1/n), where

‖E ‖2 = sup
‖u‖2=‖v‖2=‖w‖2=1

E(u, v, w) = sup
‖u‖2=‖v‖2=‖w‖2=1

n∑
i=1

n∑
j=1

n∑
k=1

Ei,j,k uivjwk,

2

which in particular implies |Ej,j,j | = O(1/n). This assumption comes from the Θ(1/
√
n)-

correlation of the random initial vector to v1. This noise bound does not trivialize the problem;
indeed, Ej,j,j can be chosen adversarially subject to |Ej,j,j | = O(1/n), and if the vi were random
unit vectors and the λi and k were constant, then

∑k
i=1 λiv

3
i,j = O(1/n3/2), which is small enough

to be completely masked by the noise Ej,j,j . Nevertheless, there is a lot of information about the
slice norms. Indeed, suppose k = 1, λ1 = Θ(1), and ‖T ‖F = 1. Then Tj,j,j = Θ(v31,j) + Ej,j,j ,
and one can show ‖Tj,∗,∗ ‖2F = λ21v

2
1,j ± O(1/n). Again using that |Ej,j,j | = O(1/n), this im-

plies ‖Tj,∗,∗ ‖2F = ω(n−2/3) if and only if Tj,j,j = ω(1/n), and therefore one would notice this
by reading Tj,j,j . There can only be o(n2/3) slices j for which ‖Tj,∗,∗ ‖2F = ω(n−2/3), since
‖T ‖2F = 1. Therefore, for each of them we can afford to take O(n2) `2-samples and still have an
O(n2+2/3) = o(n3) sublinear running time. The remaining slices all have ‖Tj,∗,∗ ‖2F = O(n−2/3),
and therefore if we also take O(n1/3) `2-samples from every slice, we will also estimate the contribu-
tion to T(I, u, u) from these slices well. This is also a sublinear O(n2+1/3) number of samples.

While the previous paragraph illustrates the idea for k = 1, for k = 2 we need to read more than the
Tj,j,j entries to decide how many `2-samples to take from a slice. The analysis is more complicated
because of sign cancellations. Even for k = 2 we could have Tj,j,j = λ1v

3
1,j + λ2v

3
2,j + Ej,j,j ,

and if v1,j = −v2,j then we may not detect that ‖Tj,∗,∗ ‖2F is large. We fix this by also reading the
entries Ti,j,j ,Tj,i,j , and Tj,j,i for every i and j. This is still only O(n2) entries and so we are still
sublinear time. Without additional assumptions, we only give a formal analysis of this for k ∈ {1, 2}.
More importantly, if instead of third-order symmetric tensors we consider p-th order symmetric
tensors for even p, we do not have such sign cancellations. In this case we do not have any restrictions
on k for estimating slice norms. One does need to show after deflation, the slice norms can still be
estimated; this holds because the eigenvectors and eigenvalues are estimated sufficiently well.

We also give several per-iteration optimizations of our algorithm, based on careful implementations
of generating a sorted list of random numbers and random permutations. We find empirically (see
below) that we are much faster per iteration than previous sketching algorithms, in addition to not
having to read the entire input tensor in a preprocessing step.

Asymmetric Tensors: For asymmetric tensors, e.g., 3rd-order tensors of the form
∑k
i=1 λiui⊗ vi⊗

wi, it is impossible to achieve sublinear time in general, since it is hard to distinguish T = ei⊗ej⊗ek
for random i, j, k ∈ {1, 2, . . . , n} from T = 0⊗3. We make a necessary and sufficient assumption
that all the entries of the ui are less than n−γ for an arbitrarily small constant γ > 0. In this case, all
slice norms are o(n−γ) and by taking O(n2−γ) samples from each slice we achieve sublinear time.
We can also apply such an assumption to symmetric tensors.

Empirical Results: One of the main strengths of our work is our empirical results. In each iteration
we approximate T(I, u, u) a total of B times independently and take the median to increase our
confidence. In the notation of [23], B corresponds to the number of independent sketches used.
While the median works empirically, there are some theoretical issues with it discussed in Remark 4.
Also let b be the total number of `2-samples we take per iteration, which corresponds to the sketch
size in the notation of [23]. We found that empirically we can set B and b to be much smaller than
that in [23] and achieve the same error guarantees. One explanation for this is that the variance bound
we obtain via importance sampling is a factor of 43 = 64 smaller than in [23], and for p-th order
tensors, a factor of 4p smaller.

