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Abstract

Kernel methods are fundamental tools in machine learning that allow detection of non-linear
dependencies between data without explicitly constructing feature vectors in high dimensional
spaces. A major disadvantage of kernel methods is their poor scalability: primitives such as
kernel PCA or kernel ridge regression generally take prohibitively large quadratic space and (at
least) quadratic time, as kernel matrices are usually dense. Some methods for speeding up kernel
linear algebra are known, but they all invariably take time exponential in either the dimension
of the input point set (e.g., fast multipole methods suffer from the curse of dimensionality) or
in the degree of the kernel function.

Oblivious sketching has emerged as a powerful approach to speeding up numerical linear
algebra over the past decade, but our understanding of oblivious sketching solutions for kernel
matrices has remained quite limited, suffering from the aforementioned exponential dependence
on input parameters. Our main contribution is a general method for applying sketching solutions
developed in numerical linear algebra over the past decade to a tensoring of data points without
forming the tensoring explicitly. This leads to the first oblivious sketch for the polynomial
kernel with a target dimension that is only polynomially dependent on the degree of the kernel
function, as well as the first oblivious sketch for the Gaussian kernel on bounded datasets that
does not suffer from an exponential dependence on the dimensionality of input data points.

*This paper is a merged version of the work of Ahle and Knudsen [AK19] and Kapralov, Pagh, Velingker, Woodruff
and Zandieh [KPV™'19).
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1 Introduction

Data dimensionality reduction, or sketching, is a common technique for quickly reducing the size of
a large-scale optimization problem while approximately preserving the solution space, thus allowing
one to instead solve a much smaller optimization problem, typically in a smaller amount of time.
This technique has led to near-optimal algorithms for a number of fundamental problems in numer-
ical linear algebra and machine learning, such as least squares regression, low rank approximation,
canonical correlation analysis, and robust variants of these problems. In a typical instance of such
a problem, one is given a large matrix X € R?*" as input, and one wishes to choose a random
map II from a certain family of random maps and replace X with IIX. As II typically has many
fewer rows than columns, IIX compresses the original matrix X, which allows one to perform the
original optimization problem on the much smaller matrix I1X. For a survey of such techniques,
we refer the reader to the survey by Woodruff [Wool4].

A key challenge in this area is to extend sketching techniques to kernel-variants of the above
linear algebra problems. Suppose each column of X corresponds to an example while each of
the d rows corresponds to a feature. Then these algorithms require an explicit representation
of X to be made available to the algorithm. This is unsatisfactory in many machine learning
applications, since typically the actual learning is performed in a much higher (possibly infinite)
dimensional feature space, by first mapping each column of X to a much higher dimensional space.
Fortunately, due to the kernel trick, one need not ever perform this mapping explicitly; indeed, if the
optimization problem at hand only depends on inner product information between the input points,
then the kernel trick allows one to quickly compute the inner products of the high dimensional
transformations of the input points, without ever explicitly computing the transformation itself.
However, evaluating the kernel function easily becomes a bottleneck in algorithms that rely on the
kernel trick because it typically takes O(d) time to evaluate the kernel function for d dimensional
datasets. There are a number of recent works which try to improve the running times of kernel
methods; we refer the reader to the recent work of [MM17] and the references therein. A natural
question is whether it is possible to instead apply sketching techniques on the high-dimensional
feature space without ever computing the high-dimensional mapping.

For the important case of polynomial kernel, such sketching techniques are known to be possibleﬂ
This was originally shown by Pham and Pagh in the context of kernel support vector machines
[PP13], using the TensorSketch technique for compressed matrix multiplication due to Pagh [Pagl3].
This was later extended in [ANW14] to a wide array of kernel problems in linear algebra, including
principal component analysis, principal component regression, and canonical correlation analysis.

The running times of the algorithms above, while nearly linear in the number of non-zero
entries of the input matrix X, depend exponentially on the degree ¢ of the polynomial kernel. For
example, suppose one wishes to do low rank approximation on A, the matrix obtained by replacing
each column of X with its kernel-transformed version. One would like to express A ~ UV, where
U € R¥** and V € R¥*™, Writing down U explicitly is problematic, since the columns belong to
the much higher dP-dimensional space. Instead, one can express UV implicitly via column subset
selection, by expressing it as a AZZ" and then outputting Z. Here Z is an n x k matrix. In
[ANW14], an algorithm running in nnz (X) + (n + d)poly (37, k, 1/¢) time was given for outputting
such Z with the guarantee that ||[A— AZZ"||% < (1+¢)||A— Ax||% with constant probability, where
Ay is the best rank-k approximation to A. Algorithms with similar running times were proposed
for principal component regression and canonical correlation analysis. The main message here is

!The lifting function corresponding to the polynomial kernel maps z € R¢ to o(x) € de, where ¢()iy iy, ip =
TiqLig *** Tip, for ’i17i2,...,ip € {1,27...,d}



that all analyses of all existing sketches require the sketch IT to have at least 3P rows in order to
guarantee their correctness. Moreover, the existing sketches work with constant probability only
and no high probability result was known for the polynomial kernel.

The main drawback with previous work on applying dimensionality reduction for the polynomial
kernel is the exponential dependence on p in the sketching dimension and consequently in the
running time. Ideally, one would like a polynomial dependence. This is especially useful for the
application of approximating the Gaussian kernel by a sum of polynomial kernels of various degrees,
for which large values of p, e.g., p = poly (logn) are used [CKS11]. This raises the main question
of our work:

Is it possible to desing a data oblivious sketch with a sketching dimension (and, hence, running
time) that is not exponential in p for the above applications in the context of the polynomial
kernel?

While we answer the above question, we also study it in a more general context, namely, that
of regularization. In many machine learning problems, it is crucial to regularize so as to prevent
overfitting or ill-posed problems. Sketching and related sampling-based techniques have also been
extensively applied in this setting. For a small sample of such work see [RRO7, [AM15, [PW15|
MMT17, ACWTT7D, [ACW17a, AKM™17, IAKM™18a]. As an example application, in ordinary least
squares regression one is given a d x n matrix A, and a d x 1 vector b, and one seeks to find a
y € R" 50 as to minimize ||Ay — b||3. In ridge regression, we instead seek a y so as to minimize
| Ay — b||3 + A|ly||3, for a parameter A > 0. Intuitively, if A is much larger than the operator norm
| Al|2 of A, then a good solution is obtained simply by setting y = 0%. On the other hand, if A = 0,
the problem just becomes an ordinary least squares regression. In general, the statistz'caTl dimension
gzl AiﬁéAI)?,\’
M(ATA) is the i-th eigenvalue of AT A. Note that the statistical dimension is always at most
min(n, d), but in fact can be much smaller. A key example of its power is that for ridge regression,
it is known [ACWI17b] that if one chooses a random Gaussian matrix II with O(s)/€) rows, and if y
is the minimizer to [[ITAy —TIb|3+Ally |3, then || Ay—b[3+Ayl3 < (1+¢) min (|| Ay —bl3-+ Ally13).
Note that for ordinary regression (A = 0) one would need that II has Q(rank(A)/e) rows [CW09].
Another drawback of existing sketches for the polynomial kernel is that their running time and
target dimension depend at least quadratically on sy and no result is known with linear dependence
on sy, which would be optimal. We also ask if the exponential dependence on p is avoidable in the
reqularized setting:

(or effective degrees of freedom), sy, captures this tradeoff, and is defined as where

Is it possible to obtain sketching dimension bounds and running times that are not exponential in
p in the context of regqularization? Moreover, is it possible to obtain a running time that depends
only linearly on sy ¥

1.1 Owur Contributions

In this paper, we answer the above questions in the affirmative. In other words, for each of
the aforementioned applications, our algorithm depends only polynomially on p. We state these
applications as corollaries of our main results, which concern approximate matrix product and
subspace embeddings. In particular, we devise a new distribution on oblivious linear maps II €
R™*% (i.e., a randomized family of maps that does not depend on the dataset X), so that for any
fixed X € R¥*™_ it satisfies the approximate matrix product and subspace embedding properties.
These are the key properties needed for kernel low rank approximation. We remark that our



data oblivious sketching is greatly advantageous to data dependent methods because it results in a
one-round distributed protocol for kernel low rank approximation [KVW14].
We show that our oblivious linear map IT € R™*% has the following key properties:

Oblivious Subspace Embeddings (OSEs). Given € > 0 and an n-dimensional subspace E C
RY, we say that IT € R™*? is an e-subspace embedding for E if (1 —¢)||z|j2 < ||Tz|l2 < (1+¢)|z2
for all z € E. In this paper we focus on Oblivious Subspace Embeddings in the regularized setting.
In order to define a (regularized) Oblivious Subspace Embedding, we need to introduce the notion
of statistical dimension, which is defined as follows:

Definition 1 (Statistical Dimension). Given A > 0, for every positive semidefinite matrix K €
R™" we define the A-statistical dimension of K to be

sa(K) == tr(K(K 4+ \,,)™1).
Now, we can define the notion of an oblivious subspace embedding (OSE):

Definition 2 (Oblivious Subspace Embedding (OSE)). Given ¢,6,u > 0 and integers d,n > 1,
an (g,0, u,d, n)-Oblivious Subspace Embedding (OSE) is a distribution D over m x d matrices (for
arbitrary m) such that for every A > 0, every A € R¥*™ with \-statistical dimension s)(AT A) < p,
the following holds[]

Pr (1= )(ATA+ L) = (HA)THA + M, 2 (14 €)(ATA+AL)| > 1-46. (1)

The goal is to have the target dimension m small so that II provides dimensionality reduction.
If we consider the non-oblivious setting where we allow the sketch matrix Il to depend on A, then
by leverage score sampling we can achieve a target dimension of m ~ sy(AT A), which is essentially
optimal [AKM™18b|. But as we discussed the importance of oblivious embeddings, the ultimate
goal is to get an oblivious subspace embedding with target dimension of m =~ s)(A" A).

Approximate Matrix Product. We formally define this property in the following definition.

Definition 3 (Approximate Matrix Product). Given €,0 > 0, we say that a distribution D over
m x d matrices has the (g, 8)-approzimate matriz product property if for every C, D € RI¥X",

P [ICTHTID — €7 Dl < el D] 2 16,

Our main theorems, which provide the aforementioned guarantees, are as followsE|

Theorem 1. For every positive integers n,p,d, every €,sy > 0, there exists a distribution on linear
sketches TIP € R™*4" such that: (1) If m = Q (ps3e~2), then IIP is an (g,1/10, sy, dP, n)-oblivious
subspace embedding as in Definition @ (2) If m = Q (pe?2), then II? has the (¢,1/10)-approzimate
matriz product property as in Definition [3

Moreover, for any X € R™>*", if A € R¥*" js the matriz whose columns are obtained by the
p-fold self-tensoring of each column of X then the matriz TIPA can be computed using Algorithm 1]
in time O (pnm + punz(X)).

2For symmetric matrices K and K’, the spectral inequality relation K < K’ holds if and only if 2 Kz < 2" K'x
for all vectors =

3Throughout this paper, the notations 6, 5, 5) suppress poly (log(nd/¢)) factors.



Theorem 2. For every positive integers n,p,d, every e, sy > 0, there exists a distribution on linear
sketches TIP € R™ " sych that: (1) If m = Q (ps3e2), then IIP is an (g,1/poly (n), sy, dP,n)-
oblivious subspace embedding (Definition @ (2) If m = Q (pe™?2), then IIP has the (g,1/poly (n))-
approzimate matriz product property (Definition @

Moreover, in the setting of (1), for any X € R, if A € R¥*" js the matriz whose columns
are obtained by —fold self-tensoring of each column of X, then the matriz IIPA can be computed

using Algorithm 1| in time O (pnm + p?2sye! nnz(X)).

Theorem 3. For every positive integers p,d,n, every €,sy > 0, there exists a distribution on
linear sketches TIP € R™*% which is an (g,1/poly (n), sy, dP,n)-oblivious subspace embedding as in
Definition @ provided that the integer m satisfies m = Q (p48>\/€2).

Moreover, for any X € R, if A € R¥*" is the matriz whose columns are obtained by a
p-fold self-tensoring of each column of X then the matriz IIP A can be computed using Algorithm ]
in time O (pnm + p°e 2 nnz(X)).

