
Oblivious Sketching of High-Degree Polynomial Kernels∗

Thomas D. Ahle
ITU and BARC

thdy@itu.dk

Michael Kapralov
EPFL

michael.kapralov@epfl.ch

Jakob B. T. Knudsen
U. Copenhagen and BARC

jakn@di.ku.dk

Rasmus Pagh
ITU and BARC

pagh@itu.dk

Ameya Velingker
Google Research

ameyav@google.com

David P. Woodruff
CMU

dwoodruf@cs.cmu.edu

Amir Zandieh
EPFL

amir.zandieh@epfl.ch

February 25, 2020

Abstract

Kernel methods are fundamental tools in machine learning that allow detection of non-linear
dependencies between data without explicitly constructing feature vectors in high dimensional
spaces. A major disadvantage of kernel methods is their poor scalability: primitives such as
kernel PCA or kernel ridge regression generally take prohibitively large quadratic space and (at
least) quadratic time, as kernel matrices are usually dense. Some methods for speeding up kernel
linear algebra are known, but they all invariably take time exponential in either the dimension
of the input point set (e.g., fast multipole methods suffer from the curse of dimensionality) or
in the degree of the kernel function.

Oblivious sketching has emerged as a powerful approach to speeding up numerical linear
algebra over the past decade, but our understanding of oblivious sketching solutions for kernel
matrices has remained quite limited, suffering from the aforementioned exponential dependence
on input parameters. Our main contribution is a general method for applying sketching solutions
developed in numerical linear algebra over the past decade to a tensoring of data points without
forming the tensoring explicitly. This leads to the first oblivious sketch for the polynomial
kernel with a target dimension that is only polynomially dependent on the degree of the kernel
function, as well as the first oblivious sketch for the Gaussian kernel on bounded datasets that
does not suffer from an exponential dependence on the dimensionality of input data points.

∗This paper is a merged version of the work of Ahle and Knudsen [AK19] and Kapralov, Pagh, Velingker, Woodruff
and Zandieh [KPV+19].

1

Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Technical Overview . 8
1.3 Related Work . 11
1.4 Organization . 13

2 Preliminaries 13

3 Construction of the Sketch 14

4 Linear Dependence on the Tensoring Degree p 18
4.1 Second Moment of Πq (analysis for Tbase : CountSketch and Sbase : TensorSketch) . . 24
4.2 Higher Moments of Πq (analysis for Tbase : OSNAP and Sbase : TensorSRHT) 26

5 Linear Dependence on the Statistical Dimension sλ 34
5.1 Matrix Concentration Tools . 34
5.2 Spectral Property of the sketch Πq . 36
5.3 Spectral Property of Identity×TensorSRHT . 40
5.4 Spectral property of Identity×OSNAP . 43
5.5 High Probability OSE with linear dependence on sλ 46

6 Oblivious Subspace Embedding for the Gaussian Kernel 47

A Direct Lower and Upper Bounds 54
A.1 Lower Bound for Sub-Gaussians . 55
A.2 Upper bound for Sub-Gaussians . 56
A.3 Lower Bound for TensorSketch . 57

2

1 Introduction

Data dimensionality reduction, or sketching, is a common technique for quickly reducing the size of
a large-scale optimization problem while approximately preserving the solution space, thus allowing
one to instead solve a much smaller optimization problem, typically in a smaller amount of time.
This technique has led to near-optimal algorithms for a number of fundamental problems in numer-
ical linear algebra and machine learning, such as least squares regression, low rank approximation,
canonical correlation analysis, and robust variants of these problems. In a typical instance of such
a problem, one is given a large matrix X ∈ Rd×n as input, and one wishes to choose a random
map Π from a certain family of random maps and replace X with ΠX. As Π typically has many
fewer rows than columns, ΠX compresses the original matrix X, which allows one to perform the
original optimization problem on the much smaller matrix ΠX. For a survey of such techniques,
we refer the reader to the survey by Woodruff [Woo14].

A key challenge in this area is to extend sketching techniques to kernel-variants of the above
linear algebra problems. Suppose each column of X corresponds to an example while each of
the d rows corresponds to a feature. Then these algorithms require an explicit representation
of X to be made available to the algorithm. This is unsatisfactory in many machine learning
applications, since typically the actual learning is performed in a much higher (possibly infinite)
dimensional feature space, by first mapping each column of X to a much higher dimensional space.
Fortunately, due to the kernel trick, one need not ever perform this mapping explicitly; indeed, if the
optimization problem at hand only depends on inner product information between the input points,
then the kernel trick allows one to quickly compute the inner products of the high dimensional
transformations of the input points, without ever explicitly computing the transformation itself.
However, evaluating the kernel function easily becomes a bottleneck in algorithms that rely on the
kernel trick because it typically takes O(d) time to evaluate the kernel function for d dimensional
datasets. There are a number of recent works which try to improve the running times of kernel
methods; we refer the reader to the recent work of [MM17] and the references therein. A natural
question is whether it is possible to instead apply sketching techniques on the high-dimensional
feature space without ever computing the high-dimensional mapping.

For the important case of polynomial kernel, such sketching techniques are known to be possible1.
This was originally shown by Pham and Pagh in the context of kernel support vector machines
[PP13], using the TensorSketch technique for compressed matrix multiplication due to Pagh [Pag13].
This was later extended in [ANW14] to a wide array of kernel problems in linear algebra, including
principal component analysis, principal component regression, and canonical correlation analysis.

The running times of the algorithms above, while nearly linear in the number of non-zero
entries of the input matrix X, depend exponentially on the degree q of the polynomial kernel. For
example, suppose one wishes to do low rank approximation on A, the matrix obtained by replacing
each column of X with its kernel-transformed version. One would like to express A ≈ UV , where
U ∈ Rdp×k and V ∈ Rk×n. Writing down U explicitly is problematic, since the columns belong to
the much higher dp-dimensional space. Instead, one can express UV implicitly via column subset
selection, by expressing it as a AZZ> and then outputting Z. Here Z is an n × k matrix. In
[ANW14], an algorithm running in nnz (X) + (n+ d)poly (3p, k, 1/ε) time was given for outputting
such Z with the guarantee that ‖A−AZZ>‖2F ≤ (1+ε)‖A−Ak‖2F with constant probability, where
Ak is the best rank-k approximation to A. Algorithms with similar running times were proposed
for principal component regression and canonical correlation analysis. The main message here is

1The lifting function corresponding to the polynomial kernel maps x ∈ Rd to φ(x) ∈ Rd
p

, where φ(x)i1,i2,...,ip =
xi1xi2 · · ·xip , for i1, i2, . . . , ip ∈ {1, 2, . . . , d}

3

that all analyses of all existing sketches require the sketch Π to have at least 3p rows in order to
guarantee their correctness. Moreover, the existing sketches work with constant probability only
and no high probability result was known for the polynomial kernel.

The main drawback with previous work on applying dimensionality reduction for the polynomial
kernel is the exponential dependence on p in the sketching dimension and consequently in the
running time. Ideally, one would like a polynomial dependence. This is especially useful for the
application of approximating the Gaussian kernel by a sum of polynomial kernels of various degrees,
for which large values of p, e.g., p = poly (logn) are used [CKS11]. This raises the main question
of our work:

Is it possible to desing a data oblivious sketch with a sketching dimension (and, hence, running
time) that is not exponential in p for the above applications in the context of the polynomial

kernel?

While we answer the above question, we also study it in a more general context, namely, that
of regularization. In many machine learning problems, it is crucial to regularize so as to prevent
overfitting or ill-posed problems. Sketching and related sampling-based techniques have also been
extensively applied in this setting. For a small sample of such work see [RR07, AM15, PW15,
MM17, ACW17b, ACW17a, AKM+17, AKM+18a]. As an example application, in ordinary least
squares regression one is given a d × n matrix A, and a d × 1 vector b, and one seeks to find a
y ∈ Rn so as to minimize ‖Ay − b‖22. In ridge regression, we instead seek a y so as to minimize
‖Ay − b‖22 + λ‖y‖22, for a parameter λ > 0. Intuitively, if λ is much larger than the operator norm
‖A‖2 of A, then a good solution is obtained simply by setting y = 0d. On the other hand, if λ = 0,
the problem just becomes an ordinary least squares regression. In general, the statistical dimension
(or effective degrees of freedom), sλ, captures this tradeoff, and is defined as

∑d
i=1

λi(A>A)
λi(A>A)+λ , where

λi(A>A) is the i-th eigenvalue of A>A. Note that the statistical dimension is always at most
min(n, d), but in fact can be much smaller. A key example of its power is that for ridge regression,
it is known [ACW17b] that if one chooses a random Gaussian matrix Π with O(sλ/ε) rows, and if y
is the minimizer to ‖ΠAy−Πb‖22+λ‖y‖22, then ‖Ay−b‖22+λ‖y‖22 ≤ (1+ε) miny′(‖Ay′−b‖22+λ‖y′‖22).
Note that for ordinary regression (λ = 0) one would need that Π has Ω(rank(A)/ε) rows [CW09].
Another drawback of existing sketches for the polynomial kernel is that their running time and
target dimension depend at least quadratically on sλ and no result is known with linear dependence
on sλ, which would be optimal. We also ask if the exponential dependence on p is avoidable in the
regularized setting:

Is it possible to obtain sketching dimension bounds and running times that are not exponential in
p in the context of regularization? Moreover, is it possible to obtain a running time that depends

only linearly on sλ?

1.1 Our Contributions

In this paper, we answer the above questions in the affirmative. In other words, for each of
the aforementioned applications, our algorithm depends only polynomially on p. We state these
applications as corollaries of our main results, which concern approximate matrix product and
subspace embeddings. In particular, we devise a new distribution on oblivious linear maps Π ∈
Rm×dp (i.e., a randomized family of maps that does not depend on the dataset X), so that for any
fixed X ∈ Rd×n, it satisfies the approximate matrix product and subspace embedding properties.
These are the key properties needed for kernel low rank approximation. We remark that our

4

data oblivious sketching is greatly advantageous to data dependent methods because it results in a
one-round distributed protocol for kernel low rank approximation [KVW14].

We show that our oblivious linear map Π ∈ Rm×dp has the following key properties:

Oblivious Subspace Embeddings (OSEs). Given ε > 0 and an n-dimensional subspace E ⊆
Rd, we say that Π ∈ Rm×d is an ε-subspace embedding for E if (1− ε)‖x‖2 ≤ ‖Πx‖2 ≤ (1 + ε)‖x‖2
for all x ∈ E. In this paper we focus on Oblivious Subspace Embeddings in the regularized setting.
In order to define a (regularized) Oblivious Subspace Embedding, we need to introduce the notion
of statistical dimension, which is defined as follows:

Definition 1 (Statistical Dimension). Given λ ≥ 0, for every positive semidefinite matrix K ∈
Rn×n, we define the λ-statistical dimension of K to be

sλ(K) := tr(K(K + λIn)−1).

Now, we can define the notion of an oblivious subspace embedding (OSE):

Definition 2 (Oblivious Subspace Embedding (OSE)). Given ε, δ, µ > 0 and integers d, n ≥ 1,
an (ε, δ, µ, d, n)-Oblivious Subspace Embedding (OSE) is a distribution D over m× d matrices (for
arbitrary m) such that for every λ ≥ 0, every A ∈ Rd×n with λ-statistical dimension sλ(A>A) ≤ µ,
the following holds,2

Pr
Π∼D

[
(1− ε)(A>A+ λIn) � (ΠA)>ΠA+ λIn � (1 + ε)(A>A+ λIn)

]
≥ 1− δ. (1)

The goal is to have the target dimension m small so that Π provides dimensionality reduction.
If we consider the non-oblivious setting where we allow the sketch matrix Π to depend on A, then
by leverage score sampling we can achieve a target dimension of m ≈ sλ(A>A), which is essentially
optimal [AKM+18b]. But as we discussed the importance of oblivious embeddings, the ultimate
goal is to get an oblivious subspace embedding with target dimension of m ≈ sλ(A>A).

Approximate Matrix Product. We formally define this property in the following definition.

Definition 3 (Approximate Matrix Product). Given ε, δ > 0, we say that a distribution D over
m× d matrices has the (ε, δ)-approximate matrix product property if for every C,D ∈ Rd×n,

Pr
Π∼D

[
‖C>Π>ΠD − C>D‖F ≤ ε‖C‖F ‖D‖F

]
≥ 1− δ.

Our main theorems, which provide the aforementioned guarantees, are as follows,3

Theorem 1. For every positive integers n, p, d, every ε, sλ > 0, there exists a distribution on linear
sketches Πp ∈ Rm×dp such that: (1) If m = Ω

(
ps2
λε
−2), then Πp is an (ε, 1/10, sλ, dp, n)-oblivious

subspace embedding as in Definition 2. (2) If m = Ω
(
pε−2), then Πp has the (ε, 1/10)-approximate

matrix product property as in Definition 3.
Moreover, for any X ∈ Rd×n, if A ∈ Rdp×n is the matrix whose columns are obtained by the

p-fold self-tensoring of each column of X then the matrix ΠpA can be computed using Algorithm 1
in time Õ (pnm+ p nnz(X)).

2For symmetric matrices K and K′, the spectral inequality relation K � K′ holds if and only if x>Kx ≤ x>K′x
for all vectors x

3Throughout this paper, the notations Õ, Ω̃, Θ̃ suppress poly (log(nd/ε)) factors.

5

Theorem 2. For every positive integers n, p, d, every ε, sλ > 0, there exists a distribution on linear
sketches Πp ∈ Rm×dp such that: (1) If m = Ω̃

(
ps2
λε
−2), then Πp is an (ε, 1/poly (n) , sλ, dp, n)-

oblivious subspace embedding (Definition 2). (2) If m = Ω̃
(
pε−2), then Πp has the (ε, 1/poly (n))-

approximate matrix product property (Definition 3).
Moreover, in the setting of (1), for any X ∈ Rd×n, if A ∈ Rdp×n is the matrix whose columns

are obtained by a p-fold self-tensoring of each column of X, then the matrix ΠpA can be computed
using Algorithm 1 in time Õ

(
pnm+ p3/2sλε

−1 nnz(X)
)
.

Theorem 3. For every positive integers p, d, n, every ε, sλ > 0, there exists a distribution on
linear sketches Πp ∈ Rm×dp which is an (ε, 1/poly (n) , sλ, dp, n)-oblivious subspace embedding as in
Definition 2, provided that the integer m satisfies m = Ω̃

(
p4sλ/ε

2).
Moreover, for any X ∈ Rd×n, if A ∈ Rdp×n is the matrix whose columns are obtained by a

p-fold self-tensoring of each column of X then the matrix ΠpA can be computed using Algorithm 1
in time Õ

(
pnm+ p5ε−2 nnz(X)

)
.

We can immediately apply these theorems to kernel ridge regression with respect to the polyno-
mial kernel of degree p. In this problem, we are given a regularization parameter λ > 0, a d×n ma-
trix X, and vector b ∈ Rn and would like to find a y ∈ Rn so as to minimize ‖A>Ay−b‖22 +λ‖Ay‖22,
where A ∈ Rdp×n is the matrix obtained from X by applying the self tensoring of degree p to
each column. To solve this problem via sketching, we choose a random matrix Πp according
to the theorems above and compute ΠpA. We then solve the sketched ridge regression problem
which seeks to minimize

∥∥∥(ΠpA)>ΠpAx− b
∥∥∥2

2
+ λ‖ΠpAx‖22 over x. By the above theorems, we

have
∥∥∥(ΠpA)>ΠpAx− b

∥∥∥2

2
+ λ‖ΠpAx‖22 = (1± ε)

(∥∥∥A>Ax− b∥∥∥2

2
+ λ‖Ax‖22

)
simultaneously for all

x ∈ Rn; thus, solving the sketched ridge regression problem gives a (1 ± ε)-approximation to the
original problem. If we apply Theorem 1, then the number of rows of Πp needed to ensure success
with probability 9/10 is Θ(ps2

λε
−2). The running time to compute ΠpA is O(p2s2

λε
−2n+p nnz(X)),

after which a ridge regression problem can be solved in O(ns4
λ/ε

4) time via an exact closed-form
solution for ridge regression. An alternative approach to obtaining a very high-accuracy approxima-
tion is to use the sketched kernel as a preconditioner to solve the original ridge regression problem,
which improves the dependence on ε to log(1/ε) [ACW17a]. To obtain a higher probability of
success, we can instead apply Theorem 3, which would allow us to compute the sketched matrix
ΠpA in Õ(p5sλε

−2n + p5ε−2 nnz(X)) time. This is the first sketch to achieve the optimal depen-
dence on sλ for the polynomial kernel, after which we can now solve the ridge regression problem
in Õ(ns2

λpoly
(
p, ε−1)) time. Importantly, both running times are polynomial in p, whereas all

previously known methods incurred running times that were exponential in p.
Although there has been much work on sketching methods for kernel approximation which

nearly achieve the optimal target dimension m ≈ sλ, such as Nystrom sampling [MM17], all known
methods are data-dependent unless strong conditions are assumed about the kernel matrix (small
condition number or incoherence). Data oblivious methods provide nice advantages, such as one-
round distributed protocols and single-pass streaming algorithms. However, for kernel methods
they are poorly understood and previously had worse theoretical guarantees than data-dependent
methods. Furthermore, note that the Nystrom method requires to sample at least m = Ω(sλ) land-
marks to satisfy the subspace embedding property even given an oracle access to the exact leverage
scores distribution. This results in a runtime of Ω

(
s2
λd+ sλ nnz(X)

)
. Whereas our method achieves

a target dimension that nearly matches the best dimension possible with data-dependent Nystrom
method and with strictly better running time of Õ(nsλ + nnz(X)) (assuming p = poly (logn)).

6

Therefore, for a large range of parameter our sketch runs in input sparsity time wheras the Nys-
trom methods are slower by an sλ factor in the best case.

Application: Polynomial Kernel Rank-k Approximation. Approximate matrix product
and subspace emebedding are key properties for sketch matrices which imply efficient algorithms
for rank-k kernel approximation [ANW14]. The following corollary of Theorem 1 immediately
follows from Theorem 6 of [ANW14].
Corollary 4 (Rank-k Approximation). For every positive integers k, n, p, d, every ε > 0, any
X ∈ Rd×n, if A ∈ Rdp×n is the matrix whose columns are obtained by the p-fold self-tensoring
of each column of X then there exists an algorithm which finds an n × k matrix V in time
O
(
pnnz(X) + poly

(
k, p, ε−1)) such that with probability 9/10,

‖A−AV V >‖2F ≤ (1 + ε) min
U∈Rdp×n
rank(U)=k

‖A− U‖2F .

Note that this runtime improves the runtime of [ANW14] by exponential factors in the polyno-
mial kernel’s degree p.

Additional Applications. Our results also imply improved bounds for each of the applications
in [ANW14], including canonical correlation analysis (CCA), and principal component regression
(PCR). Importantly, we obtain the first sketching-based solutions for these problems with running
time polynomial rather than exponential in p.

Oblivious Subspace Embedding for the Gaussian Kernel. One very important implication
of our result is Oblivious Subspace Embedding of the Gaussian kernel. Most work in this area is
related to the Random Fourier Features method [RR07]. It was shown in [AKM+17] that one
requires Ω(n) samples of the standard Random Fourier Features to obtain a subspace embedding
for the Gaussian kernel, while a modified distribution for sampling frequencies yields provably
better performance. The target dimension of our proposed sketch for the Gaussian kernel strictly
improves upon the result of [AKM+17], which has an exponential dependence on the dimension
d. We for the first time, embed the Gaussian kernel with a target dimension which has a linear
dependence on the statistical dimension of the kernel and is not exponential in the dimensionality
of the data-point.
Theorem 5. For every r > 0, every positive integers n, d, and every X ∈ Rd×n such that ‖xi‖2 ≤ r
for all i ∈ [n], where xi is the ith column of X, suppose G ∈ Rn×n is the Gaussian kernel matrix –
i.e., Gj,k = e−‖xj−xk‖

2
2/2 for all j, k ∈ [n]. There exists an algorithm which computes Sg(X) ∈ Rm×n

in time Õ
(
q6ε−2nsλ + q6ε−2 nnz(X)

)
such that for every ε, λ > 0,

Pr
Sg

[
(1− ε)(G+ λIn) � (Sg(X))>Sg(X) + λIn � (1 + ε)(G+ λIn)

]
≥ 1− 1/poly (n) ,

where m = Θ̃
(
q5sλ/ε

2) and q = Θ(r2 + log(n/ελ)) and sλ is λ-statistical dimension of G as in
Definition 1.

We remark that for datasets with radius r = poly (logn) even if one has oracle access to the
exact leverage scores for Fourier features of Gaussian kernel, in order to get subspace embedding
guarantee one needs to usem = Ω(sλ) features which requires Ω(sλ nnz(X)) operations to compute.
Wheras our result of Theorem 5 runs in time Õ(nsλ + nnz(X)). Therefore, for a large range of
parameters our Gaussian sketch runs in input sparsity time wheras the Fourier features method is
at best slower by an sλ factor.

7

1.2 Technical Overview

Our goal is to design a sketching matrix Πp that satisfies the oblivious subspace embedding property
with an optimal embedding dimension and which can be efficiently applied to vectors of the form
x⊗p ∈ Rdp4. We start by describing some natural approaches to this problem (some of which have
been used before), and show why they incur an exponential loss in the degree of the polynomial
kernel. We then present our sketch and outline our proof of its correctness.

We first discuss two natural approaches to tensoring classical sketches, namely the Johnson-
Lindenstrauss transform and the CountSketch. We show that both lead to an exponential depen-
dence of the target dimension on p and then present our new approach.

Tensoring the Johnson-Lindenstrauss Transform. Perhaps the most natural approach to
designing a sketch Πp is the idea of tensoring p independent Johnson-Lindenstrauss matrices. Specif-
ically, let m be the target dimension. For every r = 1, . . . , p let M (r) denote an m× d matrix with
iid uniformly random ±1 entries, and let the sketching matrix M ∈ Rm×dp be

M = 1√
m
M (1) • . . . •M (p),

where • stands for the operation of tensoring the rows of matrices M (r) (see Definition 7). This
would be a very efficient matrix to apply, since for every j = 1, . . . ,m the j-th entry of Mx⊗p is
exactly

∏p
r=1

[
M (r)x

]
j
, which can be computed in time O(p nnz(x)), giving overall evaluation time

O(pm nnz(x)). One would hope that m = O(ε−2 logn) would suffice to ensure that ‖Mx⊗p‖22 =
(1 ± ε)‖x⊗q‖22. However, this is not true: we show in Appendix A that one must have m =
Ω(ε−23p log(n)/p + ε−1(log(n)/p)p) in order to preserve the norm with high probability. Thus,
the dependence on degree p of the polynomial kernel must be exponential. The lower bound is
provided by controlling the moments of the sketch M and using Paley-Zygmund inequality. For
completeness, we show that the aforementioned bound on the target dimension m is sharp, i.e.,
necessary and sufficient for obtaining the Johnson-Lindenstrauss property.