To give an idea of how much smaller we can set b andB, to achieve roughly the same squared residual
norm error on the synthetic data sets of dimension 1200 for finding a good rank-1 approximation,
the algorithm of [23] would need to set parameters b = 216 and B = 50, whereas we can set
b = 10× 1200 and B = 5. Our running time is 2.595 seconds and we have no preprocessing time,
whereas the algorithm of [23] has a running time of 116.3 seconds and 55.34 seconds of preprocessing
time. We refer the reader to Table 1 in Section 3. In total we are over 50 times faster.

We also demonstrate our algorithm in a real-world application using real datasets, even when the
datasets are sparse. Namely, we consider a spectral algorithm for Latent Dirichlet Allocation [1, 2]
which uses tensor decomposition as its core computational step. We show a significant speedup can
be achieved on tensors occurring in applications such as LDA, and we refer the reader to Table 2 in

3

Section 3. For example, on the wiki [23] dataset with a tensor dimension of 200, we run more than 5
times faster than the sketching-based method.

Previous Sampling Algorithms: Previous sampling-based schemes of [17, 4] do not achieve our
guarantees, because [17] uses uniform sampling, which does not work for tensors with spiky elements,
while the non-uniform sampling in [4] requires touching all of the entries in the tensor and making
two passes over it.
Notation Let [n] denote {1, 2, . . . , n}. Let ⊗ denote the outer product, and u⊗3 = u ⊗
u ⊗ u. Let T ∈ Rnp , where p is the order of tensor T and n is the dimension of tensor
T. Let 〈A,B〉 denote the entry-wise inner product between two tensors A,B ∈ Rnp , e.g.,
〈A,B〉 =

∑n
i1=1

∑n
i2=1 · · ·

∑n
ip=1 Ai1,i2,··· ,ip ·Bi1,i2,··· ,ip . For a tensor A ∈ Rnp , ‖A ‖F =

(
∑n
i1=1

∑n
i2=1 · · ·

∑n
ip=1 A

2
i1,··· ,ip)

1
2 . For random variable X let E[X] denote its expectation of X

and V[X] its variance (if these quantities exist).

2 Main Results
We explain the details of our main results in this section. First, we state the importance sampling
lemmas for our tensor application. Second, we explain how to quickly produce a list of random
tuples according to a certain distribution needed by our algorithm. Third, we combine the first and
the second parts to get a fast way of approximating tensor contractions, which are used as subroutines
in each iteration of the robust tensor power method. We then provide our main theoretical results, and
how to estimate the slice norms needed by our main algorithm.
Importance sampling lemmas. Approximating an inner product is a simple application of impor-
tance sampling. Tensor contraction T(u, v, w) can be regarded as the inner product between two
n3-dimensional vectors, and thus importance sampling can be applied. Lemma 1 suggests that we can
take a few samples according to their importance, e.g., we can sample Ti,j,k uivjwk with probability
|uivjwk|2/‖u‖22‖v‖22‖w‖22. As long as the number of samples is large enough, it will approximate
the true tensor contraction

∑
i

∑
j

∑
kTi,j,k uivjwk with small variance after a final rescaling.

Lemma 1. Suppose random variable X = Ti,j,k uivjwk/(piqjrk) with probability piqjrk where
pi = |ui|2/‖u‖22, qj = |vj |2/‖v‖22, and rk = |wk|2/‖w‖22, and we take L i.i.d. samples of X ,
denoted X1, X2, · · · , XL. Let Y = 1

L

∑L
`=1X`. Then (1) E[Y] = 〈T, u ⊗ v ⊗ w〉, and (2)

V[Y] ≤ 1
L‖T ‖

2
F · ‖u⊗ v ⊗ w‖2F .

Similarly, we also have importance sampling for each slice Ti,∗,∗, i.e., “face” of T.