We can immediately apply these theorems to kernel ridge regression with respect to the polyno-
mial kernel of degree p. In this problem, we are given a regularization parameter A > 0, a d X n ma-
trix X, and vector b € R and would like to find a y € R™ so as to minimize ||AT Ay —b||3 + \|| Ay]|3,
where A € R¥*" i the matrix obtained from X by applying the self tensoring of degree p to
each column. To solve this problem via sketching, we choose a random matrix II? according
to the theorems above and compute [I’PA. We then solve the sketched ridge regression problem

2
which seeks to minimize H(HPA)THpr - bH2 + A|I?Az||3 over z. By the above theorems, we

have H(HPA)THPAQZ - sz + AP Az |3 = (14 ¢) (HATAx — sz + )\HA$||%) simultaneously for all

x € R™; thus, solving the sketched ridge regression problem gives a (1 + €)-approximation to the
original problem. If we apply Theorem (I, then the number of rows of II” needed to ensure success
with probability 9/10 is ©(ps3€¢~2). The running time to compute IIP A is O(p?s3e~*n+pnnz(X)),
after which a ridge regression problem can be solved in O(nsj/e*) time via an exact closed-form
solution for ridge regression. An alternative approach to obtaining a very high-accuracy approxima-
tion is to use the sketched kernel as a preconditioner to solve the original ridge regression problem,
which improves the dependence on € to log(1l/e) [ACWI1T7a]. To obtain a higher probability of
success, we can instead apply Theorem [3| which would allow us to compute the sketched matrix
P A in O(p®sxe2n + pPe~2nnz(X)) time. This is the first sketch to achieve the optimal depen-
dence on sy for the polynomial kernel, after which we can now solve the ridge regression problem
in 6(n8?\poly (p, 6_1)) time. Importantly, both running times are polynomial in p, whereas all
previously known methods incurred running times that were exponential in p.

Although there has been much work on sketching methods for kernel approximation which
nearly achieve the optimal target dimension m ~ sy, such as Nystrom sampling [MM17], all known
methods are data-dependent unless strong conditions are assumed about the kernel matrix (small
condition number or incoherence). Data oblivious methods provide nice advantages, such as one-
round distributed protocols and single-pass streaming algorithms. However, for kernel methods
they are poorly understood and previously had worse theoretical guarantees than data-dependent
methods. Furthermore, note that the Nystrom method requires to sample at least m = (s, ) land-
marks to satisfy the subspace embedding property even given an oracle access to the exact leverage
scores distribution. This results in a runtime of 2 (s3d + s nnz(X)). Whereas our method achieves
a target dimension that nearly matches the best dimension possible with data-dependent Nystrom
method and with strictly better running time of O(nsy + nnz(X)) (assuming p = poly (logn)).



Therefore, for a large range of parameter our sketch runs in input sparsity time wheras the Nys-
trom methods are slower by an s) factor in the best case.

Application: Polynomial Kernel Rank-k Approximation. Approximate matrix product
and subspace emebedding are key properties for sketch matrices which imply efficient algorithms
for rank-k kernel approximation [ANWI14]. The following corollary of Theorem [l| immediately
follows from Theorem 6 of [ANW14].

Corollary 4 (Rank-k Approximation). For every positive integers k,n,p,d, every ¢ > 0, any
X € R if A € R¥*™ s the matriz whose columns are obtained by the p-fold self-tensoring
of each column of X then there exists an algorithm which finds an n x k matriz V in time
O (pnnz(X) + poly (k,p,e™1)) such that with probability 9/10,

A= AVVTI2 < (14+¢) min |A—UJ3.
UeR® xn
rank(U)=k

Note that this runtime improves the runtime of [ANW14] by exponential factors in the polyno-
mial kernel’s degree p.

Additional Applications. Our results also imply improved bounds for each of the applications
in [ANW14], including canonical correlation analysis (CCA), and principal component regression
(PCR). Importantly, we obtain the first sketching-based solutions for these problems with running
time polynomial rather than exponential in p.

Oblivious Subspace Embedding for the Gaussian Kernel. One very important implication
of our result is Oblivious Subspace Embedding of the Gaussian kernel. Most work in this area is
related to the Random Fourier Features method [RR07]. It was shown in |[AKM™17] that one
requires (n) samples of the standard Random Fourier Features to obtain a subspace embedding
for the Gaussian kernel, while a modified distribution for sampling frequencies yields provably
better performance. The target dimension of our proposed sketch for the Gaussian kernel strictly
improves upon the result of [AKM™17], which has an exponential dependence on the dimension
d. We for the first time, embed the Gaussian kernel with a target dimension which has a linear
dependence on the statistical dimension of the kernel and is not exponential in the dimensionality
of the data-point.

Theorem 5. For every r > 0, every positive integers n, d, and every X € R¥™ such that ||z;]|o < 7
for all i € [n], where z; is the i column of X, suppose G € R™™ is the Gaussian kernel matriz —
i.e., Gjp = e llzi—akl3/2 for all j,k € [n]. There exists an algorithm which computes Sq(X) € R™*"
in time O (¢%2nsx + ¢°c 2 nnz(X)) such that for every e, > 0,

Pr[(1 = (G + ML) = (5,(X))T8,(X) + Alu = (14 (G + AL)] = 1= 1/poly (n),

where m = O (¢°sy/€?) and ¢ = O(r? + log(n/e\)) and sy is A-statistical dimension of G as in
Definition [1].

We remark that for datasets with radius r = poly (logn) even if one has oracle access to the
exact leverage scores for Fourier features of Gaussian kernel, in order to get subspace embedding
guarantee one needs to use m = (s, ) features which requires Q(s) nnz(X)) operations to compute.
Wheras our result of Theorem [5| runs in time O(nsy + nnz(X)). Therefore, for a large range of
parameters our Gaussian sketch runs in input sparsity time wheras the Fourier features method is
at best slower by an s) factor.



1.2 Technical Overview

Our goal is to design a sketching matrix I1P that satisfies the oblivious subspace embedding property
with an optimal embedding dimension and which can be efficiently applied to vectors of the form
x®P ¢ de We start by describing some natural approaches to this problem (some of which have
been used before), and show why they incur an exponential loss in the degree of the polynomial
kernel. We then present our sketch and outline our proof of its correctness.

We first discuss two natural approaches to tensoring classical sketches, namely the Johnson-
Lindenstrauss transform and the CountSketch. We show that both lead to an exponential depen-
dence of the target dimension on p and then present our new approach.

Tensoring the Johnson-Lindenstrauss Transform. Perhaps the most natural approach to
designing a sketch 117 is the idea of tensoring p independent Johnson-Lindenstrauss matrices. Specif-
ically, let m be the target dimension. For every r =1,...,p let M (") denote an m x d matrix with
iid uniformly random =41 entries, and let the sketching matrix M € R™*% be

M:LMU).....M(P)
m b

where o stands for the operation of tensoring the rows of matrices M) (see Definition . This
would be a very efficient matrix to apply, since for every j = 1,...,m the j-th entry of Mz®P? is

exactly [TF_; {M (T).CE} , which can be computed in time O(pnnz(z)), giving overall evaluation time
J

O(pmnnz(z)). One would hope that m = O(e~?logn) would suffice to ensure that |[M2%P|]3 =
(1 + €)||z®4||3. However, this is not true: we show in Appendix [A| that one must have m =
Q(e723P1og(n)/p + e '(log(n)/p)?) in order to preserve the norm with high probability. Thus,
the dependence on degree p of the polynomial kernel must be exponential. The lower bound is
provided by controlling the moments of the sketch M and using Paley-Zygmund inequality. For
completeness, we show that the aforementioned bound on the target dimension m is sharp, i.e.,
necessary and sufficient for obtaining the Johnson-Lindenstrauss property.

Tensoring of CountSketch (TensorSketch). Pagh and Pham [PP13] introduced the following
tensorized version of CountSketch. For every i = 1,...,p let h; : [d] — [m] denote a random hash
function, and o; : [d] — [m] a random sign function. Then let S : R?*” — R™ be defined by

S (1mip) 7= 0 (01) -0 (ip) L[ (i1) + .. (i) = 7]

forr =1,...,m. For every 2 € R? one can compute Sz®? in time O(pm logm-+pnnz(x)). Since the
time to apply the sketch only depends linearly on the dimension p (due to the Fast Fourier Trans-
form) one might hope that the dependence of the sketching dimension on p is polynomial. However,
this turns out to not be the case: the argument in [ANW14] implies that m = O(37s3) suffices to
construct a subspace embedding for a matrix with regularization A and statistical dimension sy,
and we show in Appendix that exponential dependence on p is necessary.

Our Approach: Recursive Tensoring. The initial idea behind our sketch is as follows. To
apply our sketch IIP to 2P, for x € R?, we first compute the sketches Ty, Thx, . .. , Ty for inde-
pendent sketching matrices 711, ...,T, ~ Thase — see the leaves of the sketching tree in Fig. |1, Note
that we choose these sketches as CountSketch [CCFC02] or OSNAP [NN13] to ensure that the leaf

4Tensor product of = with itself p times.



internal nodes:
“ TensorSketch or TensorSRHT

/
o

>
e

leaves: CountSketch or OSNAP

Figure 1: Spase is chosen from the family of sketches which support fast matrix-vector product for
tensor inputs such as TensorSketch and TensorSRHT. The Ti,age is chosen from the family of sketches
which operate in input sparsity time such as CountSketch and OSNAP.

sketches can be applied in time proportional to the number of nonzeros in the input data (in the
case of OSNAP this is true up to polylogarithimic factors).

Each of these is a standard sketching matrix mapping d-dimensional vectors to m-dimensional
vectors for some common value of m. We refer the reader to the survey [Wool4]. The next idea
is to choose new sketching matrices S1,S52,...,5,/2 ~ Spase, mapping m?-dimensional vectors to
m-dimensional vectors and apply S; to (Thz) ® (Tax), as well as apply S2 to (T3z) ® (Tyz), and
so on, applying S/, to (T),—12) ® (Tpz). These sketches are denoted by Spese — see internal nodes
of the sketching tree in Fig. We note that in order to ensure efficiency of our construction (in
particular, running time that depends only linearly on the statistical dimension s)) we must choose
Shase as a sketch that can be computed on tensored data without explicitly constructing the actual
tensored input, i.e., Spqse sSupports fast matrix vector product on tensor product of vectors. We
use either TensorSketch (for results that work with constant probability) and a new variant of the
Subsampled Randomized Hadamard Transform SRHT which supports fast multiplication for the
tensoring of two vectors (for high probability bounds) — we call the last sketch TensorSRHT.

At this point we have reduced our number of input vectors from p to p/2, and the dimension
is m, which will turn out to be roughly s). We have made progress, as we now have fewer vectors
each in roughly the same dimension we started with. After log, p levels in the tree we are left with
a single output vector.

Intuitively, the reason that this construction avoids an exponential dependence on p is that
at every level in the tree we use target dimension m larger than the statistical dimension of our
matrix by a factor polynomial in p. This ensures that the accumulation of error is limited, as the
total number of nodes in the tree is O(p). This is in contrast to the direct approaches discussed
above, which use a rather direct tensoring of classical sketches, thereby incurring an exponential
dependence on p due to dependencies that arise.

Showing Our Sketch is a Subspace Embedding. In order to show that our recursive sketch
is a subspace embedding, we need to argue it preserves norms of arbitrary vectors in R, not only



vectors of the form z®P, i.e., p-fold self-tensoring of d-dimensional vectorsﬂ Indeed, all known
methods for showing the subspace embedding property (see [Wool4] for a survey) at the very least
argue that the norms of each of the columns of an orthonormal basis for the subspace in question
are preserved. While our subspace may be formed by the span of vectors which are tensor products
of p d-dimensional vectors, we are not guaranteed that there is an orthonormal basis of this form.
Thus, we first observe that our mapping is indeed linear over R¥ | making it well-defined on the
elements of any basis for our subspace, and hence our task essentially reduces to proving that our
mapping preserves norms of arbitrary vectors in R% .

We present two approaches to analyzing our construction. One is based on the idea of prop-
agating moment bounds through the sketching tree, and results in a nearly linear dependence of
the sketching dimension m on the degree p of the polynomial kernel, at the expense of a quadratic
dependence on the statistical dimension sy. This approach is presented in Section [, The other
approach achieves the (optimal) linear dependence on sy, albeit at the expense of a worse polyno-
mial dependence on p. This approach uses sketches that succeed with high probability, and uses
matrix concentration bounds.

Propagating moment bounds through the tree — optimizing the dependence on the
degree p. We analyze our recursively tensored version of the OSNAP and CountSketch by showing
how moment bounds can be propagated through the tree structure of the sketch. This analysis is
presented in Section [d and results in the proof of Theorem [I] as well as the first part of Theorem
The analysis obtained this way give particularly sharp dependencies on p and log1/6.

The idea is to consider the unique matrix M € R™*% that acts on simple tensors in the way
we have described it recursively above. This matrix could in principle be applied to any vector
r € R? (though it would be slow to realise). We can nevertheless show that this matrix has the
(¢,6,t)-JL Moment Property, which is for parameters ,6 € [0,1],£ > 2, and every z € R? with
||z]|2 = 1 the statement E“HM@“H% - lﬂ < els.

It can be shown that M is built from our various Spagse and Th.se matrices using three different
operations: multiplication, direct sum, and row-wise tensoring. In other words, it is sufficient to
show that if @ and @' both have the (e, d,t)-JL Moment Property, then so does QQ’, Q@ & Q" and
Q e )'. This turns out to hold for Q & Q’, but QQ’ and Q e Q' are more tricky. (Here & is the
direct sum and e is the composition of tensoring the rows. See section [2| on notation.)