Tensoring of CountSketch (TensorSketch). Pagh and Pham [PP13] introduced the following
tensorized version of CountSketch. For every i = 1, . . . , p let hi : [d] → [m] denote a random hash
function, and σi : [d]→ [m] a random sign function. Then let S : Rd⊗p → Rm be defined by

Sr,(j1,...,jp) := σ(i1) · · ·σ(ip) 1[h1(i1) + . . . hp(ip) = r]

for r = 1, . . . ,m. For every x ∈ Rd one can compute Sx⊗p in time O(pm logm+p nnz(x)). Since the
time to apply the sketch only depends linearly on the dimension p (due to the Fast Fourier Trans-
form) one might hope that the dependence of the sketching dimension on p is polynomial. However,
this turns out to not be the case: the argument in [ANW14] implies that m = Õ(3ps2

λ) suffices to
construct a subspace embedding for a matrix with regularization λ and statistical dimension sλ,
and we show in Appendix A.3 that exponential dependence on p is necessary.

Our Approach: Recursive Tensoring. The initial idea behind our sketch is as follows. To
apply our sketch Πp to x⊗p, for x ∈ Rd, we first compute the sketches T1x, T2x, . . . , Tpx for inde-
pendent sketching matrices T1, . . . , Tp ∼ Tbase – see the leaves of the sketching tree in Fig. 1. Note
that we choose these sketches as CountSketch [CCFC02] or OSNAP [NN13] to ensure that the leaf

4Tensor product of x with itself p times.

8

Sbase

Sbase

Tbase Tbase

Sbase

Tbase Tbase

internal nodes:
TensorSketch or TensorSRHT

leaves: CountSketch or OSNAP

Figure 1: Sbase is chosen from the family of sketches which support fast matrix-vector product for
tensor inputs such as TensorSketch and TensorSRHT. The Tbase is chosen from the family of sketches
which operate in input sparsity time such as CountSketch and OSNAP.

sketches can be applied in time proportional to the number of nonzeros in the input data (in the
case of OSNAP this is true up to polylogarithimic factors).

Each of these is a standard sketching matrix mapping d-dimensional vectors to m-dimensional
vectors for some common value of m. We refer the reader to the survey [Woo14]. The next idea
is to choose new sketching matrices S1, S2, . . . , Sp/2 ∼ Sbase, mapping m2-dimensional vectors to
m-dimensional vectors and apply S1 to (T1x) ⊗ (T2x), as well as apply S2 to (T3x) ⊗ (T4x), and
so on, applying Sp/2 to (Tp−1x)⊗ (Tpx). These sketches are denoted by Sbase – see internal nodes
of the sketching tree in Fig. 1. We note that in order to ensure efficiency of our construction (in
particular, running time that depends only linearly on the statistical dimension sλ) we must choose
Sbase as a sketch that can be computed on tensored data without explicitly constructing the actual
tensored input, i.e., Sbase supports fast matrix vector product on tensor product of vectors. We
use either TensorSketch (for results that work with constant probability) and a new variant of the
Subsampled Randomized Hadamard Transform SRHT which supports fast multiplication for the
tensoring of two vectors (for high probability bounds) – we call the last sketch TensorSRHT.

At this point we have reduced our number of input vectors from p to p/2, and the dimension
is m, which will turn out to be roughly sλ. We have made progress, as we now have fewer vectors
each in roughly the same dimension we started with. After log2 p levels in the tree we are left with
a single output vector.

Intuitively, the reason that this construction avoids an exponential dependence on p is that
at every level in the tree we use target dimension m larger than the statistical dimension of our
matrix by a factor polynomial in p. This ensures that the accumulation of error is limited, as the
total number of nodes in the tree is O(p). This is in contrast to the direct approaches discussed
above, which use a rather direct tensoring of classical sketches, thereby incurring an exponential
dependence on p due to dependencies that arise.

Showing Our Sketch is a Subspace Embedding. In order to show that our recursive sketch
is a subspace embedding, we need to argue it preserves norms of arbitrary vectors in Rdp , not only

9

vectors of the form x⊗p, i.e., p-fold self-tensoring of d-dimensional vectors5. Indeed, all known
methods for showing the subspace embedding property (see [Woo14] for a survey) at the very least
argue that the norms of each of the columns of an orthonormal basis for the subspace in question
are preserved. While our subspace may be formed by the span of vectors which are tensor products
of p d-dimensional vectors, we are not guaranteed that there is an orthonormal basis of this form.
Thus, we first observe that our mapping is indeed linear over Rdp , making it well-defined on the
elements of any basis for our subspace, and hence our task essentially reduces to proving that our
mapping preserves norms of arbitrary vectors in Rdp .

We present two approaches to analyzing our construction. One is based on the idea of prop-
agating moment bounds through the sketching tree, and results in a nearly linear dependence of
the sketching dimension m on the degree p of the polynomial kernel, at the expense of a quadratic
dependence on the statistical dimension sλ. This approach is presented in Section 4. The other
approach achieves the (optimal) linear dependence on sλ, albeit at the expense of a worse polyno-
mial dependence on p. This approach uses sketches that succeed with high probability, and uses
matrix concentration bounds.

Propagating moment bounds through the tree – optimizing the dependence on the
degree p. We analyze our recursively tensored version of the OSNAP and CountSketch by showing
how moment bounds can be propagated through the tree structure of the sketch. This analysis is
presented in Section 4, and results in the proof of Theorem 1 as well as the first part of Theorem 3.
The analysis obtained this way give particularly sharp dependencies on p and log 1/δ.

The idea is to consider the unique matrix M ∈ Rm×dp that acts on simple tensors in the way
we have described it recursively above. This matrix could in principle be applied to any vector
x ∈ Rdp (though it would be slow to realise). We can nevertheless show that this matrix has the
(ε, δ, t)-JL Moment Property, which is for parameters ε, δ ∈ [0, 1], t ≥ 2, and every x ∈ Rd with
‖x‖2 = 1 the statement E

[∣∣‖Mx‖22 − 1
∣∣t] ≤ εtδ.

It can be shown that M is built from our various Sbase and Tbase matrices using three different
operations: multiplication, direct sum, and row-wise tensoring. In other words, it is sufficient to
show that if Q and Q′ both have the (ε, δ, t)-JL Moment Property, then so does QQ′, Q⊕Q′ and
Q • Q′. This turns out to hold for Q ⊕ Q′, but QQ′ and Q • Q′ are more tricky. (Here ⊕ is the
direct sum and • is the composition of tensoring the rows. See section 2 on notation.)

For multiplication, a simple union bound allows us to show that Q(1)Q(2) · · ·Q(p) has the
(pε, pδ, t)-JL Moment Property. This would unfortunately mean a factor of p2 in the final di-
mension. The union bound is clearly suboptimal, since implicitly it is assumes that all the matrices
conspire to either shrink or increase the norm of a vector, while in reality with independent ma-
trices, we should get a random walk on the real line. Using an intricate decoupling argument, we
show that this is indeed the case, and that Q(1)Q(2) · · ·Q(p) has the (√pε, δ, t)-JL Moment Property,
saving a factor of p in the output dimension.

Finally we need to analyze Q • Q′. Here it is easy to show that the JL Moment Property
doesn’t in general propagate to Q • Q′ (consider e.g. Q being constant 0 on its first m/2 rows
and Q′ having 0 on its m/2 last rows.) For most known constructions of JL matrices it does how-
ever turn out that Q • Q′ behaves well. In particular we show this for matrices with independent
sub-Gaussian entries (appendix A.2), and for the so-called Fast Johnson Lindenstrauss construc-
tion [AC06] (Lemma 21). The main tool here is a higher order version of the classical Khintchine

5x⊗p denotes x⊗ x · · · ⊗ x︸ ︷︷ ︸
p terms

, the p-fold self-tensoring of x.

10

inequality [HM07] which bounds the moments E
[
〈σ(1) ⊗ σ(2) ⊗ · · · ⊗ σ(p), x〉t

]
when σ(1), . . . σ(p) are

independent sub-Gaussian vectors (Lemma 19).

Optimizing the dependence on sλ. Our proof of Theorem 3 relies on instantiating our frame-
work with OSNAP at the leaves of the tree (Tbase) and a novel version of the SRHT that we refer
to as TensorSRHT at the internal nodes of the tree. We outline the analysis here. In order to show
that our sketch preserves norms, let y be an arbitrary vector in Rdp . Then in the bottom level of
the tree, we can view our sketch as T1 × T2 × · · · × Tp, where × for denotes the tensor product of
matrices (see Definition 5). Then, we can reshape y to be a dq−1 × d matrix Y , and the entries of
T1×T2× · · ·×Tpy are in bijective correspondence with those of T1×T2× · · ·×Tp−1Y T

>
p . By defi-

nition of Tp, it preserves the Frobenius norm of Y , and consequently, we can replace Y with Y T>p .
We next look at (T1 × T2 × · · · × Tp−2)Z(Id × T>p−1), where Z is the dp−2 × d2 matrix with entries
in bijective correspondence with those of Y T>p . Then we know that Tp−1 preserves the Frobenius
norm of Z. Iterating in this fashion, this means the first layer of our tree preserves the norm of
y, provided we union bound over O(p) events that a sketch preserves a norm of an intermediate
matrix. The core of the analysis consists of applying spectral concentration bounds based analysis
to sketches that act on blocks of the input vector in a correlated fashion. We give the details in
Section 5.

Sketching the Gaussian kernel. Our techniques yield the first oblivious sketching method for
the Gaussian kernel with target dimension that does not depend exponentially on the dimensionality
of the input data points. The main idea is to Taylor expand the Gaussian function and apply our
sketch for the polynomial kernel to the elements of the expansion. It is crucial here that the
target dimension of our sketch for the polynomial kernel depends only polynomially on the degree,
as otherwise we would not be able to truncate the Taylor expansion sufficiently far in the tail
(the number of terms in the Taylor expansion depends on the radius of the dataset and depends
logarithmically on the regularization parameter). Overall, our Gaussian kernel sketch has optimal
target dimension up to polynomial factors in the radius dataset and logarithmic factors in the
dataset size. Moreover, it is the first subspace embedding of Gaussian kernel which runs in input
sparsity time Õ(nnz(X)) for datasets with polylogarithmic radius. The result is summarized in
Theorem 5, and the analysis is presented in Section 6.

1.3 Related Work

Work related to sketching of tensors and explicit kernel embeddings is found in fields ranging from
pure mathematics to physics and machine learning. Hence we only try to compare ourselves with
the four most common types we have found.

Johnson-Lindenstrauss Transform A cornerstone result in the field of subspace embeddings
is the Johnson-Lindenstrauss lemma [JLS86]: “For all ε ∈ [0, 1], integers n, d ≥ 1, and X ⊆ Rd
with |X| = n there exists f : Rd → Rm with m = O(ε−2 log(n)), such that (1 − ε)‖x − y‖2 ≤
‖f(x)− f(y)‖2 ≤ (1 + ε)‖x− y‖2 for every x, y ∈ X.“

It has been shown in [CW13, CNW16a] there exists a constant C, so that, for any r-dimensional
subspace U ⊆ Rd, there exists a subsetX ⊆ U with |X| ≤ Cr, such that maxx∈U

∣∣‖f(x)‖22 − ‖x‖22
∣∣ ≤

O(maxx∈X
∣∣‖f(x)‖22 − ‖x‖22

∣∣). So the Johnson-Lindenstrauss Lemma implies that there exists a
subspace embedding with m = O(ε−2r).

11

It is not enough to know that the subspace embedding exists, we also need the to find the
dimension-reducing map f , and we want the map f to be applied to the data quickly. Achlioptas
showed that if Π ∈ Rm×d is random matrix with i.i.d. entries where Πi,j = 0 with probability
2/3, and otherwise Πi,j is uniform in {−1, 1}, and m = O(ε−2 log(1/δ)), then ‖Πx‖2 = (1± ε)‖x‖2
with probability 1− δ for any x ∈ Rd [Ach03]. This gives a running time of O(mnnz (x)) to sketch
a vector x ∈ Rd. Later, the Fast Johnson Lindenstrauss Transform [AC06], which exploits the
Fast Fourier Transform, improved the running time for dense vectors to O(d log d + m3). The re-
lated Subsampled Randomized Hadamard Transform has been extensively studied [Sar06, DMM06,
DMMS11, Tro11, DMMW12, LDFU13], which uses O(d log d) time but obtains suboptimal dimen-
sion O(ε−2 log(1/δ)2), hence it can not use the above argument to get subspace embedding, but it
has been proven in [Tro11] that if m = O(ε−2(r+ log(1/δ)2)), then one get a subspace embedding.

The above improvements has a running time of O(d log d), which can be worse than O(mnnz (x))
if x ∈ Rd is very sparse. This inspired a line of work trying to obtain sparse Johnson Lindenstrauss
transforms [DKS10, KN14, NN13, Coh16]. They obtain a running time of O(ε−1 log(1/δ)nnz (x)).
In [NN13] they define the ONSAP transform and investigate the trade-off between sparsity and
subspace embedding dimension. This was further improved in [Coh16].

In the context of this paper all the above mentioned methods have the same shortcoming,
they do not exploit the extra structure of the tensors. The Subsampled Randomized Hadamard
Transform have a running time of Ω(pdp log(p)) in the model considered in this paper, and the
sparse embeddings have a running time of Ω(nnz(x)p). This is clearly unsatisfactory and inspired
the TensorSketch [PP13, ANW14], which has a running time of Ω(p nnz(x)). Unfortunately, they
need m = Ω(3pε−2δ−1) and one of the main contributions of this paper is get rid of the exponential
dependence on p.

Approximate Kernel Expansions A classic result by Rahimi and Recht [RR08] shows how to
compute an embedding for any shift-invariant kernel function k(‖x−y‖2) in time O(dm). In [LSS14]
this is improved to any kernel on the form k(〈x, y〉) and time O((m+d) log d), however the method
does not handle kernel functions that can’t be specified as a function of the inner product, and it
doesn’t provide subspace embeddings. See also [MM17] for more approaches along the same line.
Unfortunately, these methods are unable to operate in input sparsity time and their runtime at
best is off by an sλ factor.

Tensor Sparsification There is also a literature of tensor sparsification based on sampling [NDT15],
however unless the vectors tensored are already very smooth (such as ±1 vectors), the sampling has
to be weighted by the data. This means that these methods in aren’t applicable in general to the
types of problems we consider, where the tensor usually isn’t known when the sketching function
is sampled.

Hyper-plane rounding An alternative approach is to use hyper-plane rounding to get vectors
on the form ±1. Let ρ = 〈x,y〉

‖x‖‖y‖ , then we have 〈sign (Mx) , sign (My)〉 =
∑
i sign (Mix) sign (Miy) =∑

iXi , where Xi are independent Rademachers with µ/m = E[Xi] = 1− 2
π arccos ρ = 2

πρ+O(ρ3).
By tail bounds then Pr[|〈sign (Mx) , sign (My)〉 − µ| > εµ] ≤ 2 exp(−min(ε

2µ2

2σ2 ,
3εµ
2)). Taking

m = O(ρ−2ε−2 log 1/δ) then suffices with high probability. After this we can simply sample from
the tensor product using simple sample bounds.

The sign-sketch was first brought into the field of data-analysis by [Cha02] and [Val15] was the
first, in our knowledge, to use it with tensoring. The main issue with this approach is that it isn’t
a linear sketch, which hinders the applications we consider in this paper, such as kernel low rank

12

approximation, CCA, PCR, and ridge regression. It also takes dm time to calculate Mx and My
which is unsatisfactory.

1.4 Organization

In section 2 we introduce basic definitions and notations that will be used throughout the paper.
Section 3 introduces our recursive construction of the sketch which is our main technical tool
for sketching high degree tensor products. Section 4 analyzes how the moment bounds propagate
through our recursive construction thereby proving Theorems 1 and 2 which have linear dependence
on the degree q. Section 5 introduces a high probability Oblivious Subspace Embedding with linear
dependence on the statistical dimension thereby proving Theorem 3. Finally, section 6 uses the
tools that we build for sketching polynomial kernel and proves that, for the first time, Gaussian
kernel can be sketched without an exponential loss in the dimension with provable guarantees.
Appendix A proves lower bounds.

2 Preliminaries

In this section we introduce notation and present useful properties of tensor product of vectors and
matrices as well as properties of linear sketch matrices.

We denote the tensor product of vectors a, b by a⊗ b which is formally defined as follows,

Definition 4 (Tensor product of vectors). Given a ∈ Rm and b ∈ Rn we define the twofold tensor
product a⊗ b to be

a⊗ b =


a1b1 a1b2 · · · a1bn
a2b1 a2b2 · · · a2bn
...

...
...

amb1 amb2 · · · ambn

 ∈ Rm×n.

Although tensor products are multidimensional objects, it is often convenient to associate them with
single-dimensional vectors. In particular, we will often associate a⊗ b with the single-dimensional
column vector (a1b1, a2b1, . . . , amb1, a1b2, a2b2, . . . , amb2, . . . , ambn). Given v1 ∈ Rd1 , v2 ∈ Rd2 · · · vk ∈
Rdk , we define the k-fold tensor product v1 ⊗ v2 · · · ⊗ vk ∈ Rd1d2···dk . For shorthand, we use the
notation v⊗k to denote v ⊗ v · · · ⊗ v︸ ︷︷ ︸

k terms

, the k-fold self-tensoring of v.

Tensor product can be naturally extended to matrices which is formally defined as follows,

Definition 5. Given A1 ∈ Rm1×n1 , A2 ∈ Rm2×n2 , · · · , Ak ∈ Rmk×nk , we define A1 ×A2 × · · · ×Ak
to be the matrix in Rm1m2···mk×n1n2···nk whose element at row (i1, · · · , ik) and column (j1, · · · , jk) is
A1(i1, j1) · · ·Ak(ik, jk). As a consequence the following holds for any v1 ∈ Rn1 , v2 ∈ Rn2 , · · · , vk ∈
Rnk : (A1 ×A2 × · · · ×Ak)(v1 ⊗ v2 ⊗ · · · ⊗ vk) = (A1v1)⊗ (A2v2)⊗ · · · ⊗ (Akvk).

The tensor product has the useful mixed product property, given in the following Claim,

Claim 6. For every matrices A,B,C,D with appropriate sizes, the following holds,

(A ·B)× (C ·D) = (A× C) · (B ×D).

We also define the column wise tensoring of matrices as follows,

13

Definition 6. Given A1 ∈ Rm1×n, A2 ∈ Rm2×n, · · · , Ak ∈ Rmk×n, we define A1 ⊗A2 ⊗ · · · ⊗Ak to
be the matrix in Rm1m2···mk×n whose jth column is Aj1 ⊗A

j
2 ⊗ · · · ⊗A

j
k for every j ∈ [n], where Ajl

is the jth column of Al for every l ∈ [k].

Similarly the row wise tensoring of matrices are introduced in the following Definition,

Definition 7. Given A1 ∈ Rm×n1 , A2 ∈ Rm×n2 , · · · , Ak ∈ Rm×nk , we define A1 •A2 • · · ·Ak to be
the matrix in Rm×n1n2···nk whose jth row is (A1

j ⊗ A2
j ⊗ · · · ⊗ Akj)> for every j ∈ [m], where Alj is

the jth row of Al as a column vector for every l ∈ [k].

Definition 8. Another related operation is the direct sum for vectors: x⊕y = [xy] and for matrices:
A⊕ B =

[
A 0
0 B

]
. When the sizes match up, we have (A⊕ B)(x⊕ y) = Ax+ By. Also notice that

if Ik is the k × k identity matrix, then Ik ⊗A = A⊕ · · · ⊕A︸ ︷︷ ︸
k times

.

3 Construction of the Sketch

In this section, we present the basic construction for our new sketch. Suppose we are given
v1, v2, . . . vq ∈ Rm. Our main task is to map the tensor product v1 ⊗ v2 ⊗ · · · ⊗ vq to a vector
of size m using a linear sketch.

Our sketch construction is recursive in nature. To illustrate the general idea, let us first consider
the case in which q ≥ 2 is a power of two. Our sketch involves first sketching each pair (v1 ⊗
v2), (v3⊗v4), · · · , (vq−1⊗vq) ∈ Rm2 independently using independent instances of some linear base
sketch (e.g., degree two TensorSketch, Sub-sampled Randomized Hadamard Transform (SRHT),
CountSketch, OSNAP). The number of vectors after this step is half of the number of vectors that
we began with. The natural idea is to recursively apply the same procedure on the sketched tensors
with half as many instances of the base sketch in each successive step.

More precisely, we first choose a (randomized) base sketch Sbase : Rm2 → Rm that sketches
twofold tensor products of vectors in Rm (we will describe how to choose the base sketch later).
Then, for any power of two q ≥ 2, we define Qq : Rmq → Rm on v1 ⊗ v2 ⊗ · · · ⊗ vq recursively as
follows:

Qq(v1 ⊗ v2 ⊗ · · · ⊗ vq) = Qq/2
(
Sq1(v1 ⊗ v2)⊗ Sq2(v3 ⊗ v4)⊗ · · · ⊗ Sqq/2(vq−1 ⊗ vq)

)
,

where Sq1 , S
q
2 , · · · , S

q
q/2 : Rm2 → Rm are independent instances of Sbase and Q1 : Rm → Rm is simply

the identity map on Rm.
The above construction of Qq has been defined in terms of its action on q-fold tensor products of

vectors in Rm, but it extends naturally to a linear mapping from Rmq to Rm. The formal definition
of Πq is presented below.

Definition 9 (Sketch Qq). Let m ≥ 2 be a positive integer and let Sbase : Rm2 → Rm be a
linear map that specifies some base sketch. Then, for any integer power of two q ≥ 2, we define
Qq : Rmq → Rm to be the linear map specified as follows:

Qq ≡ S2 · S4 · · ·Sq/2 · Sq,

where for each l ∈ {21, 22, · · · , q/2, q}, Sl is a matrix in Rml/2×ml defined as

Sl ≡ Sl1 × Sl2 × · · · × Sll/2, (2)

where the matrices Sl1, · · · , Sll/2 ∈ Rm×m2 are drawn independently from a base distribution Sbase.

14

S2
1

w1 ⊗ w2

z = S2
1(w1 ⊗ w2)

S4
1

v1 ⊗ v2

w1 = S4
1(v1 ⊗ v2)

v1 v2

S4
2

v3 ⊗ v4

w2 = S4
2(v1 ⊗ v2)

v3 v4

S2 = S2
1

S4 = S4
1 × S4

2

Figure 2: Visual illustration of the recursive construction of Qq for degree q = 4. The input tensor
is v1⊗ v2⊗ v3⊗ v4 and the output is z = Q4(v1⊗ v2⊗ v3⊗ v4). The intermediate nodes sketch the
tensors w1 = S4

1(v1 ⊗ v2) and w1 = S4
2(v3 ⊗ v4).

This sketch construction can be best visualized using a balanced binary tree with q leaves.
Figure 2 illustrates the construction of degree 4, Q4.