Lemma 2. For all i ∈ [n], suppose random variable Xi = Ti,j,k vjwk/(qjrk) with probability
qjrk, where qj = |vj |2/‖v‖22 and rk = |wk|2/‖w‖22, and we take Li i.i.d. samples of Xi, say
Xi

1, X
i
2, · · · , Xi

Li
. Let Y i = 1

Li

∑L
`=1X

i
` . Then (1) E[Y i] = 〈Ti,∗,∗, v ⊗ w〉 and (2) V[Y i] ≤

1
Li
‖Ti,∗,∗ ‖2F ‖v ⊗ w‖2F .

Generating importance samples in linear time. We need an efficient way to sample indices of a
vector based on their importance. We view this problem as follows: imagine [0, 1] is divided into z
“bins” with different lengths corresponding to the probability of selecting each bin, where z is the
number of indices in a probability vector. We generate m random numbers uniformly from [0, 1] and
see which bin each random number belongs to. If a random number is in bin i, we sample the i-th
index of a vector. There are known algorithms [6, 19] to solve this problem in O(z +m) time.

We give an alternative algorithm GENRANDTUPLES. Our algorithm combines Bentley and Saxe’s
algorithm [3] for efficiently generating m sorted random numbers in O(m) time, and Knuth’s
shuffling algorithm [12] for generating a random permutation of [m] in O(m) time. We use the
notation CUMPROB(v, w) and CUMPROB(u, v, w) for the algorithm creating the distributions on
Rn2

and Rn3

of Lemma 2 and Lemma 1, respectively. We note that naïvely applying previous
algorithms would require z = O(n2) and z = O(n3) time to form these two distributions, but we
can take O(m) samples from them implicitly in O(n+m) time.

Fast approximate tensor contractions. We propose a fast way to approximately compute tensor
contractions T(I, v, w) and T(u, v, w) with a sublinear number of samples of T, as shown in
Alogrithm 1 and Algorithm 2. Naïvely computing tensor contractions using all of the entries of T
gives an exact answer but could take n3 time. Also, to keep our algorithm sublinear time, we never
explicitly compute the deflated tensor; rather we represent it implicitly and sample from it.

4

Algorithm 1 Subroutine for approximate tensor
contraction T(I, v, w)

1: function APPROXTIVW(T, v, w, n,B, {b̂i})
2: q̃, r̃ ← CUMPROB(v, w)
3: for d = 1→ B do
4: L ← GENRANDTUPLES(

∑n
i=1 b̂i, q̃, r̃)

5: for i = 1→ n do
6: s

(d)
i ← 0

7: for ` = 1→ b̂i do
8: (j, k)← L(i−1)b+`

9: s
(d)
i ← s

(d)
i + 1

qjrk
Ti,j,k ·uj · uk

10: T̂(I, v, w)i ← median
d∈[B]

s
(d)
i /b̂i, ∀i ∈ [n]

11: return T̂(I, v, w)

Algorithm 2 Subroutine for approximate tensor
contraction T(u, v, w)

1: function APPROXTUVW(T, u, v, w, n,B, b̂)
2: p̃, q̃, r̃ ← CUMPROB(u, v, w)
3: for d = 1→ B do
4: L ← GENRANDTUPLES(̂b, p̃, q̃, r̃).
5: s(d) ← 0
6: for (i, j, k) ∈ L do
7: s(d) ← s(d) + 1

piqjrk
Ti,j,k ·ui · uj · uk

8: s(d) ← s(d)/b̂

9: T̂(u, v, w)← median
d∈[B]

s(d)

10: return T̂(u, v, w)

The following theorem gives the error bounds of APPROXTIVW and APPROXTUVW (in Algorithm 1
and 2). Let b̂i be the number samples we take from slice i ∈ [n] in APPROXTIVW, and let b̂ denote
the total number of samples in our algorithm.
Theorem 3. For T ∈ Rn×n×n and u ∈ Rn with ‖u‖2 = 1, define the number ε1,T(u) =

T̂(u, u, u) − T(u, u, u) and the vector ε2,T(u) = T̂(I, u, u) − T(I, u, u). For any b > 0, if
b̂i & b‖Ti,∗,∗ ‖2F /‖T ‖2F then the following bounds hold 1:

E[|ε1,T(u)|2] = O(‖T ‖2F /b), and E[‖ε2,T(u)‖22] = O(n‖T ‖2F /b).
In addition, for any fixed ω ∈ Rn with ‖ω‖2 = 1,

E[〈ω, ε2,T (u)〉2] = O(‖T ‖2F /b). (1)

Eq. (1) can be obtained by observing that each random variable [ε2,T(u)]i is independent and so

V[〈ω, ε2,T(u)〉] =
∑n
i=1 ω

2
i
‖Ti,∗,∗ ‖2F

b̂i
. (

∑n
i=1 ω

2
i)
‖T ‖2F
b =

‖T ‖2F
b .