For multiplication, a simple union bound allows us to show that QWQ® ...Q® has the
(pe, pé, t)-JL. Moment Property. This would unfortunately mean a factor of p? in the final di-
mension. The union bound is clearly suboptimal, since implicitly it is assumes that all the matrices
conspire to either shrink or increase the norm of a vector, while in reality with independent ma-
trices, we should get a random walk on the real line. Using an intricate decoupling argument, we
show that this is indeed the case, and that QVQ® ... Q® has the (\/Pe, 6,t)-JL Moment Property,
saving a factor of p in the output dimension.

Finally we need to analyze Q e Q’. Here it is easy to show that the JL Moment Property
doesn’t in general propagate to @ e Q' (consider e.g. @ being constant 0 on its first m/2 rows
and Q" having 0 on its m/2 last rows.) For most known constructions of JL matrices it does how-
ever turn out that () e Q' behaves well. In particular we show this for matrices with independent
sub-Gaussian entries (appendix , and for the so-called Fast Johnson Lindenstrauss construc-
tion [AC06] (Lemma [21)). The main tool here is a higher order version of the classical Khintchine

52%P denotes * @ x - - - ® x, the p-fold self-tensoring of .
—_——

p terms
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inequality [HMQ7] which bounds the moments E[(a(l) Qe ®. .. 0o, az)t} when oM ... o) are
independent sub-Gaussian vectors (Lemma .

Optimizing the dependence on s). Our proof of Theorem (3| relies on instantiating our frame-
work with OSNAP at the leaves of the tree (Tpqse) and a novel version of the SRHT that we refer
to as TensorSRHT at the internal nodes of the tree. We outline the analysis here. In order to show
that our sketch preserves norms, let y be an arbitrary vector in R”. Then in the bottom level of
the tree, we can view our sketch as 11 x Ty x --- x T}, where x for denotes the tensor product of
matrices (see Definition . Then, we can reshape y to be a d?~! x d matrix Y, and the entries of
Ty x Ty x - -- x Tpy are in bijective correspondence with those of 77 x T x - -+ x Tp_lY’l];r . By defi-
nition of T}, it preserves the Frobenius norm of Y, and consequently, we can replace Y with YT, pT .
We next look at (17 x To X - -+ x T),_2)Z(Igq X TpT_l), where Z is the dP~2 x d? matrix with entries
in bijective correspondence with those of YTpT . Then we know that T),_; preserves the Frobenius
norm of Z. Iterating in this fashion, this means the first layer of our tree preserves the norm of
y, provided we union bound over O(p) events that a sketch preserves a norm of an intermediate
matrix. The core of the analysis consists of applying spectral concentration bounds based analysis
to sketches that act on blocks of the input vector in a correlated fashion. We give the details in
Section [0l

Sketching the Gaussian kernel. Our techniques yield the first oblivious sketching method for
the Gaussian kernel with target dimension that does not depend exponentially on the dimensionality
of the input data points. The main idea is to Taylor expand the Gaussian function and apply our
sketch for the polynomial kernel to the elements of the expansion. It is crucial here that the
target dimension of our sketch for the polynomial kernel depends only polynomially on the degree,
as otherwise we would not be able to truncate the Taylor expansion sufficiently far in the tail
(the number of terms in the Taylor expansion depends on the radius of the dataset and depends
logarithmically on the regularization parameter). Overall, our Gaussian kernel sketch has optimal
target dimension up to polynomial factors in the radius dataset and logarithmic factors in the
dataset size. Moreover, it is the first subspace embedding of Gaussian kernel which runs in input
sparsity time O(nnz(X)) for datasets with polylogarithmic radius. The result is summarized in
Theorem [5], and the analysis is presented in Section [6]

1.3 Related Work

Work related to sketching of tensors and explicit kernel embeddings is found in fields ranging from
pure mathematics to physics and machine learning. Hence we only try to compare ourselves with
the four most common types we have found.

Johnson-Lindenstrauss Transform A cornerstone result in the field of subspace embeddings
is the Johnson-Lindenstrauss lemma [JLS86]: “For all £ € [0, 1], integers n,d > 1, and X C RY
with | X| = n there exists f : R — R™ with m = O(e¢~2log(n)), such that (1 — ¢&)|jz — y||2 <
1f(2) = f(W)ll2 < (1 +&)||z — ylla for every 2,y € X

It has been shown in [CW13, [CNW16a] there exists a constant C, so that, for any r-dimensional
subspace U C R, there exists a subset X C U with |X| < C", such that max,cp ||| f(2)]13 — [|=[3] <
O(maxzex || f(z)||13 — |=]3]). So the Johnson-Lindenstrauss Lemma implies that there exists a
subspace embedding with m = O(¢~2r).
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It is not enough to know that the subspace embedding exists, we also need the to find the
dimension-reducing map f, and we want the map f to be applied to the data quickly. Achlioptas
showed that if II € R™*¢ is random matrix with i.i.d. entries where II; ; = 0 with probability
2/3, and otherwise II; ; is uniform in {—1,1}, and m = O(e~2log(1/)), then ||IIz|s = (1 £&)||z|2
with probability 1 — ¢ for any 2 € R? [Ach03]. This gives a running time of O(mnnz (z)) to sketch
a vector x € R? Later, the Fast Johnson Lindenstrauss Transform [ACO06], which exploits the
Fast Fourier Transform, improved the running time for dense vectors to O(dlogd + m?). The re-
lated Subsampled Randomized Hadamard Transform has been extensively studied [Sar06, DMMO6),
DMMS11, Trol1l DMMW12, LDEU13], which uses O(dlogd) time but obtains suboptimal dimen-
sion O(e~2log(1/4)?), hence it can not use the above argument to get subspace embedding, but it
has been proven in [Trol1] that if m = O(e2(r +log(1/§)?)), then one get a subspace embedding.

The above improvements has a running time of O(dlog d), which can be worse than O(mnnz (x))
if x € R is very sparse. This inspired a line of work trying to obtain sparse Johnson Lindenstrauss
transforms [DKS10, [KN14, NN13, [Coh16]. They obtain a running time of O(e~!log(1/d)nnz (z)).
In [NN13] they define the ONSAP transform and investigate the trade-off between sparsity and
subspace embedding dimension. This was further improved in [Cohl6].

In the context of this paper all the above mentioned methods have the same shortcoming,
they do not exploit the extra structure of the tensors. The Subsampled Randomized Hadamard
Transform have a running time of Q(pdPlog(p)) in the model considered in this paper, and the
sparse embeddings have a running time of Q(nnz(z)?). This is clearly unsatisfactory and inspired
the TensorSketch [PP13| [ANW14], which has a running time of Q(pnnz(z)). Unfortunately, they
need m = Q(3Pe=25~!) and one of the main contributions of this paper is get rid of the exponential
dependence on p.

Approximate Kernel Expansions A classic result by Rahimi and Recht [RRO8|] shows how to
compute an embedding for any shift-invariant kernel function k(||z—yl|2) in time O(dm). In [LSS14]
this is improved to any kernel on the form k((z,y)) and time O((m + d) log d), however the method
does not handle kernel functions that can’t be specified as a function of the inner product, and it
doesn’t provide subspace embeddings. See also [MMI7] for more approaches along the same line.
Unfortunately, these methods are unable to operate in input sparsity time and their runtime at
best is off by an sy factor.

Tensor Sparsification There is also a literature of tensor sparsification based on sampling [NDTT5],
however unless the vectors tensored are already very smooth (such as +1 vectors), the sampling has
to be weighted by the data. This means that these methods in aren’t applicable in general to the
types of problems we consider, where the tensor usually isn’t known when the sketching function
is sampled.

Hyper-plane rounding An alternative approach is to use hyper-plane rounding to get vectors
on the form +1. Let p = %, then we have (sign (M=) ,sign (My)) = Y, sign (M;z) sign (M;y) =
>"; X; , where X; are independent Rademachers with y/m = E[X;] = 1— 2 arccos p = Zp+ O(p®).
. . . L €22 .

By tail bounds then Pr[[(sign (Mz),sign (My)) — pu| > eu] < 2exp(—min(Sh ,357")) Taking
m = O(p~2¢ 21og1/6) then suffices with high probability. After this we can simply sample from
the tensor product using simple sample bounds.

The sign-sketch was first brought into the field of data-analysis by [Cha02] and [Vall5] was the
first, in our knowledge, to use it with tensoring. The main issue with this approach is that it isn’t
a linear sketch, which hinders the applications we consider in this paper, such as kernel low rank
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approximation, CCA, PCR, and ridge regression. It also takes dm time to calculate Mx and My
which is unsatisfactory.

1.4 Organization

In section [2] we introduce basic definitions and notations that will be used throughout the paper.
Section ] introduces our recursive construction of the sketch which is our main technical tool
for sketching high degree tensor products. Section [4 analyzes how the moment bounds propagate
through our recursive construction thereby proving Theorems (| and 2| which have linear dependence
on the degree g. Section [f|introduces a high probability Oblivious Subspace Embedding with linear
dependence on the statistical dimension thereby proving Theorem Finally, section [6] uses the
tools that we build for sketching polynomial kernel and proves that, for the first time, Gaussian
kernel can be sketched without an exponential loss in the dimension with provable guarantees.
Appendix [A] proves lower bounds.

2 Preliminaries

In this section we introduce notation and present useful properties of tensor product of vectors and
matrices as well as properties of linear sketch matrices.
We denote the tensor product of vectors a,b by a ® b which is formally defined as follows,

Definition 4 (Tensor product of vectors). Given a € R™ and b € R"™ we define the twofold tensor
product a ® b to be

aitby aibe - aib,
a2b1 a2b2 s (Igb

a®b= . . . " e R7,
am61 ambg s ambn

Although tensor products are multidimensional objects, it is often convenient to associate them with
single-dimensional vectors. In particular, we will often associate a ® b with the single-dimensional
column vector (a1by, asbi, ..., amby, a1ba, asba, ..., amba,. .., amby). Givenvy; € R4 vy € R% ...y €
R we define the k-fold tensor product vi @ vy --- ® v, € R%% 4% For shorthand, we use the
notation v®* to denote v ® v--- ® v, the k-fold self-tensoring of v.

k terms

Tensor product can be naturally extended to matrices which is formally defined as follows,

Definition 5. Given A; € R™M*"1 A, ¢ R™2X"2 ... A, € R™*" we define A; X Ay X -+- X Ay,
to be the matrix in R™1m2 " mkXmn2 "k whose element at row (iy, - - - , %) and column (ji,-- - , jx) is
Aq(i1,j1) - - Ak(ig, ji)- As a consequence the following holds for any v; € R™ vg € R, -+ Jvp €

R"™: (A1 X Ag X ++o X Ak)(’l)l R+ & Uk) = (Alvl) ® (AQ'UQ) - ® (Akvk)-
The tensor product has the useful mized product property, given in the following Claim,

Claim 6. For every matrices A, B,C, D with appropriate sizes, the following holds,
(A-B)x (C-D)=(AxC)-(BxD).

We also define the column wise tensoring of matrices as follows,
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Definition 6. Given A; € R™*", Ay € R™2*", ... A € R™*" we define A1 ® Ay ®---® Ay, to
be the matrix in R™1™m2 X" whose j™ column is A7 ® 4} ® --- ® Aj, for every j € [n], where Al
is the j*" column of A; for every I € [k].

Similarly the row wise tensoring of matrices are introduced in the following Definition,

Definition 7. Given A! € R™*™ A2 ¢ R™*"2 ... Ak ¢ R™*"  we define A' o A% e ... AF to be
the matrix in R™*™1m2" % whose ;' row is (Aj1 ® A? ®--® A?)T for every j € [m|, where Aé is
the j*" row of A’ as a column vector for every I € [k].

Definition 8. Another related operation is the direct sum for vectors: z@®y = [3] and for matrices:
A® B =[49%]. When the sizes match up, we have (A ® B)(z ®y) = Az + By. Also notice that
if I, is the k x k identity matrix, then [y, @ A= A& - A.

—_————

k times

3 Construction of the Sketch

In this section, we present the basic construction for our new sketch. Suppose we are given
v1,02,...0¢ € R™. Our main task is to map the tensor product v1 ® v2 ® --- ® v, to a vector
of size m using a linear sketch.

Our sketch construction is recursive in nature. To illustrate the general idea, let us first consider
the case in which ¢ > 2 is a power of two. Our sketch involves first sketching each pair (v ®
v2), (V3@ V4), -+, (Vg—1 QVy) € R™ independently using independent instances of some linear base
sketch (e.g., degree two TensorSketch, Sub-sampled Randomized Hadamard Transform (SRHT),
CountSketch, OSNAP). The number of vectors after this step is half of the number of vectors that
we began with. The natural idea is to recursively apply the same procedure on the sketched tensors
with half as many instances of the base sketch in each successive step.