For every integer q which is a power of two, by definition of Sq in (2) of Definition 9, Sq =
Sq1 × · · · × S

q
q/2. Hence, by claim 6 we can write,

Sq = Sq1 × · · · × S
q
q/2 =

(
Sq1 × · · · × S

q
q/2−1 × Im

)
·
(
Imq−2 × Sqq/2

)
.

By multiple applications of Claim 6 we have the following claim,

Claim 7. For every power of two integer q and any positive integer m, if Sq is defined as in (2)
of Definition 9, then

Sq = Mq/2Mq/2−1 · · ·M1,

where Mj = Imq−2j × Sqq/2−j+1 × Imj−1 for every j ∈ [q/2].

Embedding Rdq : So far we have constructed a sketch Qq for sketching tensor product of vectors
in Rm. However, in general the data points can be in a space Rd of arbitrary dimension. A natural
idea is to reduce the dimension of the vectors by a mapping from Rd to Rm and then apply Qq on
the tensor product of reduced data points. The dimensionality reduction defines a linear mapping
from Rdq to Rmd which can be represented by a matrix. We denote the dimensionality reduction
matrix by T q ∈ Rmq×dq formally defined as follows.

Definition 10. Let m, d be positive integers and let Tbase : Rd → Rm be a linear map that specifies
some base sketch. Then for any integer power of two q we define T q to be the linear map specified
as follows,

T q = T1 × T2 × · · · × Tq,

where the matrices T1, · · · , Tq are drawn independently from Tbase.
Discussion: Similar to Claim 7, the transform T q can be expressed as the following product

of q matrices,
T q = MqMq−1 · · ·M1,

where Mj = Idq−j × Tq−j+1 × Imj−1 for every j ∈ [q].

15

Now we define the final sketch Πq : Rdq → Rm for arbitrary d as the composition of Qq · T q.
Moreover, to extend the definition to arbitrary q which is not necessarily a power of two we tensor
the input vector with a standard basis vector a number of times to make the input size compatible
with the sketch matrices. The sketch Πq is formally defined below,

Definition 11 (Sketch Πp). Let m, d be positive integers and let Sbase : Rm2 → Rm and Tbase :
Rd → Rm be linear maps that specify some base sketches. Then, for any integer p ≥ 2 we define
Πp : Rdp → Rm to be the linear map specified as follows:

1. If p is a power of two, then Πp is defined as

Πp = Qp · T p,

where Qp ∈ Rm×mp and T p ∈ Rmp×dp are sketches as in Definitions 9 and 10 respectively.

2. If p is not a power of two, then let q = 2dlog2 pe be the smallest power of two integer that is
greater than p and we define Πp as

Πp(v) = Πq
(
v ⊗ e⊗(q−p)

1

)
,

for every v ∈ Rdp , where e1 ∈ Rd is the standard basis column vector with a 1 in the first
coordinate and zeros elsewhere, and Πq is defined as in the first part of this definition.

Algorithm 1 sketches x⊗p for any integer p and any input vector x ∈ Rd using the sketch Πp as
in Definition 11, i.e., computes Πp(x⊗p).

Algorithm 1 Sketch for the Tensor x⊗p

input: vector x ∈ Rd, dimension d, degree p, number of buckets m, base sketches Sbase ∈ Rm×m2

and Tbase ∈ Rm×d
output: sketched vector z ∈ Rm

1: Let q = 2dlog2 pe

2: Let T1, · · ·Tq be independent instances of the base sketch Tbase : Rd → Rm
3: For every j ∈ {1, 2, · · · , p}, let Y 0

j = Tj · x
4: For every j ∈ {p+ 1, · · · , q}, let Y 0

j = Tj · e1, where e1 is the standard basis vector in Rd with
value 1 in the first coordinate and zero elsewhere

5: for l = 1 to log2 q do
6: Let Sq/2

l−1

1 , · · · , Sq/2
l−1

q/2l be independent instances of the base sketch Sbase : Rm2 → Rm

7: For every j ∈ {1, · · · , q/2l} let Y l
j = S

q/2l−1

j

(
Y l−1

2j−1 ⊗ Y
l−1

2j

)
8: end for
9: return z = Y

log2 q
1

We show the correctness of Algorithm 1 in the next lemma.

Lemma 8. For any positive integers d, m, and p, any distribution on matrices Sbase : Rm2 → Rm
and Tbase : Rd → Rm which specify some base sketches, any vector x ∈ Rd, Algorithm 1 computes
Πp(x⊗p) as in Definition 11.

Proof. For every input vector x ∈ Rd to Algorithm 1, the vectors Y 0
1 , · · · , Y 0

p , are computed in
lines 3 and 4 of algorithm as Y 0

j = Tj · x, for all j ∈ {1, · · · , p}, and, Y 0
j′ = Tj′ · e1, for all

j ∈ {q + 1, · · · , q}. Therefore, as shown in Definition 5, the following holds,

16

Y 0
1 ⊗ · · · ⊗ Y 0

p = T1 × · · · × Tq ·
(
x⊗p ⊗ e⊗(q−p)

1

)
.

From the definition of sketch T q as per Definition 10 it follows that,

Y 0
1 ⊗ · · · ⊗ Y 0

q = T q ·
(
x⊗p ⊗ e⊗(q−p)

1

)
. (3)

The algorithm computes Y l
1 , · · ·Y l

q/2l in line 7 as, Y l
j = S

q/2l−1

j

(
Y l−1

2j−1 ⊗ Y
l−1

2j

)
, for every j ∈

{1, · · · , q/2l} and every l ∈ {1, · · · , log2 q} in a for loop. Therefore, by Claim 6,

Y l
1 ⊗ · · · ⊗ Y l

q/2l =
(
S
q/2l−1

1 × · · · × Sq/2
l−1

q/2l

)
· Y l−1

1 ⊗ · · · ⊗ Y l−1
q/2l−1 .

By the definition of the sketch Sq/2l−1 in (2) of Definition 9 we have that for every l ∈ {1, · · · , log2 q},

Y l
1 ⊗ · · · ⊗ Y l

q/2l = Sq/2
l−1 · Y l−1

1 ⊗ · · · ⊗ Y l−1
q/2l−1 .

Therefore, by recursive application of the above identity we get that,

Y
log2 p

1 = S2 · S4 · · ·Sq/2 · Sq · Y 0
1 ⊗ · · · ⊗ Y 0

q .

From the definition of sketch Qq as in Definition 9 it follows that,

Y
log2 q

1 = Qq · Y 0
1 ⊗ · · · ⊗ Y 0

q .

Substituting Y 0
1 ⊗ · · · ⊗ Y 0

q from (3) in the above gives, z = (Qq · T q) ·
(
x⊗p ⊗ e⊗(q−p)

1

)
, where by

Definition 11 we have that, z = Πp(x⊗p).

Choices of the Base Sketches Sbase and Tbase: We present formal definitions for various choices
of the base sketches Sbase and Tbase that will be used for our sketch construction Πq of Definition
11. We start by briefly recalling the CountSketch [CCFC02].

Definition 12 (CountSketch transform). Let h : [d] → [m] be a 3-wise independent hash func-
tion and also let σ : [d] → {−1,+1} be a 4-wise independent random sign function. Then, the
CountSketch transform, S : Rd → Rm, is defined as follows; for every i ∈ [d] and every r ∈ [m],

Sr,i = σ(i) · 1 [h(i) = r] .

Another base sketch that we consider is the TensorSketch of degree two [Pag13] defined as
follows.

Definition 13 (degree two TensorSketch transform). Let h1, h2 : [d]→ [m] be 3-wise independent
hash functions and also let σ1, σ2 : [d] → {−1,+1} be 4-wise independent random sign functions.
Then, the degree two TensorSketch transform, S : Rd × Rd → Rm, is defined as follows; for every
i, j ∈ [d] and every r ∈ [m],

Sr,(i,j) = σ1(i) · σ2(j) · 1 [h1(i) + h2(j) = r mod m] .

Remark: S(x⊗2) can be computed in O(m logm+nnz(x)) time using the Fast Fourier Trans-
form.

Now let us briefly recall the SRHT [AC06].

17

Definition 14 (Subsampled Randomized Hadamard Transform (SRHT)). LetD be a d×d diagonal
matrix with independent Rademacher random variables along the diagonal. Also, let P ∈ {0, 1}m×d
be a random sampling matrix in which each row contains a 1 at a uniformly distributed coordinate
and zeros elsewhere, and let H be a d × d Hadamard matrix. Then, the SRHT, S ∈ Rm×d, is
S = 1√

m
PHD.

We now define a variant of the SRHT which is very efficient for sketching x⊗2 which we call the
TensorSRHT.

Definition 15 (Tensor Subsampled Randomized Hadamard Transform (TensorSRHT)). LetD1 and
D2 be two independent d × d diagonal matrices, each with diagonal entries given by independent
Rademacher variables. Also let P ∈ {0, 1}m×d2 be a random sampling matrix in which each row
contains exactly one uniformly distributed nonzero element which has value one, and let H be a
d × d Hadamard matrix. Then, the TensorSRHT is defined to be S : Rd × Rd → Rm given by
S = 1√

m
P · (HD1 ×HD2).

Remark: S(x⊗2) can be computed in time O(d log d+m) using the FFT algorithm.

Another sketch which is particularly efficient for sketching sparse vectors with high probability
is the OSNAP transform [NN13], defined as follows.

Definition 16 (OSNAP transform). For every sparsity parameter s, target dimension m, and
positive integer d, the OSNAP transform with sparsity parameter s is defined as,

Sr,j =
√

1
s
· δr,j · σr,j ,

for all r ∈ [m] and all j ∈ [d], where σr,j ∈ {−1,+1} are independent and uniform Rademacher
random variables and δr,j are Bernoulli random variables satisfying,

1. For every i ∈ [d],
∑
r∈[m] δr,i = s. That is, each column of S has exactly s non-zero entries.

2. For all r ∈ [m] and all i ∈ [d], E[δr,i] = s/m.

3. The δr,i’s are negatively correlated: ∀T ⊂ [m]× [d], E
[∏

(r,i)∈T δr,i
]
≤
∏

(r,i)∈T E[δr,i] = (sm)|T |.

4 Linear Dependence on the Tensoring Degree p

There are various desirable properties that we would like a linear sketch to satisfy. One such
property which is central to our main results is the JL Moment Property. In this section we
prove Theorem 1 and Theorem 2 by propagating the JL Moment Property through our recursive
construction from Section 3. The JL Moment Property captures a bound on the moments of the
difference between the Euclidean norm of a vector and its Euclidean norm after applying the sketch
on it. The JL Moment Property proves to be a powerful property for a sketch and we will show that
it implies the Oblivious Subspace Embedding as well as the Approximate Matrix Product property
for linear sketches.

In section 4.1 we choose Sbase and Tbase to be TensorSketch and CountSketch respectively. Then
we propagate the second JLMoment through the sketch construction Πp and thereby prove Theorem
1. In section 4.2 we propagate the higher JL Moments through our recursive construction Πp as
per Definition 11 with TensorSRHT at the internal nodes (Sbase) and OSNAP at the leaves (Tbase),
thereby proving Theorem 2.

To make the notation less heavy we will use ‖X‖Lt for the tth moment of a random variable X.
This is formally defined below.

18

Definition 17. For every integer t ≥ 1 and any random variable X ∈ R, we write

‖X‖Lt =
(
E
[
|X|t

])1/t
.

Note that ‖X + Y ‖Lt ≤ ‖X‖Lt+‖Y ‖Lt for any random variables X,Y by the Minkowski Inequality.

We now formally define the JL Moment Property of sketches.

Definition 18 (JL Moment Property). For every positive integer t and every δ, ε ≥ 0, we say a
distribution over random matrices S ∈ Rm×d has the (ε, δ, t)-JL-moment property, when∥∥∥‖Sx‖22 − 1

∥∥∥
Lt
≤ εδ1/t and E

[
‖Sx‖22

]
= 1

for all x ∈ Rd such that ‖x‖ = 1.

The JL Moment Property directly implies the following moment bound for the inner product
of two vectors:

Lemma 9 (Two vector JL Moment Property). For any x, y ∈ Rd, if S has the (ε, δ, t)-JL Moment
Property, then ∥∥∥(Sx)>(Sy)− x>y

∥∥∥
Lt
≤ εδ1/t‖x‖2‖y‖2. (4)

Proof. We can assume by linearity of the norms that ‖x‖2 = ‖y‖2 = 1. We then use that ‖x−y‖22 =
‖x‖22 + ‖y‖22 − 2x>y and ‖x+ y‖22 = ‖x‖22 + ‖y‖22 + 2x>y such that x>y = (‖x+ y‖22 − ‖x− y‖22)/4.
Plugging this into the left hand side of (4) gives∥∥∥(Sx)>(Sy)− x>y

∥∥∥
Lt

=
∥∥∥‖Sx+ Sy‖22 − ‖x+ y‖22 − ‖Sx− Sy‖22 + ‖x− y‖22

∥∥∥
Lt
/4

≤
(∥∥∥‖S(x+ y)‖22 − ‖x+ y‖22

∥∥∥
Lt

+
∥∥∥‖S(x− y)‖22 − ‖x− y‖22

∥∥∥
Lt

)
/4

≤ εδ1/t(‖x+ y‖22 + ‖x− y‖22)/4 (JL moment property)
= εδ1/t(‖x‖22 + ‖y‖22)/2
= εδ1/t.

We will also need the Strong JL Moment Property, which is a sub-Gaussian bound on the
difference between the Euclidean norm of a vector and its Euclidean norm after applying the sketch
on it.

Definition 19 (Strong JL Moment Property). For every ε, δ > 0 we say a distribution over random
matrices M ∈ Rm×d has the Strong (ε, δ)-JL Moment Property when

∥∥∥‖Mx‖22 − 1
∥∥∥
Lt
≤ ε

e

√
t

log(1/δ) and E
[
‖Mx‖22

]
= 1 ,

for all x ∈ Rd, ‖x‖2 = 1 and every integer t ≤ log(1/δ).

Remark 1. It should be noted that if a matrix M ∈ Rm×d has the Strong (ε, δ)-JL Moment
Property then it has the (ε, δ, log(1/δ))-JL Moment Property, since

∥∥∥‖Mx‖22 − 1
∥∥∥
Llog(1/δ)

≤ ε

e

√
log(1/δ)
log(1/δ) = ε

e
= εδ1/ log(1

δ
) .

19

The following two lemmas together show that if we want to prove that Πp is an Oblivious
Subspace Embedding and that Πp has the Approximate Matrix Multiplication Property, then it
suffices to prove that Πq has the JL Moment Property, for q which is the smallest power of two
integer such that q ≥ p, as in Definition 11. This reduction will be the main component of the
proofs of Theorem 1 and Theorem 2.

Lemma 10. For every positive integers n, p, d, every ε, δ ∈ [0, 1], and every µ ≥ 0. Let q = 2dlog2(p)e

and let Πp ∈ Rm×dp and Πq ∈ Rm×dq be defined as in Definition 11, for some base sketches
Sbase ∈ Rm×m2 and Tbase ∈ Rd×d.

If Πq is an (ε, δ, µ, dq, n)-Oblivious Subspace Embedding then Πp is an (ε, δ, µ, dp, n)-Oblivious
Subspace Embedding. Also if Πq has the (ε, δ)-Approximate Matrix Multiplication Property then Πp

has the (ε, δ)-Approximate Matrix Multiplication Property.

Proof. We will prove a correspondence between Πp and Πq. Let E1 ∈ Rd×n be a matrix whose
first row is equal to one and is zero everywhere else. By Definition 11 we have that for any
matrix A ∈ Rdp×n that ΠpA = Πq(A⊗E⊗(q−p)

1). A simple calculation shows that for any matrices
A,B ∈ Rdp×n then

(A⊗ E⊗(q−p)
1)>(B ⊗ E⊗(q−p)

1) = A>B ◦ (E⊗(q−p)
1)>E⊗(q−p)

1 = A>B ,

where ◦ denotes the Hadamard product, and the last equality follows since (E⊗(q−p)
1)>E⊗(q−p)

1 is an
all ones matrix. This implies that ‖A⊗E⊗(q−p)

1 ‖F = ‖A‖F and sλ((A⊗E⊗(q−p)
1)>A⊗E⊗(q−p)

1) =
sλ(A>A).

Now assume that Πq is an (ε, δ, µ, n)-Oblivious Subspace Embedding, and let A ∈ Rdp×n and
λ ≥ 0 be such that sλ(A) ≤ µ. Define A′ = A⊗ E⊗(q−p)

1 , then

Pr
[
(1− ε)(A>A+ λIn) � (ΠpA)>ΠpA+ λIn � (1 + ε)(A>A+ λIn)

]
= Pr

[
(1− ε)(A′>A′ + λIn) � (ΠqA′)>ΠqA′ + λIn � (1 + ε)(A′>A′ + λIn)

]
≥ 1− δ ,

where we have used that sλ(A′>A′) = sλ(A>A) ≤ µ. This shows that Πp is an (ε, δ, µ, n)-Oblivious
Subspace Embedding.

Assume that Πq has (ε, δ)-Approximate Matrix Multiplication Property, and let C,D ∈ Rdp×n.
Define C ′ = C ⊗ E⊗(q−p)

1 and D′ = D ⊗ E⊗(q−p)
1 , then

Pr
[
‖(ΠpC)>ΠpD − C>D‖F ≥ ε‖C‖F ‖D‖F

]
= Pr

[
‖(ΠqC ′)>ΠqD′ − C ′>D′‖F ≥ ε‖C ′‖F ‖D′‖F

]
≤ δ ,

where we have used that ‖C ′‖F = ‖C‖F , ‖D′‖F = ‖D‖F , and C ′>D′ = C>D. This show that Πp

has (ε, δ)-Approximate Matrix Multiplication Property.

Lemma 11. For any ε, δ ∈ [0, 1], t ≥ 1, if M ∈ Rm×d is a random matrix with (ε, δ, t)-JL Moment
Property then M has the (ε, δ)-Approximate Matrix Multiplication Property.

Furthermore, for any µ > 0, if M ∈ Rm×d is a random matrix with (ε/µ, δ, t)-JL Moment
Property then for every positive integer n ∈ Z, M is a (ε, δ, µ, d, n)-OSE.

Proof.

20

Approximate Matrix Multiplication Let C,D ∈ Rd×n. We will prove that∥∥∥‖(MC)>MD − C>D‖F
∥∥∥
Lt
≤ εδ1/t‖C‖F ‖D‖F . (5)

Then Markov’s inequality will give us the result. Using the triangle inequality together with
Lemma 9 we get that:∥∥∥‖(MC)>MD − C>D‖F

∥∥∥
Lt

=
∥∥∥‖(MC)>MD − C>D‖2F

∥∥∥1/2

Lt/2

=

∥∥∥∥∥∥
∑
i,j∈[n]

(
(MCi)>MDj − C>i Dj

)2
∥∥∥∥∥∥

1/2

Lt/2

≤
√ ∑
i,j∈[n]

∥∥(MCi)>MDj − C>i Dj

∥∥2
Lt

≤
√ ∑
i,j∈[n]

ε2δ2/t‖Ci‖22‖Dj‖22

= εδ1/t‖C‖F ‖D‖F .

Using Markov’s inequality we now get that

Pr
[
‖(MC)>MD − C>D‖F ≥ ε‖C‖F ‖D‖F

]
≤

∥∥∥‖(MC)>MD − C>D‖F
∥∥∥t
Lt

εt‖C‖tF ‖D‖tF
≤ δ .

Oblivious Subspace Embedding. We will prove that for any λ ≥ 0 and any matrix A ∈ Rd×n,

(1− ε)(A>A+ λIn) � (MA)>MA+ λIn � (1 + ε)(A>A+ λIn) , (6)

holds with probability at least 1−
(
sλ(A>A)

µ

)t
δ, which will imply our result.

We will first consider λ > 0. Then A>A + λIn is positive definite. Thus, by left and right
multiplying (6) by (A>A+ λIn)−1/2, we see that (6) is equivalent to

(1− ε)In �
(
MA(A>A+ λIn)−1/2

)>
MA(A>A+ λIn)−1/2 + λ(A>A+ λIn)−1 � (1 + ε)In .

which, in turn, is implied by the following:∥∥∥∥(MA(A>A+ λIn)−1/2
)>

MA(A>A+ λIn)−1/2 + λ(A>A+ λIn)−1 − In
∥∥∥∥
op
≤ ε .

Note that (A>A+ λIn)−1/2A>A(A>A+ λIn)−1/2 = In − λ(A>A+ λIn)−1. Letting Z = A(A>A+
λIn)−1/2, we note that it suffices to establish,∥∥∥(MZ)>MZ − Z>Z

∥∥∥
op
≤ ε .

Using (5) together with Markov’s inequality we get that

Pr
[∥∥∥(MZ)>MZ − Z>Z

∥∥∥
op
≥ ε

]
≤ Pr

[∥∥∥(MZ)>MZ − Z>Z
∥∥∥
F
≥ ε

]
≤
(
‖Z‖2F
µ

)t
δ =

(
sλ(A>A)

µ

)t
δ ,

21

where the last equality follows from

‖Z‖2F = tr
(
Z>Z

)
= tr

((
A(A>A+ λIn)−1/2

)>
A(A>A+ λIn)−1/2

)
= tr

(
A>A(A>A+ λIn)−1

)
= sλ(A>A) .

To prove the result for λ = 0 we will use Fatou’s lemma.

Pr
[(

(1− ε)A>A � (MA)>MA � (1 + ε)A>A
)C]

≤ lim inf
λ→0+

Pr
[(

(1− ε)(A>A+ λIn) � (MA)>MA+ λIn � (1 + ε)(A>A+ λIn)
)C]

≤ lim inf
λ→0+

sλ(A>A)
µ

δ

= s0(A>A)
µ

δ ,

where the last equality follows from continuity of λ 7→ sλ(A>A).

Our next important observation is that Πq can be written as the product of 2q− 1 independent
random matrices, which all have a special structure which makes them easy to analyse.

Lemma 12. For any integer q which is a power of two, Πq : Rmq → Rm be defined as in Defini-
tion 11 for some base sketches Sbase : Rm2 → Rm and Tbase : Rd → Rm. Then there exist matrices
(M (i))i∈[q−1], (M ′(j))j∈[q] and integers (ki)i∈[q−1], (k′1)i∈[q−1], (lj)j∈[q], (l′j)j∈[q], such that,

Πq = M (q−1) · . . .M (1) ·M ′(q) · . . . ·M ′(1) ,

andM (i) = Iki×S
(i)
base×Ik′i, M

′(j) = Ilj×T
(j)
base×Il′j , where S

(i)
base and T

(j)
base are independent instances

of Sbase and Tbase, for every i ∈ [q − 1], j ∈ [q].