Remark 4. In [23], the coordinate-wise median of B estimates to the T(I, v, w) is used to boost
the success probability. There appears to be a gap [21] in their argument as it is unclear how to
achieve (1) after taking a coordinate-wise median, which is (7) in Theorem 1 of [23]. To fix this, we
instead pay a factor proportional to the number of iterations in Algorithm 3 in the sample complexity
b̂. Since we have expectation bounds on the quantities in Theorem 3, we can apply a Markov bound
and a union bound across all iterations. This suffices for our main theorem concerning sublinear time
below. One can obtain high probability bounds by running Algorithm 3 multiple times independently,
and taking coordinate-wise medians of the output eigenvectors. Empirically, our algorithm works
even if we take the median in each iteration, which is done in line 10 in Algorithm 1.

Replacing Theorem 1 in [23] by our Theorem 3, the rest of the analysis in [23] is unchanged. Our
Algorithm 3 is the same as the sketching-based robust tensor power method in [23], except for lines
10, 12, 15, and 17, where the sketching-based approximate tensor contraction is replaced by our
importance sampling procedures APPROXTUVW and APPROXTIVW. Rather than use Theorem 2 of
Wang et al. [23], the main theorem concerning the correctness of the robust tensor decomposition
algorithm, we use a recent improvement of it by Wang and Anandkumar in Theorems 4.1 and 4.2
of [22], which states general guarantees for any algorithm satisfying per iteration noise guarantees.
These theorems also remove many of the earlier eigenvalue assumptions in Theorem 2 of [23].

Theorem 5. (Theorem 4.1 and 4.2 of [22]), Suppose T = T∗+E, where T =
∑k
i=1 λiv

⊗3
i with

λi > 0 and orthonormal basis vectors {v1, . . . , vk} ⊆ Rn, n ≥ k. Let λmax, λmin be the largest and
smallest values in {λi}ki=1 and {λ̂i, v̂i}ki=1 be outputs of the robust tensor power method. There exist
absolute constants K0, C0, C1, C2, C3 > 0 such that if E satisfies

‖E(I, u
(τ)
t , u

(τ)
t)‖2 ≤ ε, |E(vi, u

(τ)
t , u

(τ)
t)| ≤ min{ε/

√
k,C0λmin/n}, (2)

1For two functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp. ≥) for some
absolute constant C.

5

Algorithm 3 Our main algorithm

1: function IMPORTANCESAMPLINGRB(T, n,B, b)
2: if si are known, where ‖Ti,∗,∗ ‖2F . si then
3: b̂i ← b · si/‖T ‖2F ,∀i ∈ [n]
4: else
5: b̂i ← b/n, ∀i ∈ [n]

6: b̂ =
∑n
i=1 b̂i

7: for ` = 1→ L do
8: u(`) ←INITIALIZATION
9: for t = 1→ T do

10: u(`) ← APPROXTIVW(T, u(`), u(`), n,B, {b̂i})
11: u(`) ← u(`)/‖u(`)‖2
12: λ(`) ← APPROXTUVW(T, u(`), u(`), u(`), n,B, b̂)

13: `∗ ← arg max`∈[L] λ
(`), u∗ ← u(`

∗)

14: for t = 1→ T do
15: u∗ ← APPROXTIVW(T, u∗, u∗, n,B, {b̂i})
16: u∗ ← u∗/‖u∗‖2
17: λ∗ ← APPROXTUVW(T, u∗, u∗, u∗, n,B, b̂)
18: return λ∗, u∗

200 400 600 800 1000 1200
tensor dimension n

0

20

40

60

80

100

R
un

ni
ng

tim
e

(s
ec

on
ds

)

Sketching
Sampling without pre-scanning
Sampling with pre-scanning

(a) Sketching v.s. importance sampling

200 400 600 800 1000 1200
tensor dimension n

0

20

40

60

80

P
re

pr
oc

es
si

ng
tim

e
(s

ec
on

ds
)

Sketching
Sampling without pre-scanning
Sampling with pre-scanning

(b) Preprocessing time
Figure 1: Running time with growing dimension

for all i ∈ [k], t ∈ [T], and τ ∈ [L] and furthermore

ε ≤ C1 · λmin/
√
k, T = Ω(log(λmaxn/ε)), L ≥ max{K0, k} log(max{K0, k}),

then with probability at least 9/10, there exists a permutation π : [k]→ [k] such that

|λi − λ̂π(i)| ≤ C2ε, ‖vi − v̂π(i)‖2 ≤ C3ε/λi, ∀i = 1, · · · , k.