More precisely, we first choose a (randomized) base sketch Spase : R™ — R™ that sketches
twofold tensor products of vectors in R™ (we will describe how to choose the base sketch later).
Then, for any power of two ¢ > 2, we define Q7 : R™ - R™ on v @2 ® -+ ® vg recursively as
follows:

QU1 @2 @+ D) = QY (S1(11 @ v2) ® S(vs D va) ® -+ @ ST (Vg1 D 1g))
where S7, 59, - ,Sg Y R™ — R™ are independent instances of Spase and @1 : R™ — R™ is simply
the identity map on R™.

The above construction of Q¢ has been defined in terms of its action on g-fold tensor products of
vectors in R™, but it extends naturally to a linear mapping from R™ to R™. The formal definition
of I17 is presented below.

Definition 9 (Sketch Q). Let m > 2 be a positive integer and let Spage : R™ — R™ be a
linear map that specifies some base sketch. Then, for any integer power of two ¢ > 2, we define
Q9 : R™ — R™ to be the linear map specified as follows:

1=62.6%...89%. g9

where for each I € {2',2% ... ¢/2,q}, S’ is a matrix in R™*xm! defined as
S'=51 xS x - x S, (2)
where the matrices S{, e ,Sll /2 € R™*m* are drawn independently from a base distribution Spage.
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S? =2

Vi Va2 V3 V4

Figure 2: Visual illustration of the recursive construction of Q¢ for degree ¢ = 4. The input tensor
is v1 ® V2 ® v3 ® v4 and the output is z = Q4(v1 ® v9 ® v3 ®vg). The intermediate nodes sketch the
tensors wy = S}(v1 ® v9) and wy = S§(vs @ vy4).

This sketch construction can be best visualized using a balanced binary tree with ¢ leaves.
Figure [2| illustrates the construction of degree 4, Q*.
For every integer ¢ which is a power of two, by definition of S7 in of Definition |§|7 S =
S x e x 5’;1/2. Hence, by claim@we can write,
_ a4 a _ (qq q q
S§9=289 - x Sq/z = (Sl X oo X 5(1/271 X Im> . (Imq—2 X Sq/Z)'
By multiple applications of Claim [f] we have the following claim,

Claim 7. For every power of two integer q and any positive integer m, if S is defined as in
of Definition[9, then
ST = Mg/ oMgjo—1 -+ M,

where Mj = T,,4-2; X 52/2—j+1 X I,-1 for every j € [q/2].

Embedding R¥: So far we have constructed a sketch Q9 for sketching tensor product of vectors
in R™. However, in general the data points can be in a space R? of arbitrary dimension. A natural
idea is to reduce the dimension of the vectors by a mapping from R? to R™ and then apply Q? on
the tensor product of reduced data points. The dimensionality reduction defines a linear mapping
from R to R™" which can be represented by a matrix. We denote the dimensionality reduction
matrix by 79 € R™"*4" formally defined as follows.

Definition 10. Let m, d be positive integers and let Thase : R — R™ be a linear map that specifies
some base sketch. Then for any integer power of two g we define T to be the linear map specified
as follows,

T9=T; xTy x -+ x T,

where the matrices 17, --- ,T; are drawn independently from 7.
Discussion: Similar to Claim [7], the transform 79 can be expressed as the following product

of ¢ matrices,
T = Mqu—l"'Ml,

where M; = Iyq-j x Ty—j41 X I,,;-1 for every j € [q].
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Now we define the final sketch II9 : R — R™ for arbitrary d as the composition of Q9 - T9.
Moreover, to extend the definition to arbitrary ¢ which is not necessarily a power of two we tensor
the input vector with a standard basis vector a number of times to make the input size compatible
with the sketch matrices. The sketch I19 is formally defined below,

Definition 11 (Sketch II?). Let m,d be positive integers and let Spage : R™ — R™ and Thase :
R? — R™ be linear maps that specify some base sketches. Then, for any integer p > 2 we define
II? : R*” — R™ to be the linear map specified as follows:

1. If p is a power of two, then II? is defined as
P = QP - T?,
where QP € R™*™" and TP € R™ > are sketches as in Definitions |§| and (10| respectively.

2. If p is not a power of two, then let ¢ = 2/1°827] be the smallest power of two integer that is
greater than p and we define II” as

P (v) = 4 (v ® e?(qu)> ,
for every v € R? | where e; € R? is the standard basis column vector with a 1 in the first
coordinate and zeros elsewhere, and 117 is defined as in the first part of this definition.

Algorithm [1| sketches z®P for any integer p and any input vector 2 € R? using the sketch II? as
in Definition |11} i.e., computes TP (z®P).

Algorithm 1 SKETCH FOR THE TENSOR x®P

input: vector z € R?%, dimension d, degree p, number of buckets m, base sketches Space € Rmxm?
and Thase € R™*4
output: sketched vector z € R™

1: Let ¢ = 2log; p]

2: Let 11, -- T, be independent instances of the base sketch Tiase : RY — R™

3: For every j € {1,2,--- ,p}, let on =T x

4: For every j € {p+1,---,q}, let on =T} - e1, where e; is the standard basis vector in R? with

value 1 in the first coordinate and zero elsewhere

5. for [ =1 to log, q do

6: Let 53/21—1’ e ,S;]//;l_l be independent instances of the base sketch Sy, : R™ — R™
For every j € {1,---,q/2'} let le = S?/QFI (YQIJ__ll ® YQI]-_I)

8: end for

1
9: return z = Y, %27

We show the correctness of Algorithm [1}in the next lemma.

Lemma 8. For any positive integers d, m, and p, any distribution on matrices Spase : R™ — R™
and These : R — R™ which specify some base sketches, any vector x € R?, Algorithm computes
P (2%P) as in Definition [11]

Proof. For every input vector x € R? to Algorithm |1} the vectors Y2, -, Y9 are computed in
lines 3| and 4| of algorithm as on =T,z for all j € {1,---,p}, and, Yy = Ty - e, for all
je{q+1,---,q}. Therefore, as shown in Definition [5| the following holds,
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Ve @V =T x - xT,- (x®p®e<i§(q—p)).
From the definition of sketch T as per Definition [L0] it follows that,

Ylo R--R Yqo — Tq . (x®p ® 6(18((1_17)) ) (3)

. N 211 _ _ .
The algorithm computes Y7, - - .qu/Ql in line (7] as, le = S;J/ (YQZj_ll ® Y2lj 1), for every j €

{1,---,q/2"} and every I € {1,--- ,logs q} in a for loop. Therefore, by Claim @

! I /2 /271 -1 -1
Y1®...®Yq/2l_<5f X"‘XSZ/zl )Yl ®...®Yq/2171.

By the definition of the sketch S%/2' " in () of Deﬁnition@we have that for every I € {1,--- ,log, q},

Ve ey, =" v"g. .. QYo

Therefore, by recursive application of the above identity we get that,
Yll"g?p:52.54...SQ/2.5q.y10®...®qu.
From the definition of sketch Q7 as in Definition [9] it follows that,

}/llong:Qq-Yl(]@-'-@Y;O.

Substituting Y @ --- ® Y, from (3) in the above gives, z = (Q7- T9) - <x®p ® e?(q_p)) , where by
Definition [11) we have that, z = IIP (x®P). O

Choices of the Base Sketches S},sc and Ti,s.:  We present formal definitions for various choices
of the base sketches Spase and Thase that will be used for our sketch construction I19 of Definition
We start by briefly recalling the CountSketch [CCFC02].

Definition 12 (CountSketch transform). Let h : [d] — [m] be a 3-wise independent hash func-
tion and also let o : [d] — {—1,+1} be a 4-wise independent random sign function. Then, the
CountSketch transform, S : RY — R™ is defined as follows; for every i € [d] and every r € [m],

Spi=o(i) - 1[h(i) = 1].

Another base sketch that we consider is the TensorSketch of degree two [Pagl3] defined as
follows.

Definition 13 (degree two TensorSketch transform). Let hy, ho : [d] — [m] be 3-wise independent
hash functions and also let 01,09 : [d] — {—1,+1} be 4-wise independent random sign functions.
Then, the degree two TensorSketch transform, S : R4 x R — R™, is defined as follows; for every
i,j € [d] and every r € [m],

Sr,(i,j) = Ul(i) : O'Q(j) -1 [h1(l) + hg(]) =r mod m] .

Remark: S(z%?) can be computed in O(mlogm + nnz(x)) time using the Fast Fourier Trans-
form.

Now let us briefly recall the SRHT [ACO06].
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Definition 14 (Subsampled Randomized Hadamard Transform (SRHT)). Let D be a d x d diagonal
matrix with independent Rademacher random variables along the diagonal. Also, let P € {0, 1}™*4
be a random sampling matrix in which each row contains a 1 at a uniformly distributed coordinate
and zeros elsewhere, and let H be a d x d Hadamard matrix. Then, the SRHT, S € R™*? is
S = imPH D.

We now define a variant of the SRHT which is very efficient for sketching 22 which we call the
TensorSRHT.

Definition 15 (Tensor Subsampled Randomized Hadamard Transform (TensorSRHT)). Let D; and
D5 be two independent d x d diagonal matrices, each with diagonal entries given by independent
Rademacher variables. Also let P € {0,1}*%" be a random sampling matrix in which each row
contains exactly one uniformly distributed nonzero element which has value one, and let H be a
d x d Hadamard matrix. Then, the TensorSRHT is defined to be S : R x R? — R™ given by
S= =P (HDi x HDy).

Remark: S(z%?) can be computed in time O(dlogd + m) using the FFT algorithm.

Another sketch which is particularly efficient for sketching sparse vectors with high probability
is the OSNAP transform [NN13], defined as follows.

Definition 16 (OSNAP transform). For every sparsity parameter s, target dimension m, and
positive integer d, the OSNAP transform with sparsity parameter s is defined as,

1
ST’,j = \/? ’ 6r7j ’ JT,j)

for all r € [m] and all j € [d], where 0, ; € {—1,+1} are independent and uniform Rademacher
random variables and 9, ; are Bernoulli random variables satisfying,

1. For every i € [d], >refm) Ori = 5. That is, each column of S has exactly s non-zero entries.
2. For all r € [m] and all ¢ € [d], E[d,;] = s/m.

3. The 4, ;’s are negatively correlated: VI' C [m] x [d], E{H(r,i)ET Ori| < riyer Elori = (),

4 Linear Dependence on the Tensoring Degree p

There are various desirable properties that we would like a linear sketch to satisfy. Omne such
property which is central to our main results is the JL Moment Property. In this section we
prove Theorem [I] and Theorem [2| by propagating the JL Moment Property through our recursive
construction from Section [3| The JL Moment Property captures a bound on the moments of the
difference between the Euclidean norm of a vector and its Euclidean norm after applying the sketch
on it. The JL. Moment Property proves to be a powerful property for a sketch and we will show that
it implies the Oblivious Subspace Embedding as well as the Approximate Matrix Product property
for linear sketches.

In section we choose Shase and Thase to be TensorSketch and CountSketch respectively. Then
we propagate the second JL. Moment through the sketch construction I1? and thereby prove Theorem
In section we propagate the higher JL. Moments through our recursive construction II” as
per Definition [11| with TensorSRHT at the internal nodes (Spase) and OSNAP at the leaves (Thase),
thereby proving Theorem

To make the notation less heavy we will use || X||;. for the t*¥ moment of a random variable X.
This is formally defined below.
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Definition 17. For every integer ¢ > 1 and any random variable X € R, we write

1/t
1X1l = (B[IX1]) "
Note that || X + Y|, < || X||++|Y],+ for any random variables X,Y by the Minkowski Inequality.

We now formally define the JL. Moment Property of sketches.

Definition 18 (JL Moment Property). For every positive integer ¢ and every 4, > 0, we say a
distribution over random matrices S € R™*% has the (e, 6, t)-JL-moment property, when

li1s2l13 —1]| , <™/ and E[|S2|3] =1

for all z € R such that ||z| = 1.

The JL Moment Property directly implies the following moment bound for the inner product
of two vectors:

Lemma 9 (Two vector JL Moment Property). For any z,y € R%, if S has the (,0,t)-JL Moment
Property, then

|(82)T(59) = 2Ty| , <0t lallylla: (4)

Lt

Proof. We can assume by linearity of the norms that ||z|2 = ||y|l2 = 1. We then use that ||z —y||3 =
]I + lyl13 — 22Ty and [lz + |13 = |2]3 + [[yl3 + 22 Ty such that a7y = (l= +y[3 — [l - yl3) /4.
Plugging this into the left hand side of gives

[(s2)T(sy) =Ty, = 152 + Syll3 — e + yl3 - ISz — Syll3 + ll= — yll3| , /4
(5@ + 913 = e+ i3], + 1@ - w3 - llz - yiI3
e6"!(||z + yl3 + = — y[3)/4 (JL moment property)

= "1 (||z[I3 + [lylI3)/2
= edl/t,

IN

)/

IN

O]

We will also need the Strong JL Moment Property, which is a sub-Gaussian bound on the
difference between the Euclidean norm of a vector and its Euclidean norm after applying the sketch
on it.