Proof. We have that Πq = QqT q by Definition 11. By Definition 9 we have that Qq = S2S4 · · ·Sq.
Claim 7 shows that for every l ∈ {2, 4, · · · q} we can write,

Sl = M l
l/2M

l
l/2−1 · . . . ·M

l
1, (7)

where M l
j = Iml−2j × Sll/2−j+1 × Imj−1 for every j ∈ [l/2]. From the discussion in Definition 10 it

follows that,
T q = M ′(q) · . . . ·M ′(1), (8)

where M ′(j) = Idq−j × Tq−j+1 × Imj−1 for every j ∈ [q]. Therefore by combining (7) and (8) we get
the result.

We want to show that Ik ×M × Ik′ inherits the JL properties of M . The following simple fact
does just that.

22

Lemma 13. Let t ∈ N and α ≥ 0. If P ∈ Rm1×d1 and Q ∈ Rm2×d2 are two random matrices (not
necessarily independent), such that,∥∥∥‖Px‖22 − ‖x‖22∥∥∥

Lt
≤ α‖x‖22 and E

[
‖Px‖22

]
= ‖x‖22 ,∥∥∥‖Qy‖22 − ‖y‖22∥∥∥

Lt
≤ α‖y‖22 and E

[
‖Qy‖22

]
= ‖y‖22 ,

for any vectors x ∈ Rd1 and y ∈ Rd2, then∥∥∥‖(P ⊕Q)z‖22 − ‖z‖22
∥∥∥
Lt
≤ α‖z‖22 and E

[
‖(P ⊕Q)z‖22

]
= ‖z‖22 ,

for any vector z ∈ Rd1+d2.

Proof. Let z ∈ Rd1+d2 and choose x ∈ Rd1 and y ∈ Rd2 , such that, z = x ⊕ y. Using the triangle
inequality, ∥∥∥‖(P ⊕Q)z‖22 − ‖z‖22

∥∥∥
Lt

=
∥∥∥‖Px‖22 + ‖Qy‖22 − ‖x‖22 − ‖y‖22

∥∥∥
Lt

≤
∥∥∥‖Px‖22 − ‖x‖22∥∥∥

Lt
+
∥∥∥‖Qy‖22 − ‖y‖22∥∥∥

Lt

≤ α‖x‖22 + α‖y‖22
= α‖z‖22.

We also see that

E
[
‖(P ⊕Q)z‖22

]
= E

[
‖Px‖22

]
+ E

[
‖Qy‖22

]
= ‖x‖22 + ‖y‖22 = ‖z‖22.

An easy consequence of this lemma is that for any matrix, S, with the (ε, δ, t)-JL Moment Prop-
erty, Ik×S has the (ε, δ, t)-JL Moment Property. This follows simply from Ik×S = S ⊕ S ⊕ . . .⊕ S︸ ︷︷ ︸

k times

.

Similarly, S × Ik has the (ε, δ, t)-JL Moment Property, since S × Ik is just a reordering of the rows
of Ik ×S, which trivially does not affect the JL Moment Property. The same arguments show that
if S has the Strong (ε, δ)-JL Moment Property then Ik × S and S × Ik has the Strong (ε, δ)-JL
Moment Property. So we conclude the following

Lemma 14. If the matrix S has the (ε, δ, t)-JL Moment Property, then for any positive integers
k, k′, the matrix M = Ik × S × Ik′ has the (ε, δ, t)-JL Moment Property.

Similarly, if the matrix S has the Strong (ε, δ)-JL Moment Property, then for any positive
integers k, k′, the matrix M = Ik × S × Ik′ has the Strong (ε, δ)-JL Moment Property.

Now if we can prove that the product of matrices with the JL Moment Property has the JL
Moment Property, then Lemma 14 and Lemma 12 would imply that Πq has the JL Moment Prop-
erty, which again implies that Πp is an Oblivious Subspace Embedding and has the Approximate
Matrix Multiplication Property, by Lemma 11 and Lemma 10. This is exactly what we will do: in
Section 4.1 we prove that the product of k independent matrices with the

(
ε√
2k , δ, 2

)
-JL Moment

Property results in a matrix with the (ε, δ, 2)-JL Moment Property, which will give us the proof
of Theorem 1, and in Section 4.2 we prove that the product of k independent matrices with the
Strong

(
O
(
ε√
k

)
, δ
)
-JL Moment Property results in a matrix with the Strong (ε, δ)-JL Moment

Property, which will give us the proof of Theorem 2.

23

4.1 Second Moment of Πq (analysis for Tbase : CountSketch and Sbase : TensorSketch)

In this section we prove Theorem 1 by instantiating our recursive construction from Section 3
with CountSketch at the leaves and TensorSketch at the internal nodes of the tree. The proof
proceeds by showing the second moment property – i.e., (ε, δ, 2)-JL Moment Property, for our
recursive construction. We prove that our sketch Πq satisfies the (ε, δ, 2)-JL Moment Property as per
Definition 18 as long as the base sketches Sbase, Tbase are chosen from a distribution which satisfies
the second moment property. We show that this is the case for CountSketch and TensorSketch.

Lemma 14 together with Lemma 12 show that if the base sketches Sbase, Tbase have the JL
Moment Property then Πq is the product of 2q − 1 independent random matrices with the JL
Moment Property. Therefore, understanding how matrices with the JL Moment Property compose
is crucial. The following lemma shows that composing independent random matrices which have
the JL Moment Property results in matrix which has the JL Moment Property with a small loss
in the parameters.

Lemma 15 (Composition lemma for the second moment). For any ε, δ ≥ 0 and any integer
k if M (1) ∈ Rd2×d1 , · · ·M (k) ∈ Rdk+1×dk are independent random matrices with the

(
ε√
2k , δ, 2

)
-

JL-moment property then the product matrix M = M (k) · · ·M (1) satisfies the (ε, δ, 2)-JL-moment
property.

Proof. Let x ∈ Rd1 be a fixed unit norm vector. We note that for any i ∈ [k] we have that

E
[
‖M (i) · . . . ·M (1)x‖22

∣∣∣M (1), . . . ,M (i−1)
]

= ‖M (i−1) · . . . ·M (1)x‖22 . (9)

Now we will prove by induction on i ∈ [k] that,

Var
[
‖M (i) · . . . ·M (1)x‖22

]
≤
(

1 + ε2δ

2k

)i
− 1. (10)

For i = 1 the result follows from the fact thatM (1) has the (ε/
√

2k, δ, 2)-JL moment property. Now
assume that (10) is true for i− 1. By the law of total variance we get that

Var
[
‖M (i) · . . . ·M (1)x‖22

]
= E

[
Var

[
‖M (i) · . . . ·M (1)x‖22

∣∣∣M (1), . . . ,M (i−1)
]]

+ Var
[
E
[
‖M (i) · . . . ·M (1)x‖22

∣∣∣M (1), . . . ,M (i−1)
]]

(11)

Using (9) and the induction hypothesis we get that,

Var
[
E
[
‖M (i) · . . . ·M (1)x‖22

∣∣∣M (1), . . . ,M (i−1)
]]

= Var
[
‖M (i−1) · . . .M (1)x‖22

]
≤
(

1 + ε2δ

2k

)i−1

− 1. (12)

Using that M (i) has the (ε/
√

2k, δ, 2)-JL moment property, (9), and the induction hypothesis we

24

get that,

E
[
Var

[∥∥∥M (i) · . . . ·M (1)x
∥∥∥2

2

∣∣∣∣M (1), . . . ,M (i−1)
]]

≤ E
[
ε2

2kδ
∥∥∥M (i−1) · . . .M (1)x

∥∥∥4

2

]

= ε2δ

2k

(
Var

[∥∥∥M (i−1) · . . .M (1)x
∥∥∥2

2

]
+ E

[∥∥∥M (i−1) · . . .M (1)x
∥∥∥2

2

]2
)

≤ ε2δ

2k

(1 + ε2δ

2k

)i−1

− 1 + 1

 = ε2δ

2k

(
1 + ε2δ

2k

)i−1

. (13)

Plugging (12) and (13) into (11) gives,

Var
[∥∥∥M (i) · . . . ·M (1)x

∥∥∥2

2

]
≤ ε2δ

2k

(
1 + ε2δ

2k

)i−1

+
(

1 + ε2δ

2k

)i−1

− 1 =
(

1 + ε2δ

2k

)i
− 1 .

Hence,

Var
[
‖Mx‖22

]
≤
(

1 + ε2δ

2k

)k
− 1 ≤ exp(ε2δ/2)− 1 ≤ ε2δ ,

which proves that M has the (ε, δ, 2)-JL moment property.

Equipped with the composition lemma for the second moment, we now establish the second
moment property for our recursive sketch Πq:

Corollary 16 (Second moment property for Πq). For any power of two integer q let Πq : Rmq → Rm
be defined as in Definition 11, where both of the common distributions Sbase : Rm2 → Rm and
Tbase : Rd → Rm, satisfy the

(
ε√

4q+2 , δ, 2
)
-JL-moment property. Then it follows that Πq satisfies

the (ε, δ, 2)-JL-moment property.

Proof. This follows from Lemma 12 and Lemma 15.

Now we are ready to prove Theorem 1. Recall that k(x, y) = 〈x, y〉q is the polynomial kernel of
degree q. One can see that k(x, y) = 〈x⊗q, y⊗q〉. Let x1, x2, · · ·xn ∈ Rm be an arbitrary dataset of
n points in Rm. We represent the data points by matrix X ∈ Rm×n whose ith column is the vector
xi. Let A ∈ Rmq×n be the matrix whose ith column is x⊗qi for every i ∈ [n]. For any regularization
parameter λ > 0, the statistical dimension of A>A is defined as sλ := tr

(
(A>A)(A>A+ λIn)−1

)
.

Theorem 1. For every positive integers n, p, d, every ε, sλ > 0, there exists a distribution on linear
sketches Πp ∈ Rm×dp such that: (1) If m = Ω

(
ps2
λε
−2), then Πp is an (ε, 1/10, sλ, dp, n)-oblivious

subspace embedding as in Definition 2. (2) If m = Ω
(
pε−2), then Πp has the (ε, 1/10)-approximate

matrix product property as in Definition 3.
Moreover, for any X ∈ Rd×n, if A ∈ Rdp×n is the matrix whose columns are obtained by the

p-fold self-tensoring of each column of X then the matrix ΠpA can be computed using Algorithm 1
in time Õ (pnm+ p nnz(X)).

25

Proof. Throughout the proof, let δ = 1
10 denote the failure probability, let q = 2dlog2 pe, and let

e1 ∈ Rd be the column vector with a 1 in the first coordinate and zeros elsewhere. Let Πp ∈ Rm×dp

be the sketch defined in Definition 11, where the base distributions Sbase ∈ Rm×m2 and Tbase ∈ Rm×d
are respectively the standard TensorSketch of degree two and standard CountSketch. It is shown
in [ANW14] and [CW17] that for these choices of base sketches, Sbase and Tbase are both unbiased
and satisfy the

(
ε√

4q+2 , δ, 2
)
-JL-moment property as long as m = Ω(q

ε2δ) (see Definition 18).

Oblivious Subspace Embedding Let m = Ω
(
qs2
λ

δε2

)
be an integer. Then Sbase and Tbase has

the
(

ε√
4q+2sλ

, δ, 2
)
-JL Moment Property. Thus using Corollary 16 we conclude that Πq has the(

ε
sλ
, δ, 2

)
-JL Moment Property. Thus, Lemma 11 implies that Πq is an (ε, δ, sλ, dq, n)-Oblivious

Subspace Embedding, and by Lemma 10 we get that Πp is an (ε, δ, sλ, dp, n)-Oblivious Subspace
Embedding.

Approximate Matrix Multiplication. Let m = Ω
(
q
δε2

)
. Then Sbase and Tbase have the(

ε√
4q+2 , δ, 2

)
-JL Moment Property. Thus, using Corollary 16 we conclude that Πq has the (ε, δ, 2)-

JL Moment Property. Thus, Lemma 11 implies that Πq has the (ε, δ)-Approximate Matrix Multipli-
cation Property, and by Lemma 10 we get that Πp has the (ε, δ)-Approximate Matrix Multiplication
Property.

Runtime of Algorithm 1 when the base sketch Sbase is TensorSketch of degree two and
Tbase is CountSketch: We compute the time of running Algorithm 1 on a vector x. Computing
Y 0
j for each j in lines 3 and 4 of algorithm requires applying a CountSketch on either x or e1 which

takes time O(nnz(x)). Therefore computing all Y 0
j ’s takes time O(q · nnz(x)).

Computing each of Y l
j ’s for l ≥ 1 in line 7 of Algorithm 1 amounts to applying a degree two

TensorSketch of input dimension m2 and target dimension of m on Y l−1
2j−1 ⊗ Y

l−1
2j . This takes time

O(m logm). Therefore computing Y l
j for all l, j ≥ 1 takes time O(q ·m logm). Note that q ≤ 2p

and hence the total running time of Algorithm 1 on one vector x is O(p ·m log2m + p · nnz(w)).
Sketching n columns of a matrix X ∈ Rd×n takes time O(p(nm log2m+ nnz(X))).

4.2 Higher Moments of Πq (analysis for Tbase : OSNAP and Sbase : TensorSRHT)

In this section we prove Theorem 2 by instantiating our recursive construction of Section 3 with
OSNAP at the leaves and TensorSRHT at the internal nodes.

The proof proceeds by showing the Strong JL Moment Property for our sketch Πq. If a sketch
satisfies the Strong JL Moment Property then it straightforwardly is an OSE and has the ap-
proximate matrix product property. This section has two goals: first is to show that SRHT, and
TensorSRHT as well as OSNAP transform all satisfy the Strong JL Moment Property. The second
goal of this section is to prove that our sketch construction Πq inherits the strong JL moment
property from the base sketches Sbase, Tbase.

In this section we will need Khintchine’s inequality.
Lemma 17 (Khintchine’s inequality [HM07]). Let t be a positive integer, x ∈ Rd, and (σi)i∈[d] be
independent Rademacher ±1 random variables. Then∥∥∥∥∥

d∑
i=1

σixi

∥∥∥∥∥
Lt

≤ Ct ‖x‖2,

26

where Ct ≤
√

2
(

Γ((t+1)/2)√
π

)1/t
≤
√
t for all t ≥ 1.

One may replace (σi) with an arbitrary independent sequence of random variables (ςi) with
E[ςi] = 0 and ‖ςi‖Lr ≤

√
r for any 1 ≤ r ≤ t, and the lemma still holds up to a universal constant

factor on the r.h.s.

First we note that the OSNAP transform satisfies the strong JL moment property.

Lemma 18. There exists a universal constant L, such that, the following holds. Let M ∈ Rm×d be
a OSNAP transform with sparsity parameter s. Let x ∈ Rd be any vector with ‖x‖2 = 1 and t ≥ 1,
then ∥∥∥‖Mx‖22 − 1

∥∥∥
Lt
≤ L

(√
t

m
+ t

s

)
. (14)

Setting m = Ω(ε−2 log(1/δ)) and s = Ω(ε−1 log(1/δ)) then M has the Strong (ε, δ)-JL Moment
Property (Definition 19).

Proof. The proof of (14) follows from analysis in [CJN18]. They only prove it for t = log(1/δ) but
their proof is easily extended to the general case.

Now if we set m = 4L2e2 · ε−2 log(1/δ) and s = 2Le · ε−1 log(1/δ) then we get that

∥∥∥‖Mx‖22 − 1
∥∥∥
Lt
≤ L

√
t

4L2e2 · ε−2 log(1/δ) + L
t

2Le · ε−1 log(1/δ) ≤
ε

e

√
t

log(1/δ) ,

for every 1 ≤ t ≤ log(1/δ), which proves the result.

We continue by proving that SRHT and TensorSRHT sketches satisfy the strong JL moment
property. We will do this by proving that a more general class of matrices satisfies the strong JL
moment property. More precisely, let k ∈ Z>0 be a positive integer and (D(i))i∈[k] ∈

∏
i∈[k] Rdi×di

be independent matrices, each with diagonal entries given by independent Rademacher variables.
Let d =

∏
i∈[k] di, and P ∈ {0, 1}m×d be a random sampling matrix in which each row contains

exactly one uniformly distributed nonzero element which has value one. Then we will prove that
the matrix M = 1√

m
PH(D1 × . . . × Dk) satisfies the strong JL moment property, where H is a

d× d Hadamard matrix. If k = 1 then M is just a SRHT, and if k = 2 then M is a TensorSRHT.
In order to prove this result we need a couple of lemmas. The first lemma can be seen as a

version of Khintchine’s inequality for higher order chaos.

Lemma 19. Let t ≥ 1, k ∈ Z>0, and (σ(i))i∈[k] ∈
∏
i∈[k] Rdi be independent vectors each sat-

isfying the Khintchine inequality
∥∥∥〈σ(i), x〉

∥∥∥
Lt
≤ Ct‖x‖2 for t ≥ 1 and any vector x ∈ Rdi. Let

(ai1,...,ik)i1∈[dj],...,ik∈[dk] be a tensor in Rd1×...×dk , then

∥∥∥∥∥∥
∑

i1∈[d1],...,ik∈[dk]

∏
j∈[k]

σ
(j)
ij

 ai1,...,ik
∥∥∥∥∥∥
Lt

≤ Ckt

 ∑
i1∈[d1],...,ik∈[dk]

a2
i1,...,ik

1/2

,

for t ≥ 1. Or, considering a ∈ Rd1···dk a vector, then simply
∥∥∥〈σ(1) ⊗ · · · ⊗ σ(k), a〉

∥∥∥
Lt
≤ Ckt ‖a‖2,

for t ≥ 1.

27

This is related to Latała’s estimate for Gaussian chaoses [Lat06], but more simple in the case
where a is not assumed to have special structure. Note that this implies the classical bound on
the fourth moment of products of 4-wise independent hash functions [BCL+10, IM08, PT12], since
C4 = 31/4 for Rademachers we have E

[
〈σ(1) ⊗ · · · ⊗ σ(k), x〉4

]
≤ 3k‖x‖42 for four-wise independent

(σ(i))i∈[k].

Proof. The proof will be by induction on k. For k = 1 then the result is by assumption. So assume
that the result is true for every value up to k − 1. Let Bi1,...,ik−1 =

∑
ik∈[dk] σ

(k)
ik
ai1,...,ik . We then

pull it out of the left hand term in the theorem:∥∥∥∥∥∥
∑

i1∈[d1],...,ic∈[dc]

∏
j∈[k]

σ
(j)
ij

 ai1,...,ik
∥∥∥∥∥∥
Lt

=

∥∥∥∥∥∥
∑

i1∈[d1],...,ik−1∈[dk−1]

 ∏
j∈[k−1]

σ
(j)
ij

Bi1,...,ik−1

∥∥∥∥∥∥
Lt

≤ Ck−1
t

∥∥∥∥∥∥∥
 ∑
i1∈[d1],...,ik−1∈[dk−1]

B2
i1,...,ik−1

1/2
∥∥∥∥∥∥∥
Lt

(15)

= Ck−1
t

∥∥∥∥∥∥
∑

i1∈[d1],...,ik−1∈[dk−1]
B2
i1,...,ik−1

∥∥∥∥∥∥
1/2

Lt/2

≤ Ck−1
t

 ∑
i1∈[d1],...,ik−1∈[dk−1]

∥∥∥B2
i1,...,ik−1

∥∥∥
Lt/2

1/2

(16)

= Ck−1
p

 ∑
i1∈[d1],...,ik−1∈[dk−1]

∥∥Bi1,...,ik−1

∥∥2
Lt

1/2

.

Here (15) is the inductive hypothesis and (16) is the triangle inequality. Now
∥∥Bi1,...,ik−1

∥∥2
Lt
≤

C2
t

∑
ic∈[dc] a

2
i1,...,ic by Khintchine’s inequality, which finishes the induction step and hence the proof.

The next lemma we will be using is a type of Rosenthal inequality, but which mixes large and
small moments in a careful way. It bears similarity to the one sided bound in [BLM13] (Theorem
15.10) derived from the Efron Stein inequality, and the literature has many similar bounds, but we
still include a proof here based on first principles.

Lemma 20. There exists a universal constant L, such that, for t ≥ 1 if X1, . . . , Xk are independent
non-negative random variables with t-moment, then∥∥∥∥∥∥

∑
i∈[k]

(Xi − E[Xi])

∥∥∥∥∥∥
Lt

≤ L

√t ∥∥∥∥∥max
i∈[k]

Xi

∥∥∥∥∥
1/2

Lt

√∑
i∈[k]

E[Xi] + t

∥∥∥∥∥max
i∈[k]

Xi

∥∥∥∥∥
Lt

 .

28

Proof. Throughout these calculations L1, L2 and L3 will be universal constants.∥∥∥∥∥∥
∑
i∈[k]

(Xi − E[Xi])

∥∥∥∥∥∥
Lt

≤ L1

∥∥∥∥∥∥
∑
i∈[k]

σiXi

∥∥∥∥∥∥
Lt

(Symmetrization)

≤ L2
√
t

∥∥∥∥∥∥
∑
i∈[k]

X2
i

∥∥∥∥∥∥
1/2

Lt/2

(Khintchine’s inequality)

≤ L2
√
t

∥∥∥∥∥∥max
i∈[k]

Xi ·
∑
i∈[k]

Xi

∥∥∥∥∥∥
1/2

Lt/2

(Non-negativity)

≤ L2
√
t

∥∥∥∥∥max
i∈[k]

Xi

∥∥∥∥∥
1/2

Lt

·

∥∥∥∥∥∥
∑
i∈[k]

Xi

∥∥∥∥∥∥
1/2

Lt

(Cauchy-Schwartz)

≤ L2
√
t

∥∥∥∥∥max
i∈[k]

Xi

∥∥∥∥∥
1/2

Lt

√∑
i∈[k]

E[Xi] + L2

∥∥∥∥∥∥
∑
i∈[k]

(Xi − E[Xi])

∥∥∥∥∥∥
1/2

Lt

 .

Now let C =
∥∥∥∑i∈[k](Xi − E[Xi])

∥∥∥1/2

Lt
, B = L2

√∑
i∈[k] E[Xi], and A =

√
t
∥∥∥maxi∈[k]Xi

∥∥∥1/2

Lt
. then

we have shown C2 ≤ A(B + C). That implies C is smaller than the largest of the roots of the
quadratic. Solving this quadratic inequality gives C2 ≤ L3(AB +A2) which is the result.

We can now prove that SHRT and TensorSRHT has the Strong JL Moment Property.

Lemma 21. There exists a universal constant L, such that, the following holds. Let k ∈ Z>0, and
(D(i))i∈[k] ∈

∏
i∈[k] Rdi×di be independent diagonal matrices with independent Rademacher variables.

Define d =
∏
i∈[k] di and D = D1×D2× · · ·Dc ∈ Rd×d. Let P ∈ Rm×d be an independent sampling

matrix which samples exactly one coordinate per row, and define M = PHD where H is a d × d
Hadamard matrix. Let x ∈ Rd be any vector with ‖x‖2 = 1 and t ≥ 1, then

∥∥∥ 1
m‖PHDx‖

2
2 − 1

∥∥∥
Lt
≤ L

√ trk

m
+ trk

m

 ,

where r = max{t, logm}.
There exists a universal constant L′, such that, setting m = Ω

(
ε−2 log(1/δ)(L′ log(1/εδ))k

)
, we

get that 1√
m
PHD has Strong (ε, δ)-JL Moment Property.