Combining the previous theorem with our importance sampling analysis, we obtain:

Theorem 6 (Main). Assume the notation of Theorem 5. For each j ∈ [k], suppose we take b̂(j) =∑n
i=1 b̂

(j)
i samples during the power iterations for recovering λ̂j and v̂j , the number of samples

for slice i is b̂(j)i & bkT‖[T−
∑j−1
l=1 λ̂lv̂

⊗3
l]i,∗,∗‖2F /‖T−

∑j−1
l=1 λ̂lv̂

⊗3
l ‖2F where b & n‖T ‖2F /ε2 +

‖T ‖2F /min{ε/
√
k, λmin/n}2. Then the output guarantees of Theorem 5 hold for Algorithm 3 with

constant probability. Our total time is O(LTk2b̂) and the space is O(nk), where b̂ = maxj∈[k] b̂
(j).

In Theorem 3, if we require b̂i = b‖Ti,∗,∗ ‖2F /‖T ‖2F , we need to scan the entire tensor to compute
‖Ti,∗,∗ ‖2F , making our algorithm not sublinear. With the following mild assumption in Theorem 7,
our algorithm is sublinear when sampling uniformly (̂bi = b/n) without computing ‖Ti,∗,∗ ‖2F :
Theorem 7 (Bounded slice norm). There is a constant α > 0, a constant β ∈ (0, 1] and a sufficiently
small constant γ > 0, such that, for any 3rd order tensor T = T∗+E ∈ Rn3

with rank(T∗) ≤ nγ ,
λk ≥ 1/nγ , if ‖Ti,∗,∗ ‖2F ≤ 1

nβ
‖T ‖2F for all i ∈ [n], and E satisfies (2), then Algorithm 3 runs in

O(n3−α) time.

The condition β ∈ (0, 1] is a practical one. When β = 1, all tensor slices have equal Frobenius
norm. The case β = 0 only occurs when ‖Ti,∗,∗ ‖F = ‖T ‖F ; i.e., all except one slice is zero. This
theorem can also be applied to asymmetric tensors, since the analysis in [23] can be extended to them.

For certain cases, we can remove the bounded slice norm assumption. The idea is to take a sublinear
number of samples from the tensor to obtain upper bounds on all slice norms. In the full version,
we extend the algorithm and analysis of the robust tensor power method to p > 3 by replacing
contractions T(u, v, w) and T(I, v, w) with T(u1, u2, · · · , up) and T(I, u2, · · · , up). As outlined
in Section 1, when p is even, because we do not have sign cancellations we can show:
Theorem 8 (Even order). There is a constant α > 0 and a sufficiently small constant γ > 0,
such that, for any even order-p tensor T = T∗+E ∈ Rnp with rank(T∗) ≤ nγ , p ≤ nγ and
λk ≥ 1/nγ . For any sufficiently large constant c0, there exists a sufficiently small constant c > 0, for
any ε ∈ (0, cλk/(c0p

2kn(p−2)/2)) if E satisfies ‖E ‖2 ≤ ε/(c0
√
n), Algorithm 3 runs in O(np−α)

time.

6

As outlined in Section 1, for p = 3 and small k we can take sign considerations into account:
Theorem 9 (Low rank). There is a constant α > 0 and a sufficiently small constant γ > 0 such that
for any symmetric tensor T = T∗+E ∈ Rn3

with E satisfying (2), rank(T∗) ≤ 2, and λk ≥ 1/nγ ,
then Algorithm 3 runs in O(n3−α) time.