Definition 19 (Strong JL. Moment Property). For every €, > 0 we say a distribution over random
matrices M € R™*? has the Strong (e, §)-JL. Moment Property when

“ ot and E[|Mel] =1,

|12l = 1], < 2\ g7

for all z € RY, ||z||2 = 1 and every integer ¢ < log(1/4).

Remark 1. It should be noted that if a matrix M € R™*¢ has the Strong (g,d)-JL Moment
Property then it has the (g, d,log(1/9))-JL Moment Property, since
122203 - 1] < € Jlosll/0) e _ sijtesh)
e

Llog(1/6) = log(1/9) T °

19



The following two lemmas together show that if we want to prove that IIP is an Oblivious
Subspace Embedding and that [P has the Approximate Matrix Multiplication Property, then it
suffices to prove that II¢ has the JL Moment Property, for ¢ which is the smallest power of two
integer such that ¢ > p, as in Definition This reduction will be the main component of the
proofs of Theorem [I] and Theorem [2]

Lemma 10. For every positive integers n,p,d, everye,d € [0,1], and every pu > 0. Let ¢ = 2[log(p)]
and let TIP € R™ ¥ qnd T19 € R™* ¥ be defined as in Definition for some base sketches
Shase € R™ ™ and Thage € R

If 119 is an (g,6, p, d9,n)-Oblivious Subspace Embedding then IIP is an (e,d, u, d?, n)-Oblivious
Subspace Embedding. Also if 111 has the (g, §)-Approximate Matriz Multiplication Property then ITP
has the (g, §)-Approximate Matriz Multiplication Property.

Proof. We will prove a correspondence between ITP and I19. Let E; € R¥™ be a matrix whose
first row is equal to one and is zero everywhere else. By Definition we have that for any

matrix A € R¥”*" that IIPA = I19(A ® E} (e=p )). A simple calculation shows that for any matrices
A, B € R¥*" then

(A ® Ei@(qu))T(B Q Ei@(qu)) — ATB ° (Ei@(qu))TEl@D(qu) — ATB 7

where o denotes the Hadamard product, and the last equality follows since (Ef9 (a=p ))TE? (@=P) is an
all ones matrix. This implies that ||A ® E?(qu)HF = ||A||r and s)((A® Ei@(qu))TA ® E?(qu)) =
sa(ATA).

Now assume that I17 is an (e, 6, 4, n)-Oblivious Subspace Embedding, and let A € R*>" and
A > 0 be such that s)(A) < p. Define A’ = A® E?(q_p), then

Pr((1 - &)(ATA+ ML) < (IPA) TPA + AL, < (1+2)(AT A+ AL)|
= Pr[(1 = &)(AT A+ AL) < (9A)TTIUA + A, < (1+ ) (AT A+ \L)]
Z 1-9 )
where we have used that sy(A'TA’) = s\(A" A) < p. This shows that I1? is an (e, §, u, n)-Oblivious

Subspace Embedding.
Assume that I19 has (e, §)-Approximate Matrix Multiplication Property, and let C, D € R¥*",

Define ¢’ = C ® Ef@(q_p) and D' = D ® E?(q_p), then
Pr[|[(1°C) "1PD — CTD|[p > el|C|lw]| D]l | = Pr[[|(19C") TTOD — C"T D |l > &€ || D] |
<9,

where we have used that ||C’||r = ||C||7, |D'||F = || D||F, and C'T D’ = CTD. This show that II?
has (e, )-Approximate Matrix Multiplication Property. O

Lemma 11. For anye,6 € [0,1], t > 1, if M € R™*4 s a random matriz with (¢, 6,t)-JL Moment
Property then M has the (g,0)-Approzimate Matriz Multiplication Property.

Furthermore, for any p > 0, if M € R™*9 is a random matriz with (¢/p,6,t)-JL Moment
Property then for every positive integer n € Z, M is a (g,0, u,d,n)-OSE.

Proof.
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Approximate Matrix Multiplication Let C, D € R**"™. We will prove that
|l(MC)TMD = CTDlg|| , <6 |C| D]k (5)

Then Markov’s inequality will give us the result. Using the triangle inequality together with
Lemma [0 we get that:

1/2
llve)™mD = cTDYg|| , = |I(ME)TMD - CTDI|
1/2
= > ((Mc)"MD; — c*ZTDj)2
i,j€[n] Lt/2
< | lme)TMD; - ¢ by
i,j€[n]
< | e Gl
i.j€[n]
= 8"|Clp )| Dllr -

Using Markov’s inequality we now get that

t
Pr([[(MC)"MD — CTD||r > &|Cl|r | D]r) < [1azC)"2eD — " Die],
T — F =€ F F| > >
e CN%IDIIE

Oblivious Subspace Embedding. We will prove that for any A > 0 and any matrix A € R¥",
(1—e)(ATA+ L) = (MA)"TMA+ N, < (1+e)(ATA+ ), , (6)

: s sx(ATA)\E . .
holds with probability at least 1 — (#> 0, which will imply our result.

We will first consider A > 0. Then AT A + M, is positive definite. Thus, by left and right
multiplying (6) by (ATA + M,,) Y2 we see that (6) is equivalent to

.
(1= &)l < (MAATA+AL)™Y?) . MAAT A+ ML) Y2+ MATA+ ALY 2 (14 ),
which, in turn, is implied by the following:

<e.
op

.
H (MAATA+AL) ™) MA(AT A+ ML) V2 4 NATA + ML)~ 1,

Note that (ATA+\,)"YV2ATA(ATA+AL,) V2 =1, — M(ATA 4 AL,) L. Letting Z = A(AT A+
)\In)_l/Q, we note that it suffices to establish,

<e.
op

H(MZ)T MZ-2"Z

Using together with Markov’s inequality we get that

Pr M(MZ)T MZ-2"Z

op

25] <Prf|(M2)" MZ-2T2| =< < (”Zu”%y(;: (Sk(fl‘”)t(;,
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where the last equality follows from
12} = tr (27 2)
T
tr <(A(ATA FAL) ) AT A )\In)‘l/2>

= tr (ATA(AT A+ 2L) )
= s5,(ATA) .

To prove the result for A = 0 we will use Fatou’s lemma.

Pr[((l C ) ATA < (MA)TMA = (1 + s)ATA)C}

A—0t

< lim inf Pr {((1 —e)(ATA+AL) = (MA)TMA+ M, = (1+¢)(ATA+ )\In))c}

-
< liminf M
A—=0t n
B SQ(ATA)(S

M b

J

where the last equality follows from continuity of \ — s)(AT A). O

Our next important observation is that I1¢ can be written as the product of 2¢ — 1 independent
random matrices, which all have a special structure which makes them easy to analyse.

Lemma 12. For any integer ¢ which is a power of two, 119 : R™" — R™ be defined as in Defini-
tion |11| for some base sketches Spase : R™ — R™ gnd Thase : RE — R™. Then there exist matrices

(MD)ieig1), (M'D) g and integers (ki)ictg—1) (K1)iclg—1)» () jelq)s (1) jelq)> such that,
e =pMeD. MO @D

and MO = I, x S\ x Iy, M'0) = I x T\

bage X Il;, where SY_and Téi)e are independent instances

base S

of Svase and Thase, for every i € [q - 1]’ JE [Q]

Proof. We have that I19 = Q9T by Definition [L1] By Definition [9] we have that Q7 = §25%. .. §4.
Claim (7| shows that for every [ € {2,4,---q} we can write,

St =M} yMyy ... M, (7)

where Mjl =112 X Sll/QijJr1 X I,,i-1 for every j € [I/2]. From the discussion in Definition 10| it
follows that,
T =M@ . . MO, (8)

where M'0) = I,,-; x Ty—j+1 X L1 for every j € [q]. Therefore by combining (7)) and we get
the result. O

We want to show that I x M x [ inherits the JL properties of M. The following simple fact
does just that.
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Lemma 13. Lett € N and o > 0. If P € R™*% gnd Q € R™2*% qre two random matrices (not
necessarily independent), such that,

122113 — 11113

1Qul3 = v

<alz|} and E[|Pz|3] =[]},

L <alyl and E[IQul3] = vll3,

Lt

for any vectors x € R% and y € R%, then

lIl(P @ @213 - 11213]

L Salzl3 and E[I(Pe Q)] = 213,

for any vector z € Ré1tdz,

Proof. Let z € Rt and choose € R and y € R%, such that, z = @ y. Using the triangle
inequality,

1P ® @213 - 11213]

112213+ lQull3 — 1113 — llyI13]

122113 — [113]

Lt Lt

e (e e

IN

Lt

A

allz[l3 + olyl3

alzl3.
We also see that
E[[(P @ Q)2I13] = E[l|P=lI3] + E[IQulI3] = ll=II3 + llyl13 = 13-
L]

An easy consequence of this lemma is that for any matrix, S, with the (e, §, t)-JL. Moment Prop-
erty, I xS has the (e, d,t)-JL Moment Property. This follows simply from [ xS=S® S®...® S.

k times

Similarly, S x I has the (g, 6,t)-JL Moment Property, since S x Ij is just a reordering of the rows
of I, x .S, which trivially does not affect the JL. Moment Property. The same arguments show that
if S has the Strong (e,0)-JL Moment Property then I x S and S x I has the Strong (e,6)-JL
Moment Property. So we conclude the following

Lemma 14. If the matriz S has the (,0,t)-JL Moment Property, then for any positive integers
k,K', the matriz M = I}, x S X It has the (g,6,t)-JL Moment Property.

Similarly, if the matriz S has the Strong (g,0)-JL Moment Property, then for any positive
integers k, k', the matric M = I, x S x Iy has the Strong (¢,0)-JL Moment Property.

Now if we can prove that the product of matrices with the JL. Moment Property has the JL
Moment Property, then Lemma [[4] and Lemma [T2] would imply that I1¢ has the JL Moment Prop-
erty, which again implies that II? is an Oblivious Subspace Embedding and has the Approximate
Matrix Multiplication Property, by Lemma [T1] and Lemma [I0] This is exactly what we will do: in
Section we prove that the product of k independent matrices with the (\/%, d, 2) -JL Moment
Property results in a matrix with the (g, d,2)-JL. Moment Property, which will give us the proof
of Theorem [I} and in Section we prove that the product of k independent matrices with the
Strong (O <i> ,5)—JL Moment Property results in a matrix with the Strong (e, d)-JL Moment

NG
Property, which will give us the proof of Theorem
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4.1 Second Moment of I1? (analysis for Tj,s : CountSketch and Sy, : TensorSketch)

In this section we prove Theorem [I] by instantiating our recursive construction from Section [3]
with CountSketch at the leaves and TensorSketch at the internal nodes of the tree. The proof
proceeds by showing the second moment property — i.e., (g,d,2)-JL Moment Property, for our
recursive construction. We prove that our sketch I17 satisfies the (g, 0, 2)-JL Moment Property as per
Definition [18] as long as the base sketches Spage, Thase are chosen from a distribution which satisfies
the second moment property. We show that this is the case for CountSketch and TensorSketch.

Lemma together with Lemma show that if the base sketches Spase, Thase have the JL
Moment Property then I1? is the product of 2¢ — 1 independent random matrices with the JL
Moment Property. Therefore, understanding how matrices with the JL. Moment Property compose
is crucial. The following lemma shows that composing independent random matrices which have
the JL. Moment Property results in matrix which has the JL. Moment Property with a small loss
in the parameters.

Lemma 15 (Composition lemma for the second moment). For any e, > 0 and any integer

kif MY e Rbxd ... pf(k) ¢ Rd+1%dr gre independent random matrices with the (\/%,5, 2)—

JL-moment property then the product matriz M = M®) ... MO satisfies the (e,9,2)-JL-moment
property.

Proof. Let x € R be a fixed unit norm vector. We note that for any i € [k] we have that
E[|MO . MWz| | MO, M) = MO MW (9)

Now we will prove by induction on i € [k] that,
V@2 25\’
Var [[M® - MOz|3] < L+ 5| — L (10)

For i = 1 the result follows from the fact that M) has the (¢/v/2k, 6, 2)-JL moment property. Now
assume that is true for ¢+ — 1. By the law of total variance we get that

Var [[M®D - MOz|3] =& [Var[[[M© - ... MOz ) MO, M6D]]
+ Var [E[HM(") .. M(l)ng ‘ M(l), N .,M(Fl)H (11)

Using @D and the induction hypothesis we get that,

Var [E[|M© .- MOz | MO, MOD]] = Var [|M0D . MOa|3]
< (1 + if)u ~ 1 (12)

Using that M) has the (¢/v/2k,d,2)-JL moment property, @D, and the induction hypothesis we
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get that,
B Va2 ... s} | ... 3160

<E

= (var ey 2]+ U\M@—n....M(anzr)

25 £25\"7! £25 £25\"7!
<= - - — .
< <<1+2k> 1+1) = <1+2k> (13)

Plugging and into gives,

- e25 e2s e25 ot e25 ‘
(@) . 1) Y e 1= “ %) _
Var[HM -M H]_% <1+2kz> +<1+2k> 1= 1+2k 1.