Note that setting k = 1, this matches the Fast Johnson Lindenstrauss analysis in [CNW16b].

Proof. Throughout the proof C1, C2 and C3 will denote universal constants.
For every i ∈ [m] we let Pi be the random variable that says which coordinate the i’th row of P

samples, and we define the random variable Zi = Mix = HPiDx. We note that since the variables
(Pi)i∈[m] are independent then the variables (Zi)i∈[m] are conditionally independent given D, that
is, if we fix D then (Zi)i∈[m] are independent.

29

We use Lemma 20, the triangle inequality, and Cauchy-Schwartz to get that∥∥∥∥∥∥ 1
m

∑
i∈[m]

Z2
i − 1

∥∥∥∥∥∥
Lt

=

∥∥∥∥∥∥∥E
 1

m

∑
i∈[m]

Z2
i − 1

t ∣∣∣∣∣∣ D
1/t∥∥∥∥∥∥∥

Lt

≤ C1

∥∥∥∥∥∥∥
√
t

m
E

(max
i∈[m]

Z2
i

)t ∣∣∣∣∣∣ D
1/(2t)√∑

i∈[m]
E
[
Z2
i

∣∣ D]+ t

m
E

(max
i∈[m]

Z2
i

)t ∣∣∣∣∣∣ D
1/t

∥∥∥∥∥∥∥
Lt

≤ C1

√
t

m

∥∥∥∥∥∥∥E
(max

i∈[m]
Z2
i

)t ∣∣∣∣∣∣ D
1/(2t)√∑

i∈[m]
E
[
Z2
i

∣∣ D]
∥∥∥∥∥∥∥
Lt

+ C1
t

m

∥∥∥∥∥max
i∈[m]

Z2
i

∥∥∥∥∥
Lt

≤ C1

√
t

m

∥∥∥∥∥max
i∈[m]

Z2
i

∥∥∥∥∥
1/2

Lt

∥∥∥∥∥∥
∑
i∈[m]

E
[
Z2
i

∣∣∣ D]
∥∥∥∥∥∥

1/2

Lt

+ C1
t

m

∥∥∥∥∥max
i∈[m]

Z2
i

∥∥∥∥∥
Lt

.

By orthogonality of H we have ‖HDx‖22 = d‖x‖22 independent of D. Hence∑
i∈[m]

E
[
Z2
i

∣∣∣ D] =
∑
i∈[m]

‖x‖22 = m .

To bound
∥∥∥maxi∈[m] Z

2
i

∥∥∥
Lt

we first use Lemma 19 to show
∥∥∥Z2

i

∥∥∥
Lr

= ‖HPiDx‖
2
L2r = ‖Dx‖2L2r ≤ rk‖x‖22 .

We then bound the maximum using a sufficiently high powered sum:

∥∥∥∥∥max
i∈[m]

Z2
i

∥∥∥∥∥
Lt

≤
∥∥∥∥∥max
i∈[m]

Z2
i

∥∥∥∥∥
Lr

≤

∑
i∈[m]

∥∥∥Z2
i

∥∥∥r
Lr

1/r

≤ m1/rrk‖x‖22 ≤ erk ,

where the last inequality follows from r ≥ logm. This gives us that∥∥∥∥∥∥ 1
m

∑
i∈[m]

Z2
i − ‖x‖22

∥∥∥∥∥∥
Lt

≤ C2

√
trk

m
+ C2

trk

m
,

which finishes the first part of the proof.
We set m = 4e2C2

2ε
−2 log(1/δ)(C3 log(1/(δε)))k, such that, r ≤ C3 log(1/(δε)). Hence m ≥

4e2C2
2ε
−2 log(1/δ)rk. We then get that

∥∥∥‖PHDx‖22 − 1
∥∥∥
Lt
≤ C2

√
trk

4e2C2
2ε
−2 log(1/δ)rk

+ C2
trk

4e2C2
2ε
−2 log(1/δ)rk

≤ ε

e

√
t

log 1/δ ,

for all 1 ≤ t ≤ log(1/δ) which finishes the proof.

30

Now we have proved that the Strong JL Moment Property is satisfied by the SRHT, the Ten-
sorSRHT as well as OSNAP transform, but we still need to prove the usefulness of the property.
Our next result remedies this and show that the Strong JL Moment Property is preserved under
multiplication. We will use the following decoupling lemma which first appeared in [Hit94], but the
following is roughly taken from [DlPG12], which we also recommend for readers interested in more
general versions.

Lemma 22 (General decoupling, [DlPG12] Theorem 7.3.1, paraphrasing). There exists an uni-
versal constant C0, such that, given any two sequences (Xi)i∈[n] and (Yi)i∈[n] of random variables,
satisfying

1. Pr
[
Yi > t

∣∣∣ (Xj)j∈[i−1]
]

= Pr
[
Xi > t

∣∣∣ (Xj)j∈[i−1]
]
for every t ∈ R and for every i ∈ [n].

2. The sequence (Yi)i∈[n] is conditionally independent given (Xi)i∈[n].

3. Pr
[
Yi > t

∣∣∣ (Xj)j∈[i−1]
]

= Pr
[
Yi > t

∣∣∣ (Xj)j∈[n]
]
for every t ∈ R and for every i ∈ [n].

Then for all t ≥ 1, ∥∥∥∥∥∥
∑
i∈[n]

Xi

∥∥∥∥∥∥
Lt

≤ C0

∥∥∥∥∥∥
∑
i∈[n]

Yi

∥∥∥∥∥∥
Lt

We are now ready to state and prove the main lemma of this section.

Lemma 23. There exists a universal constant L, such that, for any constants ε, δ ∈ [0, 1] and
positive integer k ∈ Z>0. If M (1) ∈ Rd2×d1 , . . . ,M (k) ∈ Rdk+1×dc are independent random matrices
with the Strong (ε/(L

√
k), δ)-JL Moment Property, then the matrix M = M (k) · . . . ·M (1) has the

Strong (ε, δ)-JL Moment Property.

Proof. Let x ∈ Rd1 be an arbitrary, fixed unit vector, and fix 1 < t ≤ log(1/δ). We define Xi =
‖M (i) · . . . · M (1)x‖22 and Yi = Xi − Xi−1 for every i ∈ [k]. By telescoping we then have that
Xi − 1 =

∑
j∈[i] Yi. We let (T (i))i∈[k] be independent copies of (M (i))i∈[k] and define

Zi = ‖T (i) ·M (i−1) · . . . ·M (1)x‖22 − ‖M (i−1) · . . . ·M (1)x‖22 ,

for every i ∈ [k]. We get the following three properties:

1. Pr
[
Zi > t

∣∣∣ (M (j))j∈[i−1]
]

= Pr
[
Yi > t

∣∣∣ (M (j))j∈[i−1]
]
for every t ∈ R and every i ∈ [k].

2. The sequence (Zi)i∈[k] is conditionally independent given (M (i))i∈[k].

3. Pr
[
Zi > t

∣∣∣ (M (j))j∈[i−1]
]

= Pr
[
Zi > t

∣∣∣ (M (j))j∈[k]
]
for every t ∈ R and for every i ∈ [k].

This means we can use Lemma 22 to get∥∥∥∥∥∥
∑
j∈[i]

Yj

∥∥∥∥∥∥
Lt

≤ C0

∥∥∥∥∥∥
∑
j∈[i]

Zj

∥∥∥∥∥∥
Lt

. (17)

for every i ∈ [k].

31

We will prove by induction on i ∈ [k] that

‖Xi − 1‖Lt ≤
ε

e

√
t

log(1/δ) ≤ 1 . (18)

For i = 1 we use that M (1) has the Strong (ε/(L
√
k), δ)-JL Moment Property and get that

∥∥∥‖M (1)x‖22 − 1
∥∥∥
Lt
≤ ε

eL
√
k

√
t

log(1/δ) ≤
ε

e

√
t

log(1/δ) .

Now assume that (18) is true for i − 1. Using (17) we get that ‖Xi − 1‖Lt =
∥∥∥∑j∈[i] Yj

∥∥∥
Lt
≤

C0
∥∥∥∑j∈[i] Zj

∥∥∥
Lt
. By using that (T (j))j∈[i] has the Strong (ε/(L

√
k), δ)-JL Moment Property to-

gether with Khintchine’s inequality (Lemma 17), we get that

∥∥∥∥∥∥
∑
j∈[i]

Zj

∥∥∥∥∥∥
Lt

=

∥∥∥∥∥∥∥E
∑

j∈[i]
Zj

t ∣∣∣∣∣∣ (M (j))j∈[i]

1/t∥∥∥∥∥∥∥
Lt

≤ C1

∥∥∥∥∥∥ ε

eL
√
k

√
t

log(1/δ)

√∑
j∈[i]

X2
j

∥∥∥∥∥∥
Lt

= C1
ε

e

√
t

log(1/δ) ·
1

L
√
k

√√√√√
∥∥∥∥∥∥
∑
j∈[i]

X2
j

∥∥∥∥∥∥
Lt/2

≤ C1
ε

e

√
t

log(1/δ) ·
1

L
√
k

√∑
j∈[i]
‖Xj‖2Lt ,

where the last inequality follows from the triangle inequality. Using the triangle inequality and
(18) we get that

‖Xj‖Lt ≤ 1 + ‖Xj − 1‖Lt ≤ 2 ,

for every j ∈ [i]. Setting L = 2C0C1 we get that∥∥∥∥∥∥
∑
j∈[i]

Yj

∥∥∥∥∥∥
Lt

≤ ε

e

√
t

log(1/δ) ·
C0C1

L
√
k

√∑
j∈[i]
‖Xj‖2Lt (19)

≤ ε

e

√
t

log(1/δ) ·
C0C1

L
√
k
· 2
√
i (20)

≤ ε

e

√
t

log(1/δ) , (21)

which finishes the induction. Now we have that
∥∥‖Mx‖22 − 1

∥∥
Lt ≤

ε
e

√
t

log(1/δ) so we conclude that
M has Strong (ε, δ)-JL Moment Property.

A simple corollary of this result is a sufficient condition for our recursive sketch Πq to have the
Strong JL Moment Property.

32

Corollary 24 (Strong JL Moment Property for Πq). For any integer q which is a power of two,
let Πq : Rmq → Rm be defined as in Definition 11, where both of the common distributions Sbase :
Rm2 → Rm and Tbase : Rd → Rm, satisfy the Strong

(
O
(
ε√
q

)
, δ
)
-JL Moment Property. Then it

follows that Πq satisfies the Strong (ε, δ)-JL Moment Property.

Proof. The proof follows from using Lemma 12 and Lemma 23.

We conclude this section by proving Theorem 2.

Theorem 2. For every positive integers n, p, d, every ε, sλ > 0, there exists a distribution on linear
sketches Πp ∈ Rm×dp such that: (1) If m = Ω̃

(
ps2
λε
−2), then Πp is an (ε, 1/poly (n) , sλ, dp, n)-

oblivious subspace embedding (Definition 2). (2) If m = Ω̃
(
pε−2), then Πp has the (ε, 1/poly (n))-

approximate matrix product property (Definition 3).
Moreover, in the setting of (1), for any X ∈ Rd×n, if A ∈ Rdp×n is the matrix whose columns

are obtained by a p-fold self-tensoring of each column of X, then the matrix ΠpA can be computed
using Algorithm 1 in time Õ

(
pnm+ p3/2sλε

−1 nnz(X)
)
.

Proof. Let δ = 1
poly(n) denote the failure probability. Define q = dlog2(p)e and let Πp ∈ Rm×dp and

Πq ∈ Rm×dq be the sketches defined in Definition 11, where Sbase ∈ Rm×m2 is a TensorSRHT sketch
and Tbase ∈ Rm×d is an OSNAP sketch with sparsity parameter s, which will be set later.

Oblivious Subspace Embedding Let m = Θ
(
ps2
λ log(1/(εδ))3

ε2

)
and s = Θ

(√
psλ log(1/δ)

ε

)
be

integers, then Lemma 21 and Lemma 18 implies that Sbase and Tbase has the Strong
(
O
(

ε√
qsλ

)
, δ
)
-

JL Moment Property, thus using Corollary 24 we conclude that Πq has the Strong
(
ε
sλ
, δ
)
-JL

Moment Property and in particular it has the
(
ε
sλ
, δ, log(1/δ)

)
-JL Moment Property. By Lemma 11

we then get that Πq is an (ε, δ, sλ, dq, n)-Oblivious Subspace Embedding, and by Lemma 10 we get
that Πp is an (ε, δ, sλ, dp, n)-Oblivious Subspace Embedding.

Approximate Matrix Multiplication Let m = Θ
(
p log(1/(εδ))3

ε2

)
and s = Θ

(√
p log(1/δ)

ε

)
be

integers. Then Lemma 21 and Lemma 18 implies that Sbase and Tbase has the Strong
(
O
(

ε√
qsλ

)
, δ
)
-

JL Moment Property. Thus, using Corollary 24 we conclude that Πq has the Strong (ε, δ)-JL
Moment Property and in particular it has the (ε, δ, log(1/δ))-JL Moment Property. By Lemma 11
we then get that Πq has the (ε, δ)-Approximate Matrix Multiplication Property, and by Lemma 10
we get that Πp has the (ε, δ)-Approximate Matrix Multiplication Property.

Runtime of Algorithm 1 when the base sketch Sbase is a TensorSRHT sketch and Tbase is
an OSNAP sketch with sparsity parameter s: We compute the time of running Algorithm 1
on a vector x. Computing Y 0

j for each j in lines 3 and 4 of algorithm requires applying an ONSAP
sketch on either x or e1 which takes time O(s · nnz(x)). Therefore computing all Y 0

j ’s takes time
O(qs · nnz(x)).

Computing each of Y l
j ’s for l ≥ 1 in line 7 of Algorithm 1 amounts to applying a TensorSRHT

sketch of input dimension m2 and target dimension of m on Y l−1
2j−1 ⊗ Y l−1

2j . This takes time
O(m logm). Therefore computing Y l

j for all l, j ≥ 1 takes time O(q ·m logm). Note that q ≤ 2p
hence the total running time of Algorithm 1 on one vector x is O(pm log2m+ps·nnz(w)). Sketching
n columns of a matrix X ∈ Rd×n takes time O(p(nm log2m+ s · nnz(X))).

33

In the setting of (1) we have that s = O
(√

psλ log(1/δ)
ε

)
, hence we get a runtime of

O
(
pnm log2m+ p3/2sλ log(1/δ))

ε nnz(X)
)

= Õ
(
pnm+ p3/2sλ

ε nnz(X)
)
.

5 Linear Dependence on the Statistical Dimension sλ

In this section, we show that if one chooses the internal nodes and the leaves of our recursive con-
struction from Section 3 to be TensorSRHT and OSNAP transform respectively, then the recursive
construction Πq as in Definition 11 yields a high probability OSE with target dimension Õ(p4sλ).
Thus, we prove Theorem 3. This sketch is very efficiently computable for high degree tensor prod-
ucts because the OSNAP transform is computable in input sparsity time and the TensorSRHT
supports fast matrix vector multiplication for tensor inputs.

We start by defining the Spectral Property for a sketch. We use the notation ‖ · ‖op to denote
the operator norm of matrices.

Definition 20 (Spectral Property). For any positive integers m,n, d and any ε, δ, µF , µ2 ≥ 0 we
say that a random matrix S ∈ Rm×d satisfies the (µF , µ2, ε, δ, n)-spectral property if, for every fixed
matrix U ∈ Rd×n with ‖U‖2F ≤ µF and ‖U‖2op ≤ µ2,

Pr
S

[∥∥∥U>S>SU − U>U∥∥∥
op
≤ ε

]
≥ 1− δ.

The spectral property is a central property of our sketch construction from Section 3 when leaves
are OSNAP and internal nodes are TensorSRHT. This is a powerful property which implies that
any sketch which satisfies the spectral property, is an Oblivious Subspace Embedding. The SRHT,
TensorSRHT, as well as OSNAP sketches (Definitions 14, 15, 16 respectively) with target dimension
m = Ω

(
(µFµ2

ε2) · poly (log(nd/δ))
)
and sparsity parameter s = Ω(poly (log(nd/δ))), all satisfy the

above-mentioned spectral property [Sar06, Tro11, NN13].
In section 5.1 we recall the tools from the literature which we use to prove the spectral property

for our construction Πq. Then in section 5.2 we show that our recursive construction in Section
3 satisfies the Spectral Property of Definition 20 as long as Idq × Tbase and Imq × Sbase satisfy
the Spectral Property. Therefore, we analyze the Spectral Property of Idq× OSNAP and Imq×
TensorSRHT in section 5.3 and section 5.4 respectively. Finally we put everything together in
section 5.5 and prove that when the leaves are OSNAP and the internal nodes are TensorSRHT
in our recursive construction of Section 3, the resulting sketch Πq satisfies the Spectral Property
thereby proving Theorem 3.

5.1 Matrix Concentration Tools

In this section we present the definitions and tools which we use for proving concentration properties
of random matrices.

Claim 25. For every ε, δ > 0 and any sketch S ∈ Rm×d such that Ik × S satisfies (µF , µ2, ε, δ, n)-
spectral property, the sketch S × Ik also satisfies the (µF , µ2, ε, δ, n)-spectral property.

Proof. Suppose U ∈ Rdk×n. Then, note that there exists U ′ ∈ Rdk×n formed by permuting the
rows of U such that (S × Ik)U and (Ik × S)U ′ are identical up to a permutation of the rows. (In
particular, U ′ is the matrix such that the (d, k)-reshaping of any column U j of U ′ is the transpose
of the (k, d)-reshaping of the corresponding column U ′j of U ′.) Then, observe that

U>U = U ′>U ′.

34

and
U>(S × Ik)>(S × Ik)U = U ′>(Ik × S)>(Ik × S)U ′.

Therefore,

‖U>(S × Ik)>(S × Ik)U − U>U‖op = ‖U ′>(S × Ik)>(S × Ik)U ′ − U ′
>
U ′‖op.

Moreover, since U and U ′ are identical up to a permutation of the rows, we have ‖U‖op = ‖U ′‖op
and ‖U‖F = ‖U ′‖F . The desired claim now follows easily.

We will use matrix Bernstein inequalities to show spectral guarantees for sketches,

Lemma 26 (Matrix Bernstein Inequality (Theorem 6.1.1 in [Tro15])). Consider a finite sequence Zi
of independent, random matrices with dimensions d1×d2. Assume that each random matrix satisfies
E[Zi] = 0 and ‖Zi‖op ≤ B almost surely. Define σ2 = max{‖

∑
i E[ZiZ∗i]‖op, ‖

∑
i E[Z∗i Zi]‖op}.

Then for all t > −0,

P

∥∥∥∥∥∑
i

Zi

∥∥∥∥∥
op

≥ t

 ≤ (d1 + d2) · exp
(
−t2/2

σ2 +Bt/3

)
.

Lemma 27 (Restatement of Corollary 6.2.1 of [Tro15]). Let B be a fixed n× n matrix. Construct
an n× n matrix R that satisfies,

E[R] = B and ‖R‖op ≤ L,

almost surely. Define M = max{‖E[RR∗]‖op, ‖E[R∗R]‖op}. Form the matrix sampling estimator,

R̄ = 1
m

m∑
k=1

Rk,

where each Rk is an independent copy of R. Then,

Pr
[
‖R̄−B‖op ≥ ε

]
≤ 8n · exp

(
−mε2/2

M + 2Lε/3

)
.

To analyze the performance of SRHT we need the following claim which shows that with high
probability individual entries of the Hadamard transform of a vector with random signs on its
entries do not “overshoot the mean energy” by much.

Claim 28. Let D be a d×d diagonal matrix with independent Rademacher random variables along
the diagonal. Also, let H be a d× d Hadamard matrix. Then, for every x ∈ Rd,

Pr
D

[
‖HD · x‖∞ ≤ 2

√
log2(d/δ) · ‖x‖2

]
≥ 1− δ.

Proof. By Khintchine’s inequality, Lemma 17 we have that for every t ≥ 1 and every j ∈ [d] the
jth element of HDx has a bounded tth moment as follows,

‖(HDx)j‖Lt ≤
√
t · ‖x‖2.

Hence by applying Markov’s inequality to the tth moment of |(HDx)j | for t = log2(d/δ) we get
that,

Pr
[
|(HDx)j | ≥ 2

√
log2(d/δ) · ‖x‖2

]
≤ δ/d.

The claim follows by a union bound over all entries j ∈ [d].

35

Claim 29. Let D1, D2 be two independent d×d diagonal matrices, each with diagonal entries given
by independent Rademacher random variables. Also, let H be a d× d Hadamard matrix. Then, for
every x ∈ Rd2,

Pr
D1,D2

[‖ ((HD1)× (HD2)) · x‖∞ ≤ 4 log2(d/δ) · ‖x‖2] ≥ 1− δ.

Proof. By Claim 6 we can write that,

(HD1)× (HD2) = (H ×H)(D1 ×D2),

where H ×H is indeed a Hadamard matrix of size d2 × d2 which we denote by H ′. The goal is to
prove

Pr
D1,D2

[
‖H ′(D1 ×D2) · x‖∞ ≤ 4 log2(d/δ) · ‖x‖2

]
≥ 1− δ.

By Lemma 19 we have that for every t ≥ 1 and every j ∈ [d2] the jth element of H ′(D1×D2)x has
a bounded tth moment as follows,∥∥(H ′(D1 ×D2)x)j

∥∥
Lt ≤ t · ‖x‖2.

Hence by applying Markov’s inequality to the tth moment of |(H ′(D1 ×D2)x)j | for t = log2(d/δ)
we get that,

Pr
[
|(H ′(D1 ×D2)x)j | ≥ 4log2(d/δ) · ‖x‖2

]
≤ δ/d2.

The claim follows by a union bound over all entries j ∈ [d2].

5.2 Spectral Property of the sketch Πq

In this section we show that the sketch Πq presented in Definition 11 inherits the spectral property
(see Definition 20) from the base sketches Sbase and Tbase. We start by the following claim which
proves that composing two random matrices with spectral property results in a matrix with spectral
property.

Claim 30. For every ε, ε′, δ, δ′ > 0, suppose that S ∈ Rm×t is a sketch which satisfies the ((µF +
1)(1+ ε′), µ2 +1+ ε′, ε, δ, n)-spectral property and also suppose that the sketch T ∈ Rt×d satisfies the
(µF+1, µ2+1, ε′, δ′/n, n)-spectral property. Then S·T satisfies the (µF + 1, µ2 + 1, ε+ ε′, δ + δ′(1 + 1/n), n)-
spectral property.