3 Experiments
3.1 Experiment Setup and Datasets
Our implementation shares the same code base 1 as the sketching-based robust tensor power method
proposed in [23]. We ran our experiments on an i7-5820k CPU with 64 GB of memory in single-
threaded mode. We ran two versions of our algorithm: the version with pre-scanning scans the full
tensor to accurately measure per-slice Frobenius norms and make samples for each slice in proportion
to its Frobenius norm in APPROXTIVW; the version without pre-scanning assumes that the Frobenius
norm of each slice is bounded by 1

nα ‖T ‖
2
F , α ∈ (0, 1] and uses b/n samples per slice, where b is

the total number of samples our algorithm makes, analogous to the sketch length b in [23].

Synthetic datasets. We first generated an orthonormal basis {vi}ki=1 and then computed the synthetic
tensor as T∗ =

∑k
i=1 λiv

⊗3
i , with λ1 ≥ · · · ≥ λk. Then we normalized T∗ such that ‖T∗ ‖F = 1,

and added a symmetric Gaussian noise tensor E where Eijl ∼ N (0, σ
n1.5) for i ≤ j ≤ l. Then

σ controls the noise-to-signal ratio and we kept it as 0.01 in all our synthetic tensors. For the
eigenvalues λi, we generated three different decays: inverse decay λi = 1

i , inverse square decay
λi = 1

i2 , and linear decay λi = 1− i−1
k . We also set k = 100 when generating tensors, since higher

rank eigenvalues were almost indistinguishable from the added noise. To show the scalability of our
algorithm, we generated tensors with different dimensions: n = 200, 400, 600, 800, 1000, 1200.

Real-life datasets. Latent Dirichlet Allocation [5] (LDA) is a powerful generative statistical model
for topic modeling. A spectral method has been proposed to solve LDA models [1, 2] and the most
critical step in spectral LDA is to decompose a symmetric K × K × K tensor with orthogonal
eigenvectors, where K is the number of modeled topics. We followed the steps in [1, 18] and built
a K ×K ×K tensor TLDA for each dataset, and then ran our algorithms directly on TLDA to see
how it works on those tensors in real applications. In our experiments we keep K = 200. We used
the two same datasets as the previous work [23]: Wiki and Enron, as well as four additional real-life
datasets. We refer the reader to our GitHub repository 2 for our code and full results.

3.2 Results
We considered running time and the squared residual norm to evaluate the performance of our
algorithms. Given a tensor T ∈ Rn3

, let ‖T−
∑k
i=1 λiui ⊗ vi ⊗ wi‖2F denote the squared residual

norm where {(λ1, u1, v1, w1), · · · , (λk, uk, vk, wk)} are the eigenvalue/eigenvectors obtained by the
robust power method. To reduce the experiment time we looked only for the first eigenvalue and
eigenvector, but our algorithm is capable of finding any number of eigenvalues/eigenvectors. We list
the pre-scanning time as preprocessing time in tables. It only depends on the tensor dimension n and
unlike the sketching based method, it does not depend on b. Pre-scanning time is very short, because
it only requires one pass of sequential access to the tensor which is very efficient on hardware.

Sublinear time verification. Our theoretical result suggests the total number of samples bno-prescan

for our algorithm without pre-scanning is n1−α(α ∈ (0, 1]) times larger than bprescan for our algorithm
with pre-scanning. But in experiments we observe that when bno-prescan = bprescan both algorithms
achieve very similar accuracy, indicating that in practice α ≈ 1.

Synthetic datasets. We ran our algorithm on a large number of synthetic tensors with different
dimensions and different eigengaps. Table 1 shows results for a tensor with 1200 dimensions with
100 non-zero eigenvalues decaying as λi = 1

i2 . To reach roughly the same residual norm, the running
time of our algorithm is over 50 times faster than that of the sketching-based robust tensor power
method, thanks to the fact that we usually need a relatively small B and b to get a good residual, and
the hidden constant factor in the running time of sampling is much smaller than that of sketching.

Our algorithm scales well on large tensors due to its sub-linear nature. In Figure 1(a), for the
sketching-based method we kept b = 216, B = 30 for n ≤ 800 and B = 50 for n > 800 (larger n
requires more sketches to observe a reasonable recovery). For our algorithm, we chose b and B such

1http://yining-wang.com/fftlda-code.zip
2https://github.com/huanzhang12/sampling_tensor_decomp/

7

http://yining-wang.com/fftlda-code.zip
https://github.com/huanzhang12/sampling_tensor_decomp/

that for each n, our residual norm is on-par or better than the sketching-based method. Our algorithm
needs much less time than the sketching-based one over all dimensions. Another advantage of our
algorithm is that there are zero or very minimal preprocessing steps. In Figure 1(b), we can see how
the preprocessing time grows to prepare sketches when the dimension increases. For applications
where only the first few eigenvectors are needed, the preprocessing time could be a large overhead.