Hence,

YT M%Hj

2('5 k
Var [HMJ/'H } <1+2kz> — 1 <exp(e?6/2) —1 < %6,
which proves that M has the (e, d,2)-JL. moment property. O

Equipped with the composition lemma for the second moment, we now establish the second
moment property for our recursive sketch IT9:

Corollary 16 (Second moment property for I19). For any power of two integer q let I19 : R™* — R™
be defined as in Definition where both of the common distributions Spase : R™ — R™ and
Thase : RY — R™, satisfy the (m,5 2) -JL-moment property. Then it follows that 119 satisfies
the (e, 0,2)-JL-moment property.

Proof. This follows from Lemma [12| and Lemma
O

Now we are ready to prove Theorem [I} Recall that k(x,y) = (x,y)? is the polynomial kernel of
degree g. One can see that k(z,y) = (2%, y®9). Let x1, 29, - x, € R™ be an arbitrary dataset of
n points in R™. We represent the data points by matrix X € R™*" whose i*" column is the vector
z;. Let A € R™™ be the matrix whose i column is 227 for every i € [n]. For any regularization

parameter A > 0, the statistical dimension of AT A is defined as sy := tr ((ATA)(ATA + )\In)_l).

Theorem 1. For every positive integers n,p,d, every €, sy > 0, there exists a distribution on linear
sketches IIP € R™*4" guch that: (1) If m = Q (ps3e~2), then IIP is an (g,1/10, sy, dP, n)-oblivious
subspace embedding as in Definition @ (2) If m = Q (pe=2), then II? has the (,1/10)-approzimate
matriz product property as in Definition [3

Moreover, for any X € R¥>*™ if A € R¥*" is the matriz whose columns are obtained by the
p-fold self-tensoring of each column of X then the matriz IIP A can be computed using Algorithm /]
in time O (pnm + pnnz(X)).
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Proof. Throughout the proof, let § = % denote the failure probability, let ¢ = 208271 and let
e1 € R? be the column vector with a 1 in the first coordinate and zeros elsewhere. Let ITP € R™*d”
be the sketch defined in Deﬁnition where the base distributions Spase € R™*m* and T base € RMxd
are respectively the standard TensorSketch of degree two and standard CountSketch. It is shown
in [ANW14] and [CW17] that for these choices of base sketches, Spase and Thase are both unbiased

and satisfy the (ﬁ, 0, 2)—JL—moment property as long as m = () (see Definition .

2
Oblivious Subspace Embedding Let m = Q <I§Z§> be an integer. Then Spase and Ti,se has
V4q+2s)
(i,é, 2)—JL Moment Property. Thus, Lemma (11| implies that 119 is an (e, d, sy, d?, n)-Oblivious
Subspace Embedding, and by Lemma we get that TIP is an (e, 4, s, dP, n)-Oblivious Subspace
Embedding.

the (%,5, 2>-JL Moment Property. Thus using Corollary we conclude that 117 has the

Approximate Matrix Multiplication. Let m = Q %). Then Spase and Thaee have the

(\/ﬁ, d, 2) -JL Moment Property. Thus, using Corollary [L6{ we conclude that I1¢ has the (¢, 6, 2)-
JL Moment Property. Thus, Lemma implies that I1 has the (&, §)-Approximate Matrix Multipli-
cation Property, and by Lemma [10] we get that II? has the (e, §)-Approximate Matrix Multiplication

Property.

Runtime of Algorithm [1| when the base sketch Sy, is TensorSketch of degree two and
Thase is CountSketch: We compute the time of running Algorithm [I] on a vector . Computing
on for each j in lines [3|and [4] of algorithm requires applying a CountSketch on either x or e; which
takes time O(nnz(z)). Therefore computing all on’s takes time O(q - nnz(z)).

Computing each of le 's for [ > 1 in line |7| of Algorithm |1| amounts to applying a degree two
TensorSketch of input dimension m? and target dimension of m on Yzljill ® Y;jl This takes time
O(mlogm). Therefore computing le for all I,j > 1 takes time O(q - mlogm). Note that ¢ < 2p
and hence the total running time of Algorithm [I| on one vector x is O(p - mlogy m + p - nnz(w)).
Sketching n columns of a matrix X € R¥*" takes time O(p(nmlogym + nnz(X))). O

4.2 Higher Moments of 1Y (analysis for T, : OSNAP and Sh.s. : TensorSRHT)

In this section we prove Theorem [2] by instantiating our recursive construction of Section [3| with
OSNAP at the leaves and TensorSRHT at the internal nodes.

The proof proceeds by showing the Strong JL Moment Property for our sketch I1¢. If a sketch
satisfies the Strong JL. Moment Property then it straightforwardly is an OSE and has the ap-
proximate matrix product property. This section has two goals: first is to show that SRHT, and
TensorSRHT as well as OSNAP transform all satisfy the Strong JL. Moment Property. The second
goal of this section is to prove that our sketch construction 119 inherits the strong JL moment
property from the base sketches Shase, Thase-

In this section we will need Khintchine’s inequality.

Lemma 17 (Khintchine’s inequality [HMOT]). Let t be a positive integer, x € RY, and (0;);e(q be
independent Rademacher +1 random variables. Then

d
ZO‘iiL‘i
i=1

< Ci[lzl2,

Lt
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where Gy < V2 (VDY < g for all ¢ > 1.

One may replace (o;) with an arbitrary independent sequence of random wvariables (s;) with
Elg] = 0 and ||si||» < /7 for any 1 <r <t, and the lemma still holds up to a universal constant
factor on the r.h.s.

First we note that the OSNAP transform satisfies the strong JL moment property.

Lemma 18. There exists a universal constant L, such that, the following holds. Let M € R™*¢ be
a OSNAP transform with sparsity parameter s. Let x € R? be any vector with ||z|s =1 and t > 1,
then

a3 -1, §L< t+t> : (14)

m S

Setting m = Q(e2log(1/6)) and s = Q(c 1 log(1/3)) then M has the Strong (,9)-JL Moment
Property (Definition @)

Proof. The proof of follows from analysis in [CINI§|. They only prove it for ¢ = log(1/4) but
their proof is easily extended to the general case.
Now if we set m = 4L2%e% - e 2log(1/§) and s = 2Le - ¢ !log(1/4) then we get that

t t € t
< < Z
S L\/ L% e 2log(1/8) T VoLe e T log(1)0) = e\ log(1/5)

for every 1 <t <log(1/d), which proves the result. O

|I1a2z]13 — 1]

We continue by proving that SRHT and TensorSRHT sketches satisfy the strong JL moment
property. We will do this by proving that a more general class of matrices satisfies the strong JL
moment property. More precisely, let k € Z~( be a positive integer and (D(i))ie[k] € Hie[k} R xdi
be independent matrices, each with diagonal entries given by independent Rademacher variables.
Let d = [[;c[g di, and P € {0, 1}™*d be a random sampling matrix in which each row contains
exactly one uniformly distributed nonzero element which has value one. Then we will prove that
the matrix M = \/%PH(Dl X ... X Dy) satisfies the strong JL moment property, where H is a
d x d Hadamard matrix. If k =1 then M is just a SRHT, and if £ = 2 then M is a TensorSRHT.

In order to prove this result we need a couple of lemmas. The first lemma can be seen as a
version of Khintchine’s inequality for higher order chaos.

Lemma 19. Lett > 1, k € Z~o, and (O'(i))ie[k] € ILiep R% be independent vectors each sat-
isfying the Khintchine inequality H(H”,m)”y < Cillz||2 for t > 1 and any vector x € R% . Let

(ail,.-‘,ik)i1e[dj],...,ike[dk} be a tensor in Rdlx“'Xdk, then

1/2
Z (H O'i(j)) Qiy,...ig < Ctk ( Z azzl,...,ik) )
i1€[d1],ein€ldr] \j€[k] It i1€[d1],.. ik E[dy]

fort > 1. Or, considering a € R4 % g vector, then simply H<O'(1) Q- ® O'(k),a>‘
fort>1.

L, < CEllalla,
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This is related to Latala’s estimate for Gaussian chaoses [Lat06], but more simple in the case
where a is not assumed to have special structure. Note that this implies the classical bound on
the fourth moment of products of 4-wise independent hash functions [BCL™10, TMO0S|, [PTT2], since

Cy = 3Y* for Rademachers we have E[(a(l) ®: - ® O'(k),33>4} < 3%||z||3 for four-wise independent
(U(i) )ielk]-
Proof. The proof will be by induction on k. For k = 1 then the result is by assumption. So assume

that the result is true for every value up to &k — 1. Let B, ;. , = Zz’ke[dk] Ugf)ail7,,,7ik. We then
pull it out of the left hand term in the theorem:

> (H Uf]])) iy

11€[d1],-yic€[de] \JEK]

Z ( H Uz(j)) Biy,...in—

i1€[d1], ik —1€[dg—1] \JE€[k—1]

1/2
<ot ( > BZ> (15)
ilE[d1] It

Lt Lt

yorik—1€[dK—1]
1/2
_ k-1 2

=Gy > Bi i

i1€[d1]y ik —1€[dk—1]

Lt/2

1/2
< i > B2 o W) (16)

t1€ld1],sin—1€[dK—1]

1/2
= C;f_l Z ||Bi17--~7’ik1|‘it> :

ile[dl],...,ik,le[dk,l]

Here is the inductive hypothesis and is the triangle inequality. Now ||Bi1,---7ik~—1||it <
C? Dic€lde] az21,-..,ic by Khintchine’s inequality, which finishes the induction step and hence the proof.
O

The next lemma we will be using is a type of Rosenthal inequality, but which mixes large and
small moments in a careful way. It bears similarity to the one sided bound in [BLM13] (Theorem
15.10) derived from the Efron Stein inequality, and the literature has many similar bounds, but we
still include a proof here based on first principles.

Lemma 20. There exists a universal constant L, such that, fort > 1 if X1,..., Xy are independent
non-negative random variables with t-moment, then

1/2
(X —EX])| <L (\/i max X; Y E[Xi] +t|max X; ) .
1€[k] It ; 1€[k] .
Lt i€[k] L

1€[k]
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Proof. Throughout these calculations Ly, Lo and L3 will be universal constants.

Z (Xz - E[XZ]) < L Z 0; X; (Symmetrization)
ic[k] It i€[k] Lt
1/2
< Lot Z X? (Khintchine’s inequality)
i€(k] Lt/2
1/2
< LoVt max X - Z X; (Non-negativity)
1€[k] iclH] 142
1/2 1/2
< LoVt |max X; . Z X (Cauchy-Schwartz)
i€[k] Lt lielk] | e
< LoVt max X; STEXi] + Lo || Y (X — E[Xi)
i€[k] Lt i€[k] iclk] It

1/2 1/2
Now let C' = Hzie[k}(xi —E[Xi])HLt , B = Ly, /e E[Xi], and A = \/meaxie[k} Xi| )" then

we have shown C? < A(B + C). That implies C is smaller than the largest of the roots of the
quadratic. Solving this quadratic inequality gives C? < L3(AB + A?) which is the result. O

We can now prove that SHRT and TensorSRHT has the Strong JL Moment Property.

Lemma 21. There exists a universal constant L, such that, the following holds. Let k € Z~q, and
(D(i))ie[k} € Hie[kz] R%*% pe independent diagonal matrices with independent Rademacher variables.
Define d = Hie[k} di and D = Dy x Dy x --- D, € R4 Let P € R™*% be an independent sampling
matriz which samples exactly one coordinate per row, and define M = PHD where H is a d X d
Hadamard matriz. Let x € R? be any vector with ||z||2 = 1 and t > 1, then

| L1PHDE -1 SL( ;ﬁ;) ,

where r = max{t,logm}.
There exists a universal constant L', such that, setting m = (5_2 log(1/6)(L’ log(l/eé))k), we

get that ﬁPHD has Strong (e,d)-JL Moment Property.

Note that setting k& = 1, this matches the Fast Johnson Lindenstrauss analysis in [CNW16b].

Proof. Throughout the proof C7,Cs and C5 will denote universal constants.