Proof. Suppose S and T are matrices satisfying the hypothesis of the claim. Consider an arbitrary
matrix U ∈ Rd×n which satisfies ‖U‖2F ≤ µF + 1 and ‖U‖2op ≤ µ2 + 1. We want to prove that for
every such U ,

Pr
[
‖U>(S · T)>(S · T)U − U>U‖op ≤ ε+ ε′

]
≥ 1− δ − δ′(1 + 1/n).

Let us define the event E as follows,

E :=
{
‖T · U‖2F ≤

(
1 + ε′

)
‖U‖2F and

∥∥∥U>T>TU − U>U∥∥∥
op
≤ ε′

}
.

We show that this event holds with probability 1− δ′(1 + 1/n) over the random choice of sketch T .
The spectral property of T implies that for every column U j of matrix U ,

‖TU j‖22 =
(
1± ε′

)
‖U j‖22,

36

with probability 1− δ′

n . By a union bound over all j ∈ [n], we have the following,

Pr
T

[
‖T · U‖2F ≤

(
1 + ε′

)
‖U‖2F

]
≥ 1− δ′.

Also,
Pr
T

[∥∥∥U>T>TU − U>U∥∥∥
op
≤ ε′

]
≥ 1− δ′/n.

Therefore by union bound,
Pr
T

[E] ≥ 1− δ′(1 + 1/n).

We condition on T ∈ E in the rest of the proof. Since S satisfies the ((µF+1)(1+ε′), µ2+1+ε′, ε, δ, n)-
spectral property,

Pr
S

[∥∥∥(TU)>S>S(TU)− (TU)>(TU)
∥∥∥
op
≤ ε

]
≥ 1− δ.

Therefore,

Pr
T,S

[∥∥∥U>(S · T)>(S · T)U − U>U
∥∥∥
op
≤ ε+ ε′

]
≥ Pr

S

[∥∥∥U>(S · T)>(S · T)U − U>U
∥∥∥
op
≤ ε+ ε′

∣∣∣T ∈ E]− Pr
T

[Ē]

≥ Pr
S

[∥∥∥(TU)>S>S(TU)− U>U
∥∥∥
op
≤ ε+ ε′

∣∣∣T ∈ E]− δ′(1 + 1/n)

≥ Pr
S

[∥∥∥(TU)>S>S(TU)− (TU)>(TU)
∥∥∥
op

+
∥∥∥(TU)>(TU)− U>U

∥∥∥
op
≤ ε+ ε′

∣∣∣∣T ∈ E]− δ′(1 + 1
n

)

≥ Pr
S

[∥∥∥(TU)>S>S(TU)− (TU)>(TU)
∥∥∥
op
≤ ε

∣∣∣T ∈ E]− δ′(1 + 1/n)

≥ 1− δ − δ′(1 + 1/n).

This completes the proof.

In the following lemma we show that composing independent random matrices with spectral
property preserves the spectral property.

Lemma 31. For any ε, δ, µF , µ2 > 0 and every positive integers k, n, if M (1) ∈ Rd2×d1 , · · ·M (k) ∈
Rdk+1×dk are independent random matrices with the (2µF + 2, 2µ2 + 2, O(ε/k), O(δ/nk), n)-spectral
property then the product matrix M = M (k) · · ·M (1) satisfies the (µF + 1, µ2 + 1, ε, δ, n)-spectral
property.

Proof. Consider a matrix U ∈ Rd1×n which satisfies ‖U‖2F ≤ µF + 1 and ‖U‖2op ≤ µ2 + 1. We want
to prove that for every such U ,

Pr
[
‖U>M>MU − U>U‖op ≤ ε

]
≥ 1− δ,

where M = M (k) · · ·M (1).
By the assumption of the lemma the matricesM (1), · · ·M (k) satisfy the (2µF+2, 2µ2+2, O(ε/k), O(δ/nk), n)-

spectral property. For every j ∈ [k], let us define the set Ej as follows,

Ej :=


(
M (1), · · · ,M (j)

)
:


1.
∥∥∥(M (j) · · ·M (1)

)
U
∥∥∥2

F
≤
(
1 + ε

10k
)j ‖U‖2F

2.
∥∥∥∥U> (M (j) · · ·M (1)

)> (
M (j) · · ·M (1)

)
U − U>U

∥∥∥∥
op
≤ εj

3k

 .
37

First we prove that for every j ∈ {1, · · · , k − 1},

Pr
M(j+1)

[(
M (1), · · · ,M (j+1)

)
∈ Ej+1

∣∣∣ (M (1), · · · ,M (j)
)
∈ Ej

]
≥ 1− δ

2k .

Let us denote
(
M (j) · · ·M (1)

)
· U by U ′. The condition

(
M (1), · · · ,M (j)

)
∈ Ej implies that,

‖U ′‖2F ≤ (1 + ε/(10k))j‖U‖2F and ‖U ′>U ′ − U>U‖op ≤ εj
3k and therefore by triangle inequality we

have ‖U ′‖2op ≤
(
‖U‖op + εj

3k

)2
. The assumptions ‖U‖2F ≤ µF + 1 and ‖U‖2op ≤ µ2 + 1 imply that

‖U ′‖2F ≤ 2µF + 2 and ‖U ′‖2op ≤ 2µ2 + 2. Now note that by the assumption of the lemma, M (j+1)

satisfies the (2µF + 2, 2µ2 + 2, O(ε/k), O(δ/nk), n)-spectral property. Therefore,

Pr
M(j+1)

[∥∥∥∥(M (j+1)U ′
)>

M (j+1)U ′ − U ′>U ′
∥∥∥∥
op
≤ ε

3k

∣∣∣∣∣ (M (1), · · · ,M (j)
)
∈ Ej

]
≥ 1− δ/(4nk).

Combining the above with ‖U ′>U ′ − U>U‖2 ≤ εj
3k gives,

Pr
M(j+1)

[∥∥∥∥(M (j+1)U ′
)>

M (j+1)U ′ − U>U
∥∥∥∥
op
≤ εj + 1

3k

∣∣∣∣∣ (M (1), · · · ,M (j)
)
∈ Ej

]
≥ 1− δ/(4nk).

(22)
Also from the spectral property of M (j+1) it follows that for every column U ′i of matrix U ′,

‖M (j+1)U ′
i‖22 = (1± ε/(10k)) ‖U ′i‖22,

with probability 1− δ
4nk . By a union bound over all i ∈ [n], we have the following,

Pr
M(j+1)

[
‖M (j+1) · U ′‖2F ≤ (1 + ε/(10k)) ‖U ′‖2F

∣∣∣ (M (1), · · · ,M (j)
)
∈ Ej

]
≥ 1− δ

4k .

Combining the above with ‖U ′‖2F ≤ (1 + ε/(10k))j‖U‖2F gives,

Pr
M(j+1)

[
‖M (j+1) · U ′‖2F ≤

(
1 + ε

10k

)j+1
‖U‖2F

∣∣∣∣∣ (M (1), · · · ,M (j)
)
∈ Ej

]
≥ 1− δ

4k . (23)

A union bound on (22) and (23) gives,

Pr
M(j+1)

[(
M (1), · · · ,M (j+1)

)
∈ Ej+1

∣∣∣ (M (1), · · · ,M (j)
)
∈ Ej

]
≥ 1− δ

4nk −
δ

4k ≥ 1− δ

2k .

We also show that,
Pr
M(1)

[M (1) ∈ E1] ≥ 1− δ/2k.

By the assumption of lemma we know thatM (1) satisfies the
(
2µF + 2, 2µ2 + 2, ε

10k ,
δ

4nk , n
)
-spectral

property. Therefore,

Pr
M(1)

[
‖(M (1)U)>M (1)U − U>U‖op ≤

ε

10k

]
≥ 1− δ

4nk . (24)

Also for every column U i of matrix U ,

‖M (1)U i‖22 = (1± ε/(10k)) ‖U i‖22,

38

with probability 1− δ
4nk . By a union bound over all i ∈ [n], we have the following,

Pr
M(1)

[
‖M (1) · U‖2F ≤ (1 + ε/(10k)) ‖U‖2F

]
≥ 1− δ

4k . (25)

A union bound on (24) and (25) gives,

Pr
T1

[T1 ∈ E1] ≥ 1− δ

4nk −
δ

4k ≥ 1− δ

2k .

By the chain rule for events we have,

Pr
M(1),··· ,M(k)

[(
M (1), · · · ,M (k)

)
∈ Ek

]
≥

k∏
j=2

Pr
M(j)

[(
M (1), · · ·M (j)

)
∈ Ej

∣∣∣ (M (1), · · ·M (j−1)
)
∈ Ej−1

]
· Pr
M(1)

[M (1) ∈ E1]

≥ (1− δ

2k)k ≥ 1− δ,

which completes the proof of the lemma.

The following lemma shows that our sketch construction Πq presented in definition 11 inherits
the spectral property of Definition 20 from the base sketches, that is, if Sbase and Tbase are such
that Imq−2 × Sbase and Idq−1 × Tbase satisfy the spectral property, then the sketch Πq satisfies the
spectral property.

Lemma 32. For every positive integers n, d,m, any power of two integer q, any base sketch Tbase :
Rd → Rm such that Idq−1×Tbase satisfies the (2µF +2, 2µ2+2, O(ε/q), O(δ/nq), n)-spectral property,
any Sbase : Rm2 → Rm such that Imq−2 × Sbase satisfies the (2µF + 2, 2µ2 + 2, O(ε/q), O(δ/nq), n)-
spectral property, the sketch Πq defined as in Definition 11 satisfies the (µF+1, µ2+1, ε, δ, n)-spectral
property.

Proof. We wish to show that Πq = QqT q as per Definition 11, satisfies the (µF + 1, µ2 + 1, ε, δ, n)-
spectral property. By Definition 9 Qq = S2S4 · · ·Sq. Claim 7 shows that for every l ∈ {2, 4, · · · q}
we can write,

Sl = M l
l/2M

l
l/2−1 · · ·M

l
1, (26)

where Mj = Imq−2j × Sqq/2−j+1 × Imj−1 for every j ∈ [q/2]. From the discussion in Definition 10 it
follows that,

T q = M ′q · · ·M ′1, (27)

where M ′j = Idq−j × Tq−j+1 × Imj−1 for every j ∈ [q]. Therefore by combining (26) and (27) we get
that,

Πq = M (2q+1)M (2q) · · ·M (1),

where M (i) matrices are independent and by the assumption of the lemma about the spectral
property of Imq−2 × Sbase and Idq−1 × Tbase together with Claim 25 it follows that M (i) matrices
satisfy the (2µF + 2, 2µ2 + 2, O(ε/q), O(δ/nq), n)-spectral property. Therefore, the Lemma readily
follows by invoking Lemma 31 with k = 2q + 1.

39

5.3 Spectral Property of Identity×TensorSRHT

In this section, we show that tensoring an identity operator with a TensorSRHT sketch results in
a transform that satisfies the spectral property defined in Definition 20 with nearly optimal target
dimension.

Lemma 33. Suppose ε, δ, µ2, µF > 0 and n is a positive integer. If m = Ω
(
log(nδ) log2(ndkεδ) · µFµ2

ε2

)
and S ∈ Rm×d is a TensorSRHT, then the sketch Ik × S satisfies (µF , µ2, ε, δ, n)-spectral property.

Proof. Fix a matrix U ∈ Rkd×n with ‖U‖2F ≤ µF and ‖U‖2op ≤ µ2. Partition U by rows into d× n
submatrices U1, U2, . . . , Uk such that U> =

[
U>1 U>2 · · · U>k

]
. Note that

U>(Ik × S)>(Ik × S)U = (U1)>S>SU1 + · · · (Uk)>S>SUk.

The proof first considers the simpler case of a TensorSRHT sketch of rank 1 and then applies the
matrix Bernstein inequality from Lemma 27. Let R denote a rank one TensorSRHT sketch. R is a
1× d matrix defined in Definition 15 by setting m = 1 as follows,

R = P · (HD1 ×HD2) ,

where P ∈ {0, 1}1×d has one non-zero element whose position is uniformly distributed over [d]. Note
that S>S ∈ Rd×d, is the average of m independent samples from R>R, i.e., S>S = 1

m

∑
i∈[m]R

>
i Ri,

for i.i.d. R1, R2, . . . , Rm ∼ R, and therefore,

U>(Ik × S)>(Ik × S)U = 1
m

∑
i∈[m]

U>(Ik ×Ri)>(Ik ×Ri)U.

Therefore in order to use matrix Bernstein, Lemma 27, we need to bound the maximum operator
norm of U>(Ik ×R)>(Ik ×R)U as well as the operator norm of its second moment.

We proceed to upper bound the operator norm of U>(Ik ×R)>(Ik ×R)U . First, define the set

E :=
{

(D1, D2) :
∥∥∥(HD1 ×HD2)U ij

∥∥∥2

∞
≤ 16log2(ndµFk

εδ
)) · ‖U ij‖22 for all j ∈ [k] and all i ∈ [n]

}
,

where U ji is the ith column of U j . By Claim 29, for every i ∈ [n] and j ∈ [k],

Pr
D1,D2

[∥∥∥(HD1 ×HD2)U ji
∥∥∥2

∞
≤ 16log2(ndk/δ)‖U ji ‖

2
2

]
≥ 1− εδ/(nkµFd).

Thus, by a union bound over all i ∈ [n] and j ∈ [k], it follows that E occurs with probability at
least 1− εδ/(dµF),

Pr
D1,D2

[(D1, D2) ∈ E] ≥ 1− εδ/(dµF),

where the probability is over the random choice of D1, D2.
From now on, we fix (D1, D2) ∈ E and proceed having conditioned on this event.

40

Upper bounding
∥∥∥U>(Ik ×R)>(Ik ×R)U

∥∥∥
op
. From the fact that we have conditioned on (D1, D2) ∈

E , note that

L ≡
∥∥∥U>(Ik ×R)>(Ik ×R)U

∥∥∥
op

= ‖(U1)>R>RU1 + · · · (Uk)>R>RUk‖op

≤
∥∥∥(U1)>R>RU1

∥∥∥
op

+ · · ·+
∥∥∥(Uk)>R>RUk∥∥∥

op

= ‖RU1‖22 + · · ·+ ‖RUk‖22
≤ 16log2(ndµFk/εδ) · (‖U1‖2F + · · ·+ ‖Uk‖2F)
≤ 16log2(ndµFk/εδ) · ‖U‖2F
= 16µF · log2(ndµFk/εδ)),

where the equality on the third line above holds because the matrices (U i)>R>RU i are rank one.

Upper bounding
∥∥∥∥EP [(U>(Ik ×R)>(Ik ×R)U

)2
]∥∥∥∥
op
. For every x ∈ Rd with ‖x‖2 = 1, we

have

xTEP
[(
U>(Ik ×R)>(Ik ×R)U

)2
]
x = EP

 ∑
j,j′∈[k]

xT (Uj)>R>RUj · (Uj′)>R>RUj′x


≤ EP

 ∑
j,j′∈[k]

|RUjx|‖RUj‖2|RUj′x|‖RUj′‖2


= EP


∑
j∈[k]
|RUjx|‖RUj‖2

2


≤ EP

∑
j∈[k]

(RUjx)2

∑
j∈[k]
‖RUj‖22

 ,
where the second and fourth lines follow from the Cauchy-Schwarz inequality. Using the fact that
we conditioned on (D1, D2) ∈ E , we get

xTEP
[(
U>(Ik ×R)>(Ik ×R)U

)2
]
x ≤ 16 log2(ndµFk/εδ)

∑
j∈[k]
‖Uj‖2F

EP

∑
j∈[k]

(RUjx)2


= 16 log2(ndµFk/εδ)

∑
j∈[k]
‖Uj‖2F

 ∑
j∈[k]

EP
[
(P (HD1 ×HD2)Ujx)2

]
= 16 log2(ndµFk/εδ) · ‖U‖2F

∑
j∈[k]
‖Ujx‖22

= 16 log2(ndµFk/εδ) · ‖U‖2F ‖Ux‖22
≤ 16 log2(ndµFk/εδ) · µFµ2,

since EP
[
(P (HD1 ×HD2)Ujx)2] = 1

d‖(HD1 ×HD2)Ujx‖2 = ‖Ujx‖22 for all x.

41

Since the matrix EP
[(
U>(Ik ×R)>(Ik ×R)U

)2
]
is positive semi-definite for any fixed D1 and

D2, it follows that

M ≡
∥∥∥∥EP [(U>(Ik ×R)>(Ik ×R)U

)2
]∥∥∥∥
op
≤ 16 log2(ndµFk/εδ) · µFµ2.

Combining one-dimensional TensorSRHT sketches. To conclude, we note that the Gram
matrix of a TensorSRHT, S>S ∈ Rd×d, is the average of m independent samples from R>R, i.e.,
S>S = 1

m

∑
i∈[m]R

>
i Ri, for i.i.d. R1, R2, . . . , Rm ∼ R, and therefore,

(Ik × S)>(Ik × S) = 1
m

∑
i∈[m]

(Ik ×Ri)>(Ik ×Ri).

Recall that (D1, D2) ∈ E occurs with probability at least 1 − εδ/(dµF), therefore we have the
following for the conditional expectation E

[
U>(Ik ×R)>(Ik ×R)U

∣∣∣ (D1, D2) ∈ E
]
,

E
[
U>(Ik ×R)>(Ik ×R)U

∣∣∣ (D1, D2) ∈ E
]
�

E
[
U>(Ik ×R)>(Ik ×R)U

]
Pr[(D1, D2) ∈ E] � U>U

1− εδ/(dµF) .

And also by Cauchy-Schwarz we have,

E
[
U>(Ik ×R)>(Ik ×R)U

∣∣∣ (D1, D2) ∈ E
]

� E
[
U>(Ik ×R)>(Ik ×R)U

]
− E

[
U>(Ik ×R)>(Ik ×R)U

∣∣∣ (D1, D2) ∈ Ē
]
· Pr[Ē]

� U>U − d‖U‖2F Pr[Ē] · In
� U>U − d‖U‖2F · εδ/(dµF) · In
� U>U − (ε/2) · In.

These two bounds together imply that,∥∥∥E [U>(Ik ×R)>(Ik ×R)U
∣∣∣ (D1, D2) ∈ E

]
− U>U

∥∥∥
op
≤ ε/2.

Now note that the random variables R>i Ri are independent conditioned on (D1, D2) ∈ E . Hence,
using the upper bounds L ≤ 16µF · log2(ndµFk/εδ) and M ≤ 16µFµ2 · log2(ndµFk/εδ), which hold
when (D1, D2) ∈ E , we have the following by Lemma 27, (here we drop the subscript from Ik for
ease of notation)

Pr
P,D1,D2

[∥∥∥U>(I × S)>(I × S)U − U>U
∥∥∥
op
≥ ε

]
≤ Pr

P

[∥∥∥U>(I × S)>(I × S)U − E
[
U>(I ×R)>(I ×R)U

∣∣∣ (D1, D2) ∈ E
]∥∥∥
op
≥ ε/2

∣∣∣∣ (D1, D2) ∈ E
]

+ Pr
D1,D2

[Ē]

≤ 8n · exp
(
− mε2/2
M + 2εL/3

)
+ δ/2

≤ δ,

where the last inequality follows by setting m = Ω
(
log(n/δ) log2(ndk/εδ) · µFµ2/ε

2
)
. This shows

that Ik × S satisfies the (µF , µ2, ε, δ, n)-spectral property.

42

5.4 Spectral property of Identity×OSNAP

In this section, we show that tensoring identity operator with OSNAP sketch (Definition 16) results
in a transform which satisfies the spectral property (Definition 20) with nearly optimal target di-
mension as well as nearly optimal application time. This sketch is particularly efficient for sketching
sparse vectors. We use a slightly different sketch than the original OSNAP to simplify the analysis,
defined as follows.

Definition 21 (OSNAP transform). For every sparsity parameter s, target dimension m, and
positive integer d, the OSNAP transform with sparsity parameter s is defined as,

Sr,j =
√

1
s
· δr,j · σr,j ,

for all r ∈ [m] and all j ∈ [d], where σr,j ∈ {−1,+1} are independent and uniform Rademacher
random variables and δr,j are independent Bernoulli random variables satisfying, E[δr,i] = s/m for
all r ∈ [m] and all i ∈ [d].

Lemma 34. Suppose ε, δ, µ2, µF > 0 and n is a positive integer. If S ∈ Rm×d is a OSNAP sketch
with sparsity parameter s, then the sketch Ik × S satisfies the (µF , µ2, ε, δ, n)-spectral property,
provided that s = Ω

(
log2(ndk/εδ) log(n/δ) · µ

2
2
ε2

)
and m = Ω

(
(µFµ2/ε

2) · log2(ndk/εδ)
)
.

Proof. Fix a matrix U ∈ Rkd×n with ‖U‖2F ≤ µF and ‖U‖2op ≤ µ2. Partition U by rows into d× n
sub-matrices U1, U2, . . . , Uk such that UT =

[
U>1 U>2 · · · U>k

]
. Note that

U>(Ik × S)>(Ik × S)U = (U1)>S>SU1 + · · · (Uk)>S>SUk.

The proof first considers the simpler case of an OSNAP sketch of rank 1 and then applies the matrix
Bernstein bound. Let R denote a rank one OSNAP sketch. R is a 1× d matrix defined as follows,

Ri =
√
m

s
· δiσi, (28)

where σi for all i ∈ [d] are independent Rademacher random variables and also, δi for all i ∈ [d] are
independent Bernoulli random variables for which the probability of being one is equal to s

m .
We proceed to upper bound the operator norm of U>(Ik ×R)>(Ik ×R)U . First, define the set

E :=
{
R : (RUj)>RUj � C

(
m

s
log2(ndkµF

εδ
) · U>j Uj + log(ndkµF

εδ
)‖Uj‖2F · In

)
for all j = 1, . . . , k

}
,

where C > 0 is a large enough constant. We show that,

Pr[R ∈ E] ≥ 1− εδ/(dmµF),

where the probability is over the random choices of {σi}i∈[d] and {δi}i∈[d]. To show this we first
prove the following claim,

Claim 35. For every matrix Z ∈ Rd×n, if we let R be defined as in (28), then,

Pr
[
Z>R>RZ � C

(
m

s
· log2(n/δ)Z>Z + log(n/δ)‖Z‖2F In

)]
≥ 1− δ.

43

Proof. The proof is by Matrix Bernstein inequality, Lemma 26. For any matrix Z let A = Z(Z>Z+
µIn)−1/2, where µ = s

m
1

log(n/δ)‖Z‖
2
F . We can write RA =

√
m
s

∑
i∈[d] δiσiAi, where Ai is the ith

row of A. Note that E[δiσiAi] = 0 and ‖δiσiAi‖2 ≤ ‖Ai‖2 ≤ ‖A‖op. Also note that∑
i∈[d]

E[(δiσiAi)(δiσiAi)∗] =
∑
i∈[d]

s

m
‖Ai‖22 = s

m
‖A‖2F

and, ∑
i∈[d]

E[(δiσiAi)∗(δiσiAi)] =
∑
i∈[d]

s

m
A∗iAi = s

m
A>A.