Real-life datasets Due to the small tensor dimension (200), our algorithm shows less speedup than
the sketching-based method. But it is still 2 ∼ 6 times faster in each of the six real-life datasets,
achieving the same squared residual norm. Table 2 reports results for one of the datasets in many
different settings of (b, B). Like in synthetic datasets, we also empirically observe that the constant b
in importance sampling is much smaller than the b used in sketching to get the same error guarantee.

Sketching based robust power method: n = 1200, λi = 1
i2

Squared residual norm Running time (s) Preprocessing time (s)
b B 10 30 50 10 30 50 10 30 50

210 1.010 1.014 0.5437 0.6114 2.423 4.374 5.361 15.85 26.08
212 1.020 0.2271 0.1549 1.344 4.563 8.022 5.978 17.23 28.31
214 0.1513 0.1097 0.1003 4.928 15.51 27.87 8.788 24.72 40.4
216 0.1065 0.09242 0.08936 22.28 69.7 116.3 13.76 34.74 55.34

Importance sampling based robust power method (without prescanning): n = 1200, λi = 1
i2

Squared residual norm Running time (s) Preprocessing time (s)
b B 10 30 50 10 30 50 10 30 50

5n 0.08684 0.08637 0.08639 2.595 8.3 15.46 0.0 0.0 0.0
10n 0.08784 0.08671 0.08627 4.42 13.68 25.84 0.0 0.0 0.0
20n 0.08704 0.08700 0.08618 8.02 24.51 46.37 0.0 0.0 0.0
30n 0.08697 0.08645 0.08625 11.63 35.35 66.71 0.0 0.0 0.0
40n 0.08653 0.08664 0.08611 15.19 46.12 87.24 0.0 0.0 0.0

Importance sampling based robust power method (with prescanning): n = 1200, λi = 1
i2

Squared residual norm Running time (s) Preprocessing time (s)
b B 10 30 50 10 30 50 10 30 50

5n 0.08657 0.08684 0.08636 3.1 10.47 18 2.234 2.236 2.234
10n 0.08741 0.08677 0.08668 5.427 17.43 30.26 2.232 2.233 2.233
20n 0.08648 0.08624 0.08634 9.843 31.42 54.49 2.226 2.226 2.226
30n 0.08635 0.08634 0.08615 14.33 45.4 63.85 2.226 2.224 2.227
40n 0.08622 0.08652 0.08619 18.68 59.32 82.83 2.225 2.225 2.225

Table 1: Synthetic tensor decomposition using the robust tensor power method. We use an order-3 normalized
dense tensor with dimension n = 1200 with σ = 0.01 noise added. We run sketching-based and sampling-based
methods to find the first eigenvalue and eigenvector by setting L = 50, T = 30 and varying B and b.

Sketching based robust power method: dataset wiki, ‖T‖2F = 2.135e+07
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
210 2.091e+07 1.951e+07 0.2346 0.8749 0.1727 0.2535
211 1.971e+07 1.938e+07 0.4354 1.439 0.2408 0.3167
212 1.947e+07 1.930e+07 1.035 2.912 0.4226 0.4275
213 1.931e+07 1.927e+07 2.04 5.94 0.5783 0.6493
214 1.928e+07 1.926e+07 4.577 13.93 1.045 1.121

Importance sampling based robust power method (without prescanning): dataset wiki, ‖T‖2F = 2.135e+07
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 1.931e+07 1.928e+07 0.3698 1.146 0.0 0.0

10n 1.931e+07 1.929e+07 0.5623 1.623 0.0 0.0
20n 1.935e+07 1.926e+07 0.9767 2.729 0.0 0.0
30n 1.929e+07 1.926e+07 1.286 3.699 0.0 0.0
40n 1.928e+07 1.925e+07 1.692 4.552 0.0 0.0