For every i € [m] we let P; be the random variable that says which coordinate the i’th row of P
samples, and we define the random variable Z; = M;z = Hp,Dx. We note that since the variables
(Pi)ie[m) are independent then the variables (Z;);c[y) are conditionally independent given D, that
is, if we fix D then (Z;);c|m] are independent.
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We use Lemma [20] the triangle inequality, and Cauchy-Schwartz to get that

AT a-y

1€[m]
= |E ( Szt - ) D
L\ i€m]
: 1/(2t) 1/t
vt 2 2 t A
<Ci|—E||(maxZ?| | D > E[Z}|D|+—E|(maxZ}| | D
m ze[m] icm m i€[m)]
m Lt
\/ 71/(2¢t)
<o |E max22 D > E[z}]| D] Lot max Z;
m ze[m] iem] m ||i€[m] It
. Lt
Vi 1/2
< C’l—t mauxZ2 Z E{Z2 } +C’1i mafo
m ||i€[m] Lt ||icpm) » m ||i€[m] Lt

By orthogonality of H we have ||[HDz||3 = d||z||3 independent of D. Hence

S E[22| D] = Y el =m

1€[m)| 1€[m]

To bound Hmaxie[m] 7Z? o e first use Lemma [19|to show

We then bound the maximum using a sufficiently high powered sum:

< (Z |
i€[m]

where the last inequality follows from r > logm. This gives us that

2 2 k
2|, = 1Hp, Dz = | Dal72r < |3 -

max Z; 2
1€[m]

1/r
T
<mrk||z|2 < er®
max 22| < ; U) <!l < ert

max ZEH <
t

trk rk
< (Cy 027
m

w2 28—l

ze[m

Lt

which finishes the first part of the proof.
We set m = 4e2C3c 2 1og(1/6)(Cslog(1/(6¢)))*, such that, r < C3log(1/(de)). Hence m >
4e2C3221og(1/8)r*. We then get that

” trk Lo trk € t
= 2\ 42022 10g(1/6)r *4e2C2e210g(1/8)r% ~ e\l log1/6

for all 1 <t <log(1/d) which finishes the proof. O

IN
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Now we have proved that the Strong JL. Moment Property is satisfied by the SRHT, the Ten-
sorSRHT as well as OSNAP transform, but we still need to prove the usefulness of the property.
Our next result remedies this and show that the Strong JL. Moment Property is preserved under
multiplication. We will use the following decoupling lemma which first appeared in [Hit94], but the
following is roughly taken from [DIPG12], which we also recommend for readers interested in more
general versions.

Lemma 22 (General decoupling, [DIPGI12] Theorem 7.3.1, paraphrasing). There exists an uni-
versal constant Co, such that, given any two sequences (Xi)ic[n) and (Yi)ie[n) of random variables,
satisfying

1. Pr {YZ >t ‘ (Xj)je[z‘—l}} =Pr {Xi >t ‘ (Xj)je[i—l]} for every t € R and for every i € [n].

2. The sequence (Y;);g|n) is conditionally independent given (X;)iecn)-

3. Pr {Yz >t ‘ (Xj)je[z‘—lﬂ =Pr {Yz >t ‘ (Xj)je[n]} for every t € R and for every i € [n].
Then for allt > 1,

2. Xi

1€[n]

< Cy
Li

> Y

1€[n]

Lt
We are now ready to state and prove the main lemma of this section.

Lemma 23. There exists a universal constant L, such that, for any constants €,§ € [0,1] and
positive integer k € Z~q. If MW e Rézxdr - Af(k) ¢ Rde+1Xde gre independent random matrices
with the Strong (¢/(LV'k),8)-JL Moment Property, then the matric M = M® ... M1 has the
Strong (e,9)-JL Moment Property.

Proof. Let x € RY be an arbitrary, fixed unit vector, and fix 1 < t < log(1/6). We define X; =
M@ .- MWz||2 and YV; = X; — X, for every i € [k]. By telescoping we then have that
X, —1= Zje[z‘] Y;. We let (T(i))z‘e[k] be independent copies of (M(i))z‘e[k] and define
Zi =T MY W2 — MY M Wg2

for every ¢ € [k]. We get the following three properties:

1. Pr {ZZ- >t ’ (M(j))je[i_l]} = Pr[Y; >t ’ (M(j))je[i_l]] for every t € R and every i € [k].

2. The sequence (Z;);c[) is conditionally independent given (M (i))ie[k].

3. Pr {Zi >t ’ (M(j))je[i,l]} = Pr[ZZ- >t ‘ (M(j))je[kﬂ for every t € R and for every i € [k].

This means we can use Lemma [22] to get

<y

>

JEli]

> Z

JEli]

(17)

Lt Lt

for every i € [k].
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We will prove by induction on i € [k| that

€ t

X;—1 < -y /——= <1 18
H z ||Lt = e log(l/é) = ( )
For i = 1 we use that M) has the Strong (¢/(LVk), )-JL Moment Property and get that
Mgz 1] < -E <<
H” zllz Lt~ eIk | log( 1/5 ~ el log( 1/(5
Now assume that is true for i — 1. Using we get that || X; — 1|, = sze[i]Yj‘ . <

Co HZ i\l e By using that (T(j))je[i] has the Strong (¢/(LVk),§)-JL Moment Property to-
gether with Khintchine’s inequality (Lemma , we get that
1/t

r t
= ||E (ZZ‘) MY aem]
Lt Lt

X2
eL\F log( 1/5 Z

> 7

JEli]

ej_t 1
log(1/6) LVk i Lo

9 t 1 2
Sy S T

where the last inequality follows from the triangle inequality. Using the triangle inequality and

we get that

Xl e < T+ 11X =1 <2,

for every j € [i]. Setting L = 2CyC; we get that

€ t CoC
2| < imm T 2 1Kl (19)
jelil g jeli
t Gl ,
< -2 20
< Vg Tvr 2V (20)

S \/ log( 1/6 (21)

which finishes the induction. Now we have that ||| Mz|]3 — 1|, < £,/ 10g(1 757 s0 we conclude that

M has Strong (g, 6)-JL Moment Property. O

A simple corollary of this result is a sufficient condition for our recursive sketch I19 to have the
Strong JL. Moment Property.



Corollary 24 (Strong JL Moment Property for I19). For any integer q which is a power of two,
let TI : R™ — R™ be defined as in Definition where both of the common distributions Spase :
R™ 5 R™ qnd Thase : RY — R™, satisfy the Strong (O (%) ,5) -JL Moment Property. Then it
follows that 119 satisfies the Strong (e,6)-JL Moment Property.

Proof. The proof follows from using Lemma [I2] and Lemma [23] ]
We conclude this section by proving Theorem

Theorem 2. For every positive integers n,p,d, every €, sy > 0, there exists a distribution on linear
sketches TIP € R™ Y such that: (1) If m = Q (ps3e2), then TI? is an (g,1/poly (n), sy, d?, n)-
oblivious subspace embedding (Definition @ (2) If m=Q (pe=2), then IIP has the (g,1/poly (n))-
approzimate matriz product property (Definition @

Moreover, in the setting of (1), for any X € R>" if A € R¥*" is the matriz whose columns
are obtained by a p-fold self-tensoring of each column of X, then the matriz IIPA can be computed
using Algorithm in time O (pnm + p3/2s5e7t nnz(X)) .

Proof. Let § = m denote the failure probability. Define ¢ = [logy(p)] and let II? € R™*%” and
17 € R™* he the sketches defined in Definition where Spase € R™*m* ig a TensorSRHT sketch
and Thase € R™*? is an OSNAP sketch with sparsity parameter s, which will be set later.

&

Oblivious Subspace Embedding Let m = © (W) and s = © (%g(l/‘;)) be

integers, then Lemma and Lemmaimplies that Sphase and Tiase has the Strong (O ( \/§SX> ,5)-

JL Moment Property, thus using Corollary we conclude that I19 has the Strong (i 6)—JL

sy
Moment Property and in particular it has the (i, 0,1og(1/4 ))—J L Moment Property. By Lemma
we then get that 117 is an (g, 4, sy, d?, n)-Oblivious Subspace Embedding, and by Lemmawe get
that II? is an (e, 0, sy, dP, n)-Oblivious Subspace Embedding.

Approximate Matrix Multiplication Let m = © (‘TM) and s = © (M) be

£

integers. Then Lemmaand Lemma |18implies that Spase and Th,se has the Strong (O (ﬁ) ) 5)—
JL Moment Property. Thus, using Corollary we conclude that I1? has the Strong (g,d)-JL
Moment Property and in particular it has the (e, d,log(1/d))-JL Moment Property. By Lemma
we then get that I1¢ has the (e, 0)-Approximate Matrix Multiplication Property, and by Lemma

we get that TIP has the (e, §)-Approximate Matrix Multiplication Property.

Runtime of Algorithm [1| when the base sketch Sy.s is a TensorSRHT sketch and Ti,g is
an OSNAP sketch with sparsity parameter s: We compute the time of running Algorithm
on a vector x. Computing on for each j in lines |3 and 4| of algorithm requires applying an ONSAP
sketch on either = or e; which takes time O(s - nnz(x)). Therefore computing all on’s takes time
O(gs - nnz(x)).

Computing each of le’s for I > 1 in line [7| of Algorithm |l| amounts to applying a TensorSRHT
sketch of input dimension m? and target dimension of m on YQZJ-__l1 ® Yzlj_ ! This takes time
O(mlogm). Therefore computing le for all [,j > 1 takes time O(q - mlogm). Note that ¢ < 2p
hence the total running time of Algorithm[Ijon one vector z is O(pm logy m+ps-nnz(w)). Sketching
n columns of a matrix X € R¥" takes time O(p(nmlogym + s - nnz(X))).
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In the setting of (1) we have that s = O (M), hence we get a runtime of
0 (pnm log, m + MHHZ(X)) =0 (pnm + &nnz(XD . O

£

5 Linear Dependence on the Statistical Dimension s)

In this section, we show that if one chooses the internal nodes and the leaves of our recursive con-
struction from Section [3]to be TensorSRHT and OSNAP transform respectively, then the recursive
construction I1? as in Definition |11] yields a high probability OSE with target dimension 6(p4s A)-
Thus, we prove Theorem (3] This sketch is very efficiently computable for high degree tensor prod-
ucts because the OSNAP transform is computable in input sparsity time and the TensorSRHT
supports fast matrix vector multiplication for tensor inputs.

We start by defining the Spectral Property for a sketch. We use the notation || - ||, to denote
the operator norm of matrices.

Definition 20 (Spectral Property). For any positive integers m,n,d and any ¢,6, up, p2 > 0 we
say that a random matrix S € R™*? satisfies the (up, 2, €, 0, n)-spectral property if, for every fixed
matrix U € R with [|U||3, < pp and |U]2, < p2,

Pr MUTSTSU —UTU

Se] >1-4.
op

The spectral property is a central property of our sketch construction from Section [3] when leaves
are OSNAP and internal nodes are TensorSRHT. This is a powerful property which implies that
any sketch which satisfies the spectral property, is an Oblivious Subspace Embedding. The SRHT,
TensorSRHT, as well as OSNAP sketches (Definitions respectively) with target dimension
m = Q) ((%) - poly (1og(nd/5))) and sparsity parameter s = Q(poly (log(nd/d))), all satisfy the
above-mentioned spectral property [Sar06l, Trolll [NN13].

In section [5.1] we recall the tools from the literature which we use to prove the spectral property
for our construction I1¢. Then in section [5.2] we show that our recursive construction in Section
[3] satisfies the Spectral Property of Definition [20] as long as Ije X Thase and Ijpa X Spase satisfy
the Spectral Property. Therefore, we analyze the Spectral Property of Ijex OSNAP and I,,qX
TensorSRHT in section [5.3| and section [5.4] respectively. Finally we put everything together in
section and prove that when the leaves are OSNAP and the internal nodes are TensorSRHT
in our recursive construction of Section [3 the resulting sketch I1? satisfies the Spectral Property
thereby proving Theorem [3]

5.1 Matrix Concentration Tools

In this section we present the definitions and tools which we use for proving concentration properties
of random matrices.

Claim 25. For every €,6 > 0 and any sketch S € R™*? such that I;, x S satisfies (ur, po, €, 6,1)-
spectral property, the sketch S x Iy, also satisfies the (up, po, €,0,n)-spectral property.

Proof. Suppose U € R%**"_ Then, note that there exists U’ € R¥**" formed by permuting the
rows of U such that (S x I;)U and (I x S)U’ are identical up to a permutation of the rows. (In
particular, U’ is the matrix such that the (d, k)-reshaping of any column U’ of U’ is the transpose
of the (k,d)-reshaping of the corresponding column U” of U’.) Then, observe that

vl =0"Tu'.
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and
UT(Sx ;)" (S x [)U =U"T(I, x 8)" (I, x S)U".