Therefore,

max


∥∥∥∥∥∥
∑
i∈[d]

E[(δiσiAi)(δiσiAi)∗]

∥∥∥∥∥∥
op

,

∥∥∥∥∥∥
∑
i∈[d]

E[(δiσiAi)∗(δiσiAi)]

∥∥∥∥∥∥
op

 ≤ s

m
‖A‖2F .

By Lemma 26,

Pr


∥∥∥∥∥∥
∑
i∈[d]

δiσiAi

∥∥∥∥∥∥
op

≥ t

 ≤ (n+ 1) · exp
(

−t2/2
s
m‖A‖

2
F + ‖A‖opt/3

)
,

hence if t = C ′/2 ·
(√

s
m log(n/δ)‖A‖F + log(n/δ)‖A‖op

)
, then Pr

[∥∥∥∑i∈[d] δiσiAi
∥∥∥
op
≥ t
]
≤ δ. By

plugging ‖RA‖22 = m
s · ‖

∑
i∈[d] δiσiAi‖22 into the above we get the following,

Pr
[
‖RA‖2op ≤ C ′2/2

(
m

s
· log2(n/δ)‖A‖2op + log(n/δ)‖A‖2F

)]
≥ 1− δ.

Now note that for the choice of A = Z(Z>Z + µIn)−1/2, we have ‖A‖2op ≤
‖Z>Z‖op
‖Z>Z‖2

op+µ ≤ 1 and also

‖A‖2F =
∑
i

λi(Z>Z)
λi(Z>Z)+µ ≤

∑
i
λi(Z>Z)
µ = m

s log(n/δ). By plugging these into the above we get that,

Pr
[∥∥∥RZ(Z>Z + µIn)−1/2

∥∥∥2

op
≤ C ′2m

s
· log2(n/δ)

]
≥ 1− δ.

Hence,
(Z>Z + µIn)−1/2Z>R>RZ(Z>Z + µIn)−1/2 � Cm

s
· log2(n/δ)In,

with probability 1− δ, where C = C ′2. Multiplying both sides of the above from left and right by
the positive definite matrix (Z>Z + µIn)1/2 gives (recall that µ = s

m ·
‖Z‖2

F
log(n/δ)),

Z>R>RZ � C
(
m

s
· log2(n/δ)Z>Z + log(n/δ)‖Z‖2F In

)
.

By applying Claim 35 with failure probability of εδ/(dkµF) on each of Uj ’s and then applying
a union bound, we get the following,

Pr[R ∈ E] ≥ 1− εδ/(dmµF).

From now on, we fix R ∈ E and proceed having conditioned on this event.

44

Upper bounding
∥∥∥U>(Ik ×R)>(Ik ×R)U

∥∥∥
op
. From the fact that we have conditioned on R ∈ E ,

note that,

L ≡
∥∥∥U>(Ik ×R)>(Ik ×R)U

∥∥∥
op

= ‖(U1)>R>RU1 + · · · (Uk)>R>RUk‖op

≤

∥∥∥∥∥∥
∑
i∈[k]

C

(
m

s
· log2(ndkµF /εδ) · U>j Uj + log(ndkµF /εδ)‖Uj‖2F · In

)∥∥∥∥∥∥
op

=
∥∥∥∥C (ms · log2(ndkµF /εδ) · U>U + log(ndkµF /εδ)‖U‖2F · In

)∥∥∥∥
op

≤ C
(
m

s
· log2(ndkµF /εδ) · ‖U‖2op + log(ndkµF /εδ)‖U‖2F

)
≤ C

(
m

s
µ2 · log2(ndkµF /εδ) + µF · log(ndkµF /εδ)

)
.

Upper bounding
∥∥∥∥E [(U>(Ik ×R)>(Ik ×R)U

)2
]∥∥∥∥
op
. From the condition R ∈ E , it follows that

E
[(
U>(Ik ×R)>(Ik ×R)U

)2
]

� E
[
C

(
m

s
· log2(ndkµF /εδ) · U>U + log(ndkµF /εδ)‖U‖2F · In

)(
U>(Ik ×R)>(Ik ×R)U

)]
� C

(
m

s
· log2(ndkµF /εδ) · U>U + log(ndkµF /εδ)‖U‖2F · In

)
E
[(
U>(Ik ×R)>(Ik ×R)U

)]
� C

(
m

s
· log2(ndkµF /εδ) · U>U + log(ndkµF /εδ)‖U‖2F · In

)
· U>U

1− εδ/(dmµF)

where the last line follows from the fact that the random variable U>(Ik×R)>(Ik×R)U is positive
semidefinite and the conditional expectation can be upper bounded by its unconditional expectation
as follows,

E
[
U>(Ik ×R)>(Ik ×R)U

∣∣∣R ∈ E] � E
[
U>(Ik ×R)>(Ik ×R)U

]
Pr[R ∈ E] .

Therefore we can bound the operator norm of the above as follows,

M ≡
∥∥∥∥E [(U>(Ik ×R)>(Ik ×R)U

)2
]∥∥∥∥
op

≤ 2
∥∥∥∥C (ms · log2(ndkµF /εδ) · (U>U)2 + log(ndkµF /εδ)‖U‖2F · U>U

)∥∥∥∥
op

≤ 2C
(
m

s
· log2(ndkµF /εδ) · ‖U>U‖2op + log(ndkµF /εδ)‖U‖2F · ‖U>U‖op

)
= 2C

(
m

s
· log2(ndkµF /εδ) · µ2

2 + log(ndkµF /εδ)µFµ2

)
.

Combining one-dimensional OSNAP transforms. To conclude, we note that the Gram
matrix of an OSNAP sketch, S>S ∈ Rd×d, is the average of m independent samples from R>R with
R defined as in (28) – i.e., S>S = 1

m

∑
i∈[m]R

>
i Ri for i.i.d. R1, R2, . . . , Rm ∼ R, and therefore,

(Ik × S)>(Ik × S) = 1
m

∑
i∈[m]

(Ik ×Ri)>(Ik ×Ri).

45

Note that by a union bound Ri ∈ E simultaneously for all i ∈ [m] with probability at least
1 − εδ/(dµF). Now note that the random variables R>i Ri are independent conditioned on Ri ∈ E
for all i ∈ [m]. Also note that the conditional expectation E

[
U>(Ik ×R)>(Ik ×R)U

∣∣∣R ∈ E]
satisfies the following,

E
[
U>(Ik ×R)>(Ik ×R)U

∣∣∣R ∈ E]
� E

[
U>(Ik ×R)>(Ik ×R)U

]
− E

[
U>(Ik ×R)>(Ik ×R)U

∣∣∣R ∈ Ē] · Pr[Ē]

� U>U − d‖U‖2F Pr[Ē] · In
� U>U − d‖U‖2F · εδ/(dµF) · In
� U>U − d‖U‖2F · ε/2 · In.

We also have,

E
[
U>(Ik ×R)>(Ik ×R)U

∣∣∣R ∈ E] � E
[
U>(Ik ×R)>(Ik ×R)U

]
Pr[R ∈ E] � U>U

1− εδ/(dµF) .

These two bounds together imply that,∥∥∥E [U>(Ik ×R)>(Ik ×R)U
∣∣∣R ∈ E]− U>U∥∥∥

op
≤ ε/2.

Now, using the upper bounds L ≤ C
(
m
s µ2 · log2(ndkµF /εδ) + µF · log(ndkµF /δ)

)
and M ≤

2C
(
m
s · log2(ndkµF /δ) · µ2

2 + log(ndkµF /δ)µFµ2
)
, which hold whenR ∈ E , we have that by Lemma

27,

Pr
[∥∥∥U>(Ik × S)>(Ik × S)U − U>U

∥∥∥
op
≥ ε

]
≤ Pr

[∥∥∥U>(Ik × S)>(Ik × S)U − E
[
U>(Ik ×R)>(Ik ×R)U

∣∣∣R ∈ E]∥∥∥
op
≥ ε/2

∣∣ E]+ Pr
D

[Ē]

≤ 8n · exp
(
− mε2/8
M + εL/3

)
+ δ/2 ≤ δ,

where the last inequality follows by setting s = Ω
(
log2(ndkµF /εδ) log(nd/δ) · µ

2
2
ε2

)
and m =

Ω
(
µFµ2/ε

2 · log2(ndkµF /εδ)
)
. This shows that Ik × S satisfies the (µF , µ2, ε, δ, n)-spectral prop-

erty.

5.5 High Probability OSE with linear dependence on sλ

We are ready to prove Theorem 3. We prove that if we instantiate Πp from Definition 11 with
Tbase : OSNAP and Sbase : TensorSRHT, it satisfies the statement of Theorem 3.

Theorem 3. For every positive integers p, d, n, every ε, sλ > 0, there exists a distribution on
linear sketches Πp ∈ Rm×dp which is an (ε, 1/poly (n) , sλ, dp, n)-oblivious subspace embedding as in
Definition 2, provided that the integer m satisfies m = Ω̃

(
p4sλ/ε

2).
Moreover, for any X ∈ Rd×n, if A ∈ Rdp×n is the matrix whose columns are obtained by a

p-fold self-tensoring of each column of X then the matrix ΠpA can be computed using Algorithm 1
in time Õ

(
pnm+ p5ε−2 nnz(X)

)
.

46

Proof. Let δ = 1
poly(n) denote the failure probability. Let m ≈ p4 log3

2(ndεδ) · sλ
ε2 and s ≈ p4

ε2 · log3
2(ndεδ)

be integers. Let Πp ∈ Rm×mp be the sketch defined in Definition 11, where Sbase ∈ Rm×m2 is a
TensorSRHT sketch and Tbase ∈ Rm×d is an OSNAP sketch with sparsity parameter s.

Let q = 2dlog2(p)e. By Lemma 10, it is sufficient to show that Πq is a (ε, δ, sλ, dq, n)-Oblivious
Subspace Embedding. Consider arbitrary A ∈ Rdq×n and λ > 0. Let us denote the statisti-
cal dimension of A by sλ = sλ(A>A). Let U = A

(
A>A+ λIn

)−1/2
. Therefore, ‖U‖2 ≤ 1

and ‖U‖2F = sλ. Since q < 2p, by Lemma 34, the transform Idq−1 × Tbase, satisfies (2sλ +
2, 2, O(ε/q), O(δ/n2q), n)-spectral property. Moreover, by Lemma 33, the transform Imq−2 × Sbase
satisfies (5sλ + 9, 9, O(ε/q), O(δ/n2q2), n)-spectral property. Therefore, by Lemma 32, the sketch
Πq satisfies (sλ + 1, 1, ε, δ, n)-spectral property, hence,

Pr
[∥∥∥(ΠqU)>ΠqU − U>U

∥∥∥
op
≤ ε

]
≥ 1− δ.

Since U>U = (A>A + λIn)−1/2A>A(A>A + λIn)−1/2 and ΠqU = ΠpA(A>A + λIn)−1/2 we have
the following,

Pr
[
(1− ε)(A>A+ λIn) � (ΠpA)>ΠpA+ λIn � (1 + ε)(A>A+ λIn)

]
≥ 1− δ.

Runtime: By Lemma 8, for any Sbase and Tbase, if A is the matrix whose columns are obtained
by p-fold self-tensoring of each column of some X ∈ Rd×n then the sketched matrix ΠpA can be
computed using Algorithm 1. When Sbase is TensorSRHT and Tbase is OSNAP, the runtime of
Algorithm 1 for a fixed vector w ∈ Rd is as follows; Computing Y 0

j ’s for each j in lines 3 and
4 of algorithm requires applying an OSNAP sketch on w ∈ Rd which on expectation takes time
O(s · nnz(w)). Therefore computing all Y 0

j ’s takes time O(qs · nnz(w)).
Computing each of Y l

j ’s in line 7 of algorithm amounts to applying a TensorSRHT of input
dimension m2 and target dimension of m on Y l−1

2j−1 ⊗ Y
l−1

2j . This takes time O(m logm). Therefore
computing all the Y l

j ’s takes time O(q ·m logm). Note that q ≤ 2p hence the total time of running
Algorithm 1 on a vector w is O(p ·m log2m + ps · nnz(w)). Therefore, sketching n columns of a
matrix X ∈ Rd×n takes time O(p(nm log2m+ s · nnz(X))).

6 Oblivious Subspace Embedding for the Gaussian Kernel

In this section we show how to sketch the Gaussian kernel matrix by polynomial expansion and
then applying our proposed sketch for the polynomial kernels.

Data-points with bounded `2 radius: Suppose that we are given a dataset of points x1, · · ·xn ∈
Rd such that for all i ∈ [n], ‖xi‖22 ≤ r for some positive value r. Consider the Gaussian kernel
matrix G ∈ Rn×n defined as Gi,j = e−‖xi−xj‖

2
2/2 for all i, j ∈ [n]. We are interested in sketching the

data-points matrix X using a sketch Sg : Rd → Rm such that the following holds with probability
1− δ,

(1− ε)(G+ λIn) � (Sg(X))>Sg(X) + λIn � (1 + ε)(G+ λIn).

Theorem 5. For every r > 0, every positive integers n, d, and every X ∈ Rd×n such that ‖xi‖2 ≤ r
for all i ∈ [n], where xi is the ith column of X, suppose G ∈ Rn×n is the Gaussian kernel matrix –

47

i.e., Gj,k = e−‖xj−xk‖
2
2/2 for all j, k ∈ [n]. There exists an algorithm which computes Sg(X) ∈ Rm×n

in time Õ
(
q6ε−2nsλ + q6ε−2 nnz(X)

)
such that for every ε, λ > 0,

Pr
Sg

[
(1− ε)(G+ λIn) � (Sg(X))>Sg(X) + λIn � (1 + ε)(G+ λIn)

]
≥ 1− 1/poly (n) ,

where m = Θ̃
(
q5sλ/ε

2) and q = Θ(r2 + log(n/ελ)) and sλ is λ-statistical dimension of G as in
Definition 1.
Proof. Let δ = 1

poly(n) denote the failure probability. Note that Gi,j = e−‖xi‖
2
2/2 · ex>i xj · e−‖xj‖2

2/2

for every i, j ∈ [n]. Let D be a n × n diagonal matrix with ith diagonal entry e−‖xi‖2
2/2 and let

K ∈ Rn×n be defined as Ki,j = ex
>
i xj (note that DKD = G). Note that K is a positive definite

kernel matrix. The Taylor series expansion for kernel K is as follows,

K =
∞∑
l=0

(X⊗l)>X⊗l

l! .

Therefore G can be written as the following series,

G =
∞∑
l=0

(X⊗lD)>X⊗lD
l! .

Note that each of the terms (X⊗lD)>X⊗lD = D(X⊗l)>X⊗lD are positive definite kernel
matrices. The statistical dimension of kernel (X⊗lD)>X⊗lD for every l ≥ 0 is upper bounded by
the statistical dimension of kernel G through the following claim.

Claim 36. For every µ ≥ 0 and every integer l,

sµ
(
(X⊗lD)>X⊗lD

)
≤ sµ(G).

Proof. From the Taylor expansion G =
∑∞
l=0

(X⊗lD)>X⊗lD
l! along with the fact that the polynomial

kernel of any degree is positive definite, we have that (X⊗lD)>X⊗lD � G. Now, by Courant-
Fischer’s min-max theorem we have that,

λj((X⊗lD)>X⊗lD) = max
U∈R(j−1)×n

min
α 6=0
Uα=0

α>(X⊗lD)>X⊗lDα
‖α‖22

.

Let U∗ be the maximizer of the expression above. Then we have,

λj(G) = max
U∈R(j−1)×n

min
α 6=0
Uα=0

α>Gα

‖α‖22

≥ min
α 6=0
U∗α=0

α>Gα

‖α‖22

≥ min
α 6=0
U∗α=0

α>(X⊗lD)>X⊗lDα
‖α‖22

= λj((X⊗lD)>X⊗lD).

for all j. Therefore, the claim follows from the definition of statistical dimension,

sµ(G) =
n∑
j=1

λj(G)
λj(G) + µ

≥
n∑
j=1

λj((X⊗lD)>X⊗lD)
λj((X⊗lD)>X⊗lD) + µ

= sµ
(
(X⊗lD)>X⊗lD

)
.

48

If we let P =
∑q
l=0

(X⊗l)>X⊗l
l! , where q = C · (r2 + log(nελ)) for some constant C, then by the

triangle inequality we have

‖K − P‖op ≤
∑
l>q

∥∥∥∥∥(X⊗l)>X⊗l

l!

∥∥∥∥∥
op

≤
∑
l>q

∥∥∥∥∥(X⊗l)>X⊗l

l!

∥∥∥∥∥
F

≤
∑
l>q

n · r2l

l!

≤ ελ/2.

P is a positive definite kernel matrix. Also note that all the eigenvalues of the diagonal matrix
D are bounded by 1. Hence, in order to get a subspace embedding it is sufficient to satisfy the
following with probability 1− δ,

(1− ε/2)(DPD + λIn) � (Sg(X))>Sg(X) + λIn � (1 + ε/2)(DPD + λIn).

Let the sketch Πl ∈ Rml×dl be the sketch from Theorem 3 therefore by Claim 36 we get the
following guarantee on Πl:

(1− ε9)((X⊗lD)>X⊗lD+λIn) � (ΠlX⊗lD)>ΠlX⊗lD+λIn � (1+ ε

9)((X⊗lD)>X⊗lD+λIn), (29)

with probability 1− δ
q+1 as long as ml = Ω

(
l4 log3(nd/δ) · sλ/ε2

)
and moreover ΠlX⊗lD can be

computed using O
(
n · l ·ml log2ml + l5

ε2 · log3(nd/δ) · nnz(X)
)
runtime where sλ is the λ-statistical

dimension of G.
We let SP be the sketch of size m × (

∑q
l=0 d

l) which sketches the kernel P . The sketch SP is
defined as

SP = 1√
0!

Π0 ⊕ 1√
1!

Π1 ⊕ 1√
2!

Π2 · · · 1√
q!

Πq.

Let Z be the matrix of size (
∑q
l=0 d

l)× n whose ith column is

zi = x⊗0
i ⊕ x

⊗1
i ⊕ x

⊗2
i · · ·x

⊗q
i ,

where xi is the ith column of X. Therefore the following holds for (SPZ)>SPZ,

(SPZ)>SPZ =
q∑
l=0

(ΠlX⊗l)>ΠlX⊗l

l! ,

and hence,

(SPZD)>SPZD =
q∑
l=0

(ΠlX⊗lD)>ΠlX⊗lD

l! .

Therefore by combining the terms of (29) for all 0 ≤ l ≤ q, using a union bound we get that with
probability 1− δ, the following holds,

(1− ε/2)(DPD + λIn) � (SPZD)>SPZD + λIn � (1 + ε/2)(DPD + λIn).

49

Now we define Sg(x) which is a non-linear transformation on the input x defined as

Sg(x) = e−‖x‖
2
2/2
(1√

0!
·Π0(x⊗0)⊕ 1√

1!
·Π1(x⊗1)⊕ 1√

2!
·Π2(x⊗2) · · · 1√

q!
·Πq(x⊗q)

)
.

We have that Sg(X) = SPZD, therefore with probability 1− δ, the following holds,

(1− ε)(G+ λIn) � (Sg(X))>Sg(X) + λIn � (1 + ε)(G+ λIn).

Note that the target dimension of Sg is m = m0 + m1 + · · · + mq ≈ q5 log3(nd/δ)sλ/ε2. Also, by
Theorem 3, time to compute Sg(X) is O

(
nq6

ε2 · log4(nd/δ) · sλ + q6

ε2 · log3(nd/δ) · nnz(X)
)
.

Acknowledgements

Michael Kapralov is supported by ERC Starting Grant SUBLINEAR. Thomas D. Ahle, Jakob
B. T. Knudsen, and Rasmus Pagh are supported by Villum Foundation grant 16582 to Basic
Algorithms Research Copenhagen (BARC). David Woodruff is supported in part by Office of Naval
Research (ONR) grant N00014-18-1-2562. Part of this work was done while Michael Kapralov,
Rasmus Pagh, and David Woodruff were visiting the Simons Institute for the Theory of Computing.

References

[AC06] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast johnson-
lindenstrauss transform. In Proceedings of the 38th Annual ACM Symposium on The-
ory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 557–563, 2006.

[Ach03] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss
with binary coins. J. Comput. Syst. Sci., 66(4):671–687, June 2003.

[ACW17a] Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. Faster kernel ridge re-
gression using sketching and preconditioning. SIAM J. Matrix Analysis Applications,
38(4):1116–1138, 2017.

[ACW17b] Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. Sharper bounds for regu-
larized data fitting. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017,
Berkeley, CA, USA, pages 27:1–27:22, 2017.

[AK19] Thomas D Ahle and Jakob BT Knudsen. Almost optimal tensor sketch. arXiv preprint
arXiv:1909.01821, 2019.

[AKM+17] Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Vel-
ingker, and Amir Zandieh. Random fourier features for kernel ridge regression: Ap-
proximation bounds and statistical guarantees. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, pages 253–262, 2017.

[AKM+18a] Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Vel-
ingker, and Amir Zandieh. Random fourier features for kernel ridge regression: Ap-
proximation bounds and statistical guarantees. CoRR, abs/1804.09893, 2018.

50

[AKM+18b] Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Vel-
ingker, and Amir Zandieh. A universal sampling method for reconstructing signals
with simple fourier transforms. arXiv preprint arXiv:1812.08723, 2018.

[AM15] Ahmed El Alaoui and Michael W. Mahoney. Fast randomized kernel ridge regression
with statistical guarantees. In Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 775–783, 2015.

[ANW14] Haim Avron, Huy Nguyen, and David Woodruff. Subspace embeddings for the polyno-
mial kernel. In Advances in neural information processing systems, pages 2258–2266,
2014.

[BCL+10] Vladimir Braverman, Kai-Min Chung, Zhenming Liu, Michael Mitzenmacher, and
Rafail Ostrovsky. AMS without 4-wise independence on product domains. In 27th
International Symposium on Theoretical Aspects of Computer Science, STACS 2010,
March 4-6, 2010, Nancy, France, pages 119–130, 2010.

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities:
A nonasymptotic theory of independence. Oxford university press, 2013.

[CCFC02] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in
data streams. In International Colloquium on Automata, Languages, and Program-
ming, pages 693–703. Springer, 2002.

[Cha02] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
380–388. ACM, 2002.

[CJN18] Michael B. Cohen, T. S. Jayram, and Jelani Nelson. Simple analyses of the sparse
johnson-lindenstrauss transform. In 1st Symposium on Simplicity in Algorithms,
SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, pages 15:1–15:9, 2018.

[CKS11] Andrew Cotter, Joseph Keshet, and Nathan Srebro. Explicit approximations of the
gaussian kernel. arXiv preprint arXiv:1109.4603, 2011.

[CNW16a] Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate matrix
product in terms of stable rank. In 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages
11:1–11:14, 2016.