Importance sampling based robust power method (with prescanning): dataset wiki, ‖T‖2F = 2.135e+07
Squared residual norm Running time (s) Preprocessing time (s)

b B 10 30 10 30 10 30
5n 1.931e+07 1.930e+07 0.4376 1.168 0.01038 0.01103

10n 1.928e+07 1.930e+07 0.6357 1.8 0.0104 0.01044
20n 1.931e+07 1.927e+07 1.083 2.962 0.01102 0.01042
30n 1.929e+07 1.925e+07 1.457 4.049 0.01102 0.01043
40n 1.929e+07 1.925e+07 1.905 5.246 0.01105 0.01105

Table 2: Tensor decomposition in LDA on the wiki dataset. The tensor is generated by spectral LDA with
dimension 200× 200× 200. It is symmetric but not normalized. We fix L = 50, T = 30 and vary B and b.

8

References
[1] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for

learning latent variable models. JMLR, 15(1):2773–2832, 2014.
[2] A. Anandkumar, Y.-k. Liu, D. J. Hsu, D. P. Foster, and S. M. Kakade. A spectral algorithm for

latent dirichlet allocation. In NIPS, pages 917–925, 2012.
[3] J. L. Bentley and J. B. Saxe. Generating sorted lists of random numbers. ACM Transactions on

Mathematical Software (TOMS), 6(3):359–364, 1980.
[4] S. Bhojanapalli and S. Sanghavi. A new sampling technique for tensors. CoRR, abs/1502.05023,

2015.
[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3:993–1022, 2003.
[6] K. Bringmann and K. Panagiotou. Efficient sampling methods for discrete distributions. In

International Colloquium on Automata, Languages, and Programming, pages 133–144. Springer,
2012.

[7] J. H. Choi and S. Vishwanathan. Dfacto: Distributed factorization of tensors. In NIPS, pages
1296–1304, 2014.

[8] K. L. Clarkson, E. Hazan, and D. P. Woodruff. Sublinear optimization for machine learning. J.
ACM, 59(5):23, 2012.

[9] R. A. Harshman. Foundations of the parafac procedure: Models and conditions for an explana-
tory multi-modal factor analysis. 16(1):84, 1970.

[10] F. Huang, N. U. N, M. U. Hakeem, P. Verma, and A. Anandkumar. Fast detection of overlapping
communities via online tensor methods on gpus. CoRR, abs/1309.0787, 2013.

[11] U. Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor: scaling tensor analysis
up by 100 times - algorithms and discoveries. In KDD, pages 316–324, 2012.

[12] D. E. Knuth. The art of computer programming. vol. 2: Seminumerical algorithms. addisonwes-
ley. Reading, MA, pages 229–279, 1969.

[13] A. Moitra. Tensor decompositions and their applications, 2014.
[14] M. Monemizadeh and D. P. Woodruff. 1-pass relative-error lp-sampling with applications. In

SODA, pages 1143–1160, 2010.
[15] N. Pham and R. Pagh. Fast and scalable polynomial kernels via explicit feature maps. In KDD,

pages 239–247, 2013.
[16] A. H. Phan, P. Tichavský, and A. Cichocki. Fast alternating LS algorithms for high order

CANDECOMP/PARAFAC tensor factorizations. IEEE Transactions on Signal Processing,
61(19):4834–4846, 2013.

[17] C. E. Tsourakakis. MACH: fast randomized tensor decompositions. In SDM, pages 689–700,
2010.

[18] H.-Y. F. Tung, C.-Y. Wu, M. Zaheer, and A. J. Smola. Spectral methods for the hierarchical
dirichlet process. 2015.

[19] A. J. Walker. An efficient method for generating discrete random variables with general
distributions. ACM Transactions on Mathematical Software (TOMS), 3(3):253–256, 1977.

[20] C. Wang, X. Liu, Y. Song, and J. Han. Scalable moment-based inference for latent dirichlet
allocation. In ECML-PKDD, pages 290–305, 2014.

[21] Y. Wang. Personal communication. 2016.
[22] Y. Wang and A. Anandkumar. Online and differentially-private tensor decomposition. CoRR,

abs/1606.06237, 2016.
[23] Y. Wang, H.-Y. Tung, A. J. Smola, and A. Anandkumar. Fast and guaranteed tensor decomposi-

tion via sketching. In NIPS, pages 991–999, 2015.

9

	Introduction
	Our Contributions

	Main Results
	Experiments
	Experiment Setup and Datasets
	Results