[CNW16b] Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate matrix
product in terms of stable rank. In 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages
11:1–11:14, 2016.

[Coh16] Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 278–287,
2016.

51

[CW09] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the stream-
ing model. In Proceedings of the 41st Annual ACM Symposium on Theory of Com-
puting, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 205–214,
2009.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 81–90, 2013.

[CW17] Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression
in input sparsity time. Journal of the ACM (JACM), 63(6):54, 2017.

[DKS10] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse johnson: Lindenstrauss
transform. In Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 341–350, 2010.

[DlPG12] Victor De la Pena and Evarist Giné. Decoupling: from dependence to independence.
Springer Science & Business Media, 2012.

[DMM06] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Sampling algorithms for
l2 regression and applications. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-
26, 2006, pages 1127–1136, 2006.

[DMMS11] Petros Drineas, Michael W. Mahoney, S. Muthukrishnan, and Tamás Sarlós. Faster
least squares approximation. Numerische Mathematik, 117(2):219–249, 2011.

[DMMW12] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff.
Fast approximation of matrix coherence and statistical leverage. Journal of Machine
Learning Research, 13:3475–3506, 2012.

[Hit93] Paweł Hitczenko. Domination inequality for martingale transforms of a rademacher
sequence. Israel Journal of Mathematics, 84(1-2):161–178, 1993.

[Hit94] Pawel Hitczenko. On a domination of sums of random variables by sums of condition-
ally independent ones. The Annals of Probability, pages 453–468, 1994.

[HM07] Uffe Haagerup and Magdalena Musat. On the best constants in noncommutative
khintchine-type inequalities. Journal of Functional Analysis, 250(2):588–624, 2007.

[IM08] Piotr Indyk and Andrew McGregor. Declaring independence via the sketching of
sketches. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 737–745. Society for Industrial and Applied Mathematics, 2008.

[JLS86] William B. Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions of
lipschitz maps into banach spaces. Israel Journal of Mathematics, 54(2):129–138, Jun
1986.

[KN14] Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. J. ACM,
61(1):4:1–4:23, 2014.

[KPV+19] Michael Kapralov, Rasmus Pagh, Ameya Velingker, David Woodruff, and Amir
Zandieh. Oblivious sketching of high-degree polynomial kernels. arXiv preprint
arXiv:1909.01410, 2019.

52

[KVW14] Ravi Kannan, Santosh Vempala, and David Woodruff. Principal component analysis
and higher correlations for distributed data. In Conference on Learning Theory, pages
1040–1057, 2014.

[Lat97] Rafał Latała. Estimation of moments of sums of independent real random variables.
The Annals of Probability, 25(3):1502–1513, 1997.

[Lat06] Rafał Latała. Estimates of moments and tails of gaussian chaoses. The Annals of
Probability, 34(6):2315–2331, 2006.

[LDFU13] Yichao Lu, Paramveer S. Dhillon, Dean P. Foster, and Lyle H. Ungar. Faster ridge
regression via the subsampled randomized hadamard transform. In Advances in Neural
Information Processing Systems 26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States., pages 369–377, 2013.

[LSS14] Quoc Viet Le, Tamás Sarlós, and Alexander Johannes Smola. Fastfood: Approximate
kernel expansions in loglinear time. CoRR, abs/1408.3060, 2014.

[MM17] Cameron Musco and Christopher Musco. Recursive sampling for the nystrom method.
In Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, pages 3836–3848, 2017.

[NDT15] Nam H Nguyen, Petros Drineas, and Trac D Tran. Tensor sparsification via a bound
on the spectral norm of random tensors. Information and Inference: A Journal of the
IMA, 4(3):195–229, 2015.

[NN13] Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In 2013 IEEE 54th Annual Symposium on Founda-
tions of Computer Science, pages 117–126. IEEE, 2013.

[Pag13] Rasmus Pagh. Compressed matrix multiplication. TOCT, 5(3):9:1–9:17, 2013.

[PP13] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature
maps. In The 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, pages 239–247,
2013.

[PT12] Mihai Patrascu and Mikkel Thorup. The power of simple tabulation hashing. J. ACM,
59(3):14:1–14:50, 2012.

[PW15] Mert Pilanci and Martin J. Wainwright. Randomized sketches of convex programs
with sharp guarantees. IEEE Trans. Information Theory, 61(9):5096–5115, 2015.

[RR07] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-
First Annual Conference on Neural Information Processing Systems, Vancouver,
British Columbia, Canada, December 3-6, 2007, pages 1177–1184, 2007.

[RR08] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in neural information processing systems, pages 1177–1184, 2008.

53

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices via random
projections. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages
143–152, 2006.

[Tro11] Joel A. Tropp. Improved analysis of the subsampled randomized hadamard transform.
Advances in Adaptive Data Analysis, 3(1-2):115–126, 2011.

[Tro15] Joel A. Tropp. An introduction to matrix concentration inequalities. Foundations and
Trends in Machine Learning, 8(1-2):1–230, 2015.

[Val15] Gregory Valiant. Finding correlations in subquadratic time, with applications to learn-
ing parities and the closest pair problem. Journal of the ACM (JACM), 62(2):13, 2015.

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

A Direct Lower and Upper Bounds

We introduce the following notation. We say f(x) . g(x) if for some some universal constant C we
have f(x) ≤ Cg(x) for all x ∈ R and . Note this is slightly different from the usual f(x) = O(g(x))
in that it is uniform in x rather than asymptotic. We similarly say f(x) & g(x) if g(x) . f(x) and
f(x) ∼ g(x) if both f(x) . g(x) and f(x) & g(x).

We will also make heavy use of the Lp norm notation for random variables in
R, that is for p ≥ 1 we write ‖X‖Lp = (E|X|p)1/p. A very useful result for computing the Lp-norm
of a sum of random variables is the following:

Lemma 37 (Latala’s inequality, [Lat97]). If p ≥ 2 and X,X1, . . . , Xn are iid. mean 0 random
variables, then we have∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
Lp

∼ sup
{
p

s

(
n

p

)1/s
‖X‖Ls

∣∣∣∣∣max
{

2, p
n

}
≤ s ≤ p

}
. (30)

The following simple corollary will be used for both upper and lower bounds:

Corollary 38. Let p ≥ 2, C > 0 and α ≥ 1. Let (Xi)i∈[n] be iid. mean 0 random variables such
that ‖Xi‖Lp ∼ (Cp)α, then ‖

∑
iXi‖Lp ∼ Cα max{2α√pn, (n/p)1/ppα}.

Proof. We will show that the expression in eq. (30) is maximized either by minimizing or maximizing
s. Hence we need to chat that p

s

(
n
p

)1/s
sα it has no other optimums in the valid range. For this,

we note that d
ds
p
s

(
n
p

)1/s
sα = −p

s3−α

(
n
p

)1/s (
(1− α)s+ log n

p

)
. Given α ≥ 1 the derivative is non-

decreasing in s, which gives the lemma.

For the lower bound we will also use the following result by Hitczenko, which provides an
improvement on Khintchine for Rademacher random variables.

Lemma 39 (Sharp bound on Rademacher sums [Hit93]). Let σ ∈ {−1, 1}n be a random Rademacher
sequence and let a ∈ Rn be an arbitrary real vector with sorted entries |a1| ≥ |a2| ≥ · · · |an|, then

‖〈a, σ〉‖Lp ∼
∑
i≤p

ai +√p
(∑
i>p

a2
i

)1/2 (31)

54

Finally the lower bound will use the Paley-Zygmund inequality (also known as the one-sided
Chebyshev inequality):

Lemma 40 (Paley-Zygmund). Let X ≥ 0 be a real random variable with finite variance, and let
θ ∈ [0, 1], then

Pr[X ≥ θE[X]] ≥ (1− θ)2E[X]2

E[X2] . (32)

A classical strategy when using Paley-Zygmund is to prove E[X] ≥ 2ε for some ε > 0, and then
take θ = 1/2 to give Pr[X ≥ ε] ≥ E[X]2 /(4E

[
X2]).

A.1 Lower Bound for Sub-Gaussians

The following lower bound considers the sketching matrix consisting of the direct composition of
matrices with Rademacher entries. Note however that the assumptions on Rademachers are only
used to show that the p-norm of a single row with a vector is ∼ √p. For this reason the same lower
bound hold if the Rademacher entries are substituted for, say Gaussians.

Theorem 41 (Lower bound). For some constants C1, C2, B > 0, let d,m, c ≥ 1 be integers, let
ε ∈ [0, 1] and δ ∈ [0, 1/16]. Further assume that d ≥ log 1/δ ≥ c/B. Then the following holds.

Let M (1), . . . ,M (c) ∈ Rm×d be matrices with all independent Rademacher entries and let M =
1√
m
M (1) • · · · •M (c). Then there exists some unit vector y ∈ Rdc such that if

m < C1 max
{

3cε−2 log 1/δ
c

, ε−1
(
C2 log 1/δ

c

)c}
then Pr

[∣∣∣‖My‖22 − 1
∣∣∣ > ε

]
> δ. (33)

Proof. Let y = [1, . . . , 1]T /
√
d ∈ Rd and let x = y⊗c. We have

‖My‖22 − 1 = 1
m

∥∥∥M (1)x ◦ · · · ◦M (c)x
∥∥∥2

2
− 1 = 1

m

∑
j∈[m]

(∏
i∈[c]

Z2
i,j

)
− 1 (34)

where each Zi,j =
∑
k∈[d]M

(i)
j,k/
√
d are independent averages of d independent Rademacher random

variables. By Lemma 39 we have ‖Zi,j‖Lp ∼ min{√p,
√
d} which is √p by the assumption d ≥

log 1/δ as long as p ≤ log 1/δ. By the expanding Z4
i,j into monomials and linearity of expectation

we get ‖Zi,j‖4 = 1√
d
(d+ 3d(d− 1))1/4 = (3− 2/d)1/4.

Now defineXj =
∏
i∈[c] Z

2
i,j−1, then EXj = 0 and ‖Xj‖Lp ≥

∥∥∥∏i∈[c] Z
2
i,j

∥∥∥
Lp
−1 = ‖Zi,j‖2cL2p−1 ≥

Kcpc for some K, assuming p ≥ 2. In particular, ‖Xj‖L2 ≥ ‖Zi,j‖2cL4 − 1 = (3− 2/d)c/2 − 1 ∼ 3c/2
by the assumption d ≥ c ≥ 1.

We have
∥∥‖My‖22 − 1

∥∥
Lp = 1

m

∥∥∥∑j∈[m]Xm

∥∥∥
Lp

is a sum of iid. random variables, so we can use
Corollary 38 to show

K3 max
{√

3cp/m, (m/p)1/pKc
1p
c/m

}
.
∥∥∥‖My‖22 − 1

∥∥∥
Lp

(35)

. K4 max
{√

3cp/m, (m/p)1/pKc
2p
c/m

}
(36)

for some universal constants K1,K2,K3,K4 > 0.

55

Assume now that m < max
{
AK2

33cε−2 log 1/δ
c , K3

4 ε
−1
(
4AK1

log 1/δ
c

)c}
as in the theorem. We

take p = 4A log 1/δ
c for some constant A to be determined. We want to show

∥∥‖My‖22 − 1
∥∥
Lp ≥ 2ε.

For this we split into two cases depending on which term of m < max{(1), (2)} dominates. If (1) ≥
(2) we pick the first lower bound in eq. (36) and get

∥∥‖My‖22 − 1
∥∥
Lp ≥ K3

√
3cp/m ≥ K3

√
4ε2

K2
3

= 2ε.

Otherwise, if (2) ≥ (1), we pick the other lower bound and also get:

∥∥∥‖My‖22 − 1
∥∥∥
Lp
≥ K3(m/p)1/pK

c
1p
c

m
≥ K3

2
Kc

1

(
4A log 1/δ

c

)c
K3
4 ε
−1
(
4AK1

log 1/δ
c

)c = 2ε, (37)

where we used (m/p)1/p ≥ e−1/(em) ≥ 1/2 for m ≥ 1. Plugging into Paley-Zygmund (Lemma 40)
we have

Pr
[∣∣∣‖My‖22 − 1

∣∣∣ ≥ ε] ≥ Pr
[∣∣∣‖My‖22 − 1

∣∣∣p ≥ ∥∥∥‖My‖22 − 1
∥∥∥p
Lp

2−p
]

(38)

≥ 1
4

(∥∥‖My‖22 − 1
∥∥
Lp∥∥‖My‖22 − 1
∥∥
L2p

)2p

, (39)

where we used that p ≥ 1 so (1− 2−p)2 ≥ 1/4.
There are again two cases depending on which term of the upper bound in eq. (36) dominates.

If
√

3cp/m ≥ (m/p)1/pKc
2p
c/m we have using the first lower bound that ‖‖My‖2

2−1‖
Lp

‖‖My‖2
2−1‖

L2p
≥ K3√

2K4
.

For the alternative case, (m/p)1/pKc
2p
c/m ≥

√
3cp/m, we have∥∥‖My‖22 − 1

∥∥
Lp∥∥‖My‖22 − 1
∥∥
L2p
≥ K3√

2K4

(m/p)1/p

(m/2p)1/2p

(
K1
2K2

)c
≥ K3

2K4

(
K1
2K2

)c
(40)

where (m/p)1/p

(m/2p)1/2p ≥ e−1/(4em) ≥ 1/
√

2 for m ≥ 1.
Comparing with (39) we see that it suffices to take A ≤ min{ 1

log 2K4/K3
, 1

log 2K2/K1
}/32. This

choice also ensures that 1 ≤ p ≤ log 1/δ as we promised. Note that we may assume in eq. (36) that
K3 ≤ K4 and K1 ≤ K2. We then finally have

1
4

(
K3√
2K4

)2p
≥ 1

4δ
1/(4c) and 1

4

(
K3
2K4

(
K1
2K2

)c)2p
≥ 1

4δ
1/(4c)+1/4, (41)

which are both ≥ δ for c ≥ 1 and δ < 1/16.

A.2 Upper bound for Sub-Gaussians

Theorem 42 (Upper bound). Let ε, δ ∈ [0, 1] and let γ > 0, 1 ≤ c ≤ log 1/δ
4γ be some constants.

Let T ∈ Rm×d be a matrix with iid. rows T1, . . . , Tm ∈ Rd such that E
[
(T1x)2] = ‖x‖22 and

‖T1x‖Lp ≤
√
ap‖x‖2 for some a > 0 and p ≥ 4. Let M = T (1) • · · · • T (c) where T (1), . . . , T (c) are

independent copies of T . Then M has the JL-moment property, ‖‖Mx‖2 − ‖x‖2‖Lp ≤ εδ1/p, given

m & (4aeγ)2cε−2 log 1/δ
cγ

+ (4aeγ)cε−1
(log 1/δ

cγ

)c
. (42)

56

Remark 2. In the case of random Rademachers we set a =
√

3/4 to get

m = O

(
3cε−2 log 1/δ

cγ
e2cγ + ε−1

(√
3log 1/δ

cγ

)c
ecγ
)
.

Note that depending on γ this matches either of the terms of the lower bound. Setting γ = Θ(1/c)
or γ = Θ(1) we have either

m = O
(
3cε−2 log 1/δ + ε−1

(√
3 log 1/δ

)c)
or m = O

(
(3e2)cε−2 log 1/δ

c
+ ε−1

(√
3e log 1/δ

c

)c)
.

Finally, in the case of constant c = O(1), γ = Θ(1) we simply get

m = O
(
ε−2 log 1/δ + ε−1 (log 1/δ)c

)
.

Proof of Theorem 42. Without loss of generalization we may assume ‖x‖L2 = 1. We notice that∥∥‖Mx‖22 − 1
∥∥
Lp ≤

∥∥∥ 1
m

∑
i(Mix)2 − 1

∥∥∥
Lp

is the mean of iid. random variables. Call these Zi =
(Mix)2 − 1. Then EZi = 0 and ‖Zi‖Lp =

∥∥(Mix)2 − 1
∥∥
Lp .

∥∥(Mix)2∥∥
Lp = ‖Mix‖2L2p by sym-

metrization. Now by the assumption ‖T1x‖Lp ≤
√
ap‖x‖2 = √ap, and by Lemma 19, we get that

‖Mix‖Lp =
∥∥∥T (1)

i ⊗ · · · ⊗ T (c)
i x

∥∥∥
Lp
≤ (ap)c/2, and so ‖Zi‖Lp ≤ (2ap)c for all i ∈ [m].

We now use Corollary 38 which implies∥∥∥∥∥ 1
m

∑
i

Zi

∥∥∥∥∥
Lp

. (4a)c
√
p/m+m1/p(2ap)c/m . (4a)c

√
p/m+ (4ap)c/m. (43)

The second inequality comes from the following consideration: If the second term of (43) dominates,
then (4a)c

√
p/m ≤ m1/p(2ap)c/m which implies m1/p ≤ (p/2)

2c−1
p−2 ≤ 2c for p ≥ 4.

All that remains is to decide on p. We take p = log 1/δ
cγ which is ≥ 4 by assumption, and

m = max{(4aeγ)2cpε−2, (4aeγ)cpcε−1}. Then∥∥∥∥∥ 1
m

∑
i

Zi

∥∥∥∥∥
p

Lp

. (4a)cp max{εp(4aeγ)−cp, εp(4aeγ)−cp} (44)

= e−cγpεp (45)
= δεp, (46)

which is exactly the JL moment property.

A.3 Lower Bound for TensorSketch

For every integer d, q, the TensorSketch of degree q, M : Rdq → Rm is defined as,

M(x⊗q) = F−1 ((FC1x) ◦ (FC2x) ◦ · · · (FCqx)) , (47)
for every x ∈ Rd where C1, · · ·Cq ∈ Rm×d are independent instances of CountSketch and F ∈ Cm×m
is the Discrete Fourier Transform matrix with proper normalization which satisfies the convolution
theorem, also note that, ◦ denotes entry-wise (Hadamard) product of vectors of the same size.

Lemma 43. For every integer d, q, let M : Rdq → Rm be the TensorSketch of degree q ≤ d, see
(47). For the all ones vector x = {1}d,

Var
[
‖Mx⊗q‖22

]
≥
(3q

2m2 − 1
)
‖x⊗q‖42.

57

Proof. Note that since F is normalized such that it satisfies the convolution theorem, F−1 is indeed
a unitary matrix times 1/

√
m, ‖Mx⊗q‖22 = 1

m‖(FC1x) ◦ (FC2x) ◦ · · · (FCqx)‖22. Consider the first
entry of the vector (FC1x) ◦ (FC2x) ◦ · · · (FCqx). Because the first row of F is all ones {1}m,
the first element of the mentioned vector for the choice of x = {1}d is

∏q
i=1

(∑
j∈[d] σ

i(j)
)

=∏q
i=1

(∑
j∈[d] σ

i(j)
)
, where σi : [d] → {−1,+1} are fully independent random hash functions used

by the CountSketch Ci for all i ∈ [q]. Let us denote by V the following positive random variable,

V =
q∏
i=1

∑
j∈[d]

σi(j)

2

.

Note that ‖Mx⊗q‖22 ≥ V
m , hence E

[
‖Mx⊗q‖42

]
≥ E[V 2]

m2 . Also note that E
[
V 2] =

∏q
i=1 E

[(∑
j∈[d] σ

i(j)
)4
]

because σi’s are independent. We can write

E


∑
j∈[d]

σi(j)

4
 = 3d2 − 2d = 3(1− 1

6d)‖x‖42,

hence if d ≥ q,

E
[
V 2
]
≥ (1/2) · 3q · ‖x⊗q‖42,

Therefore E
[
‖Mx⊗q‖42

]
≥ E[V 2]

m2 ≥ 3q
2m2 ‖x⊗q‖22. It is also true that E

[
‖Mx⊗q‖22

]
= ‖x⊗q‖22 [ANW14].

Lemma 44. For every integer d, q every ε > 0, every 0 < δ ≤ 1
2·12q , let M : Rdq → Rm be the

TensorSketch of degree q, see (47). If m < 3q/2 then for the all ones vector x = {1}d we have,

Pr
[
|‖Mx⊗q‖22 − ‖x⊗q‖22| > 1/2 · ‖x⊗q‖22

]
> δ.

Proof. Note that since F is normalized such that it satisfies the convolution theorem, F−1 is indeed
a unitary matrix times 1/

√
m, ‖Mx⊗q‖22 = 1

m‖(FC1x) ◦ (FC2x) ◦ · · · (FCqx)‖22. Consider the first
entry of the vector (FC1x) ◦ (FC2x) ◦ · · · (FCqx). Because the first row of F is all ones {1}m,
the first element of the mentioned vector for the choice of x = {1}d is

∏q
i=1

(∑
j∈[d] σ

i(j)
)

=∏q
i=1

(∑
j∈[d] σ

i(j)
)
, where σi : [d] → {−1,+1} are fully independent random hash functions used

by the CountSketch Ci for all i ∈ [q]. Let us denote by V the following positive random variable,

V =
q∏
i=1

∑
j∈[d]

σi(j)

2

.

Note that ‖Mx⊗q‖22 ≥ V
m . Note that E

[
V t
]

=
∏q
i=1 E

[(∑
j∈[d] σ

i(j)
)2t
]
for every t because σi’s are

independent. Note that for t = 2 we have,

E


∑
j∈[d]

σi(j)

4
 = 3d2 − 2d ≥ 3(1− 1

6d)‖x‖42,

58

hence if d ≥ q,

E
[
V 2
]
≥ (3q/2) · ‖x⊗q‖42.

Now consider t = 4. By Khintchine’s inequality, Lemma 17, we have,

E


∑
j∈[d]

σi(j)

8
 ≤ 105 · ‖x‖82,

hence,

E
[
V 4
]
≤ 105q · ‖x⊗q‖82.

Therefore by Paley Zygmund we have the following,

Pr
[
‖Mx⊗q‖22 ≥

3
q
2

2m · ‖x
⊗q‖22

]
≥ Pr

[
V ≥ 3

q
2 /2 · ‖x⊗q‖22

]
= Pr

[
V 2 ≥ 3q/4 · ‖x⊗q‖42

]
≥ Pr

[
V 2 ≥ 1/4 · E

[
V 2
]]

≥ 1/2 · E
[
V 2]2

E[V 4]

≥ 9q

2 · 105q

>
1

2 · 12q ≥ δ.

59

	Introduction
	Our Contributions
	Technical Overview
	Related Work
	Organization

	Preliminaries
	Construction of the Sketch
	Linear Dependence on the Tensoring Degree p
	Second Moment of TensorSketch
	Higher Moments of TensorSketch

	Linear Dependence on the Statistical Dimension s
	Matrix Concentration Tools
	Spectral Property of the sketch
	Spectral Property of Identity times TensorSRHT
	Spectral property of Identity times OSNAP
	High Probability OSE with linear dependence on s-lambda

	Oblivious Subspace Embedding for the Gaussian Kernel
	Direct Lower and Upper Bounds
	Lower Bound for Sub-Gaussians
	Upper bound for Sub-Gaussians
	Lower Bound for TensorSketch