Therefore,

IUT(S % L) (S % L)U = UTU |l op = [U"T(S x L) T(S x LU = U U" | op-
Moreover, since U and U’ are identical up to a permutation of the rows, we have ||U||op = ||U’||op
and ||U||r = ||U’||r. The desired claim now follows easily. O

We will use matrix Bernstein inequalities to show spectral guarantees for sketches,

Lemma 26 (Matrix Bernstein Inequality (Theorem 6.1.1 in [Tro15])). Consider a finite sequence Z;
of independent, random matrices with dimensions di X do. Assume that each random matriz satisfies
E[Zi] = 0 and || Zillop < B almost surely. Define 0? = max{|| >, E[ZiZ}||lops || i E[ZF Zil|lop }-
Then for all t > —0,

i

Lemma 27 (Restatement of Corollary 6.2.1 of [Trol5]). Let B be a fized n x n matriz. Construct
an n X n matrix R that satisfies,

P

>t <(dy+d2)-exp 7t2/
- ex .

ER]=B and ||R|op <L,

almost surely. Define M = max{||[E[RR*]||op, ||E[R*R]||op}. Form the matriz sampling estimator,

m

Z Rkv
k=1
where each Ry is an independent copy of R. Then,

_ —me? /2
Pr |:HR—BHOp26i| SSTL'QXP (M .

_
R=—
m

To analyze the performance of SRHT we need the following claim which shows that with high
probability individual entries of the Hadamard transform of a vector with random signs on its
entries do not “overshoot the mean energy” by much.

Claim 28. Let D be a d x d diagonal matriz with independent Rademacher random variables along
the diagonal. Also, let H be a d x d Hadamard matriz. Then, for every x € R?,

El’)r |HD - x||0o < 24/logy(d/0) - HxHQ] >1-4.

Proof. By Khintchine’s inequality, Lemma (17| we have that for every ¢ > 1 and every j € [d] the
7 element of H Dz has a bounded ¢! moment as follows,

I(HDz)j| 0 < Vt- ||z
Hence by applying Markov’s inequality to the #*® moment of |(HDx);| for t = logy(d/d) we get

that,
Pr (D), = 2/log(d/) - ol | < 5/d.
The claim follows by a union bound over all entries j € [d]. O
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Claim 29. Let Dy, Dy be two independent d X d diagonal matrices, each with diagonal entries given
by independent Rademacher random variables. Also, let H be a d X d Hadamard matriz. Then, for
every x € ]RdZ,

PE I ((HDy) x (HD2) - 2l < 4108y(d/5) - ]2] > 1 =5,

Proof. By Claim [6| we can write that,
(HDy) x (HDz) = (H x H)(Dy x D2),

where H x H is indeed a Hadamard matrix of size d®> x d?> which we denote by H'. The goal is to
prove

Pr [|[H'(Dy x D2) - alloc < logy(d/8) - Jalla) > 1 - .

By Lemma we have that for every ¢ > 1 and every j € [d?] the j*® element of H’(D; x D)z has
a bounded ™" moment as follows,

I(H' (D1 x Da)a)jl[ o < t- (|22

Hence by applying Markov’s inequality to the ¢® moment of |(H'(Dy x Dg)z);| for t = logy(d/§)
we get that,
Pr[|(H'(Dy x Da));| > 4logy(d/6) - |lll2] < /.

The claim follows by a union bound over all entries j € [d?].

5.2 Spectral Property of the sketch I1¢

In this section we show that the sketch I1? presented in Definition [11]inherits the spectral property
(see Definition from the base sketches Spase and Thage. We start by the following claim which
proves that composing two random matrices with spectral property results in a matrix with spectral

property.

Claim 30. For every e, e ,0,8' > 0, suppose that S € R™*! is a sketch which satisfies the ((ur +
1)(14¢€), us+1+€ € 6,n)-spectral property and also suppose that the sketch T € R¥4 satisfies the
(up+1, po+1,€,0" /n,n)-spectral property. Then S-T satisfies the (up + 1,2+ 1,e +€',0 + (1 4+ 1/n),n)-
spectral property.

Proof. Suppose S and T are matrices satisfying the hypothesis of the claim. Consider an arbitrary
matrix U € R*" which satisfies [|U[|% < pp 4+ 1 and [|U[|2, < p2 + 1. We want to prove that for
every such U,

Pr([[UT(S- 1) (S TYU ~UTUllop < e+ €| 15351 +1/n).

< e’}.
op

We show that this event holds with probability 1 —¢’(1+ 1/n) over the random choice of sketch 7.
The spectral property of T' implies that for every column U’ of matrix U,

Let us define the event £ as follows,

= {||T U5 < (1+€)|U|% and HUTTTTU ~U'U

ITU7 |5 = (1 £ €) [IU7]]3,
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with probability 1 — %/. By a union bound over all j € [n], we have the following,
Pr[|T-Ull} < (L+€) U] 21 -4

Also,

HUTTTTU —UTU

Pr 36/} >1-4'/n.
T op

Therefore by union bound,
1;1"[5] >1-56(1+1/n).

We condition on T € £ in the rest of the proof. Since S satisfies the ((up+1)(1+€'), ua+1+¢€',€,d,n)-
spectral property,

Pr M(TU)TSTS(TU) —(TUYT(TV)

Se} >1-4.
op

Therefore,
Pr U]UT(S 1) (ST -UTU| <et e’}
> Pr :HUT(S DS DU ~UTU| <etd|Te 5] ~ Prfé]
> Pr :H(TU)TSTS(TU) ~UTU L Setd|Te 5} —§'(1+1/n)
> Pr :H(TU)TSTS(TU) - (TU)T(TU)HOP +|@oyT vy -vTu L Sete|Te 5} — &1+ %)
> Py :H(TU)TSTS(TU) - @) (rv)| <e|Te 5] — (1 +1/n)
>1-0-40(1+1/n).
This completes the proof. O

In the following lemma we show that composing independent random matrices with spectral
property preserves the spectral property.

Lemma 31. For any €, 9, up, 2 > 0 and every positive integers k,n, if MO g Rézxdr ... pr(k) ¢
RI+1%dk qre independent random matrices with the (2up + 2,2 +2,0(e/k), O(5 /nk), n)-spectral
property then the product matriz M = M®) ... MO satisfies the (up + 1, p2 + 1,€,6,n)-spectral
property.

Proof. Consider a matrix U € R4*" which satisfies |U||% < ur + 1 and ||U||(2,p < p2 + 1. We want
to prove that for every such U,

Pr(|[UTMTMU = UTUop < | > 1 -6,

where M = M®) ... A,
By the assumption of the lemma the matrices M (1, ... M) satisfy the (2iup+2, 2p0+2, O(e/k), O(5 /nk), n)-
spectral property. For every j € [k], let us define the set &; as follows,
. 2 .
L]0 a0 U = 1+ W
o llUT (M(j) . ..M(1)>T (M(j) . ..M(l)) U_UTU

op
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First we prove that for every j € {1,--- ,k — 1},

Pr (M, MU € gy (MO, M) e ] > 1- %

Let us denote (M(j)w-M(l)) - U by U'. The condition (M(l),--- ,M(j)> € &; implies that,
U2 < (14 €/(10k))?|U||% and ||U' U’ — UTU||op < ﬂ and therefore by triangle inequality we

2
have [|U]|2, < (HUHop 3k) . The assumptions |U||% < pr +1 and |U|2, < p2 4 1 imply that

IU')1E < 2up + 2 and [|U]|2, < 22 + 2. Now note that by the assumption of the lemma, MU+
satisfies the (2up + 2,2us + 2,0(e/k), O(5/nk), n)-spectral property. Therefore,

(o w7

€ .
< ... () o> 1 = .
M(J+1) o 3]€‘ (M oM ) €&j| =1 —6/(4nk)

Combining the above with |U" U’ — UTU||3 < & o - gives,

[H +1>U’ MUY _ Ty >1—4/(4nk).
M(J+1>

I+ ) .
< e |(M e, M) e g

op
. (22)
Also from the spectral property of M+ it follows that for every column U’ of matrix U’,

IMUHDU 3 = (1 £ ¢/(10k) IU"]13

with probability 1 — ;. By a union bound over all i € [n], we have the following,
[HM PO < (14 ¢/ 0R) U713 (MO, M) e &) =1 - Ll
M J+1) F= B ’ ’ Il = 4k
Combining the above with |[U’||% < (1 + ¢/(10k))?||U||3% gives,
G4+1) 771112 s 2 (1) (4) 0
M 14— MY, M i >1—=—. 2
P (IO < (1 S ) U (MO, MO) e gl - o (29
A union bound on and gives,
; , ) ) 5
M ... (5+1) , M ... () . -2 _°Z _ 2
ME£1)[(M M )egﬁl‘(M M )eej}>1 bR B

We also show that,

Pr (MW e &]>1-6/2k.
M)

By the assumption of lemma we know that M® gatisfies the (2,up +2,2u2 + 2, 1055, %k, n) -spectral

property. Therefore,

I(MOT) T MO — 0T, < 6} SR (24)

M(l) 10k 4nk

Also for every column U’ of matrix U,

IMDU 3 = (1 £ ¢/ (10K)) 1U]13,
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with probability 1 — ﬁ. By a union bound over all i € [n], we have the following,
)
Pr || MM U} < (14 ¢/(W0R) [U]F] > 1 . (25)
M® 4k

A union bound on and gives,

>1_ % 9 <,_ 9
Priveaz1-0r -2t g
By the chain rule for events we have,
OIS VD)
M(1)71.?.I:M(k) [(M ’ 7M ) S 5k:|
: (1) () (1) (1) "
VMU » oot 1 .
Zj:zﬂlja{(M M )653‘<M MUY €& P e g
4]
S-S5
= 2k> - ’

which completes the proof of the lemma.
O

The following lemma shows that our sketch construction I1? presented in definition [11| inherits
the spectral property of Definition from the base sketches, that is, if Spase and Thage are such
that I,,q—2 X Spase and I g-1 X Thase satisfy the spectral property, then the sketch I1? satisfies the
spectral property.

Lemma 32. For every positive integers n,d, m, any power of two integer q, any base sketch Thage :
RY — R™ such that Ijg-1 X Thase satisfies the (2ur +2, 21242, 0(¢/q), O(6/nq), n)-spectral property,
any Spase : R™ — R™ such that 42 X Spase satisfies the (2up + 2,2us + 2,0(e/q), O(6 /nq),n)-
spectral property, the sketch 11?7 defined as in Deﬁm’tz’on satisfies the (up+1, pa+1,e,0,n)-spectral
property.

Proof. We wish to show that 119 = Q9717 as per Definition satisfies the (up + 1, 2 + 1,¢,9,n)-
spectral property. By Definition |§| Q1= 5%64...54. Clai shows that for every [ € {2,4,---¢}
we can write,

s = le/2M11/271 - MY, (26)

where M; = I,,q—2; X S

g/2—j1 X Imi-1 for every j € [¢/2]. From the discussion in Definition 10| it
follows that,

Tq:Mé...M{’ (27)
where MJ’ = Iyq—j X Ty—jy1 % I -1 for every j € [q]. Therefore by combining and we get
that,

9 = MRatD pra) )

where M® matrices are independent and by the assumption of the lemma about the spectral
property of I,,4—2 X Spase and -1 X Thase together with Claim it follows that M) matrices
satisfy the (2ur + 2,2u2 + 2,0(¢/q), O(d/nq), n)-spectral property. Therefore, the Lemma readily
follows by invoking Lemma [31| with k = 2¢ + 1. O
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5.3 Spectral Property of Identity x TensorSRHT

In this section, we show that tensoring an identity operator with a TensorSRHT sketch results in
a transform that satisfies the spectral property defined in Definition [20| with nearly optimal target
dimension.

Lemma 33. Suppose €, 9, ua, pr > 0 and n is a positive integer. If m = (log(%) log2(%?“) . ‘”:%)

and S € R™*? is q TensorSRHT, then the sketch Iy, x S satisfies (jur, pia, €, 6,n)-spectral property.

Proof. Fix a matrix U € RF>*" with [|U||3. < pp and |U]|2, < po. Partition U by rows into d X n
submatrices Uy, Us, ..., Uy such that U" = [UlT UQT U,I] Note that

UT(I, x $)T (I, x S)U = (U)"STSU, + -+ (Ux) T ST SU,.

The proof first considers the simpler case of a TensorSRHT sketch of rank 1 and then applies the
matrix Bernstein inequality from Lemma Let R denote a rank one TensorSRHT sketch. R is a
1 x d matrix defined in Definition [L5| by setting m = 1 as follows,

R:P'(HD1><HD2),

where P € {0,1}'*? has one non-zero element whose position is uniformly distributed over [d]. Note
that ST.S € R4 is the average of m independent samples from R' R, i.e., ST S = % Zie[m] RZ-TRZ-,
for i.i.d. Ry, Ro,..., R, ~ R, and therefore,

1
UT (I x S)T(Iy x YU == > UT(Ir x Ry)T (I, x R;)U.
1€[m]

Therefore in order to use matrix Bernstein, Lemma, we need to bound the maximum operator
norm of U (I, x R)T (I x R)U as well as the operator norm of its second moment.
We proceed to upper bound the operator norm of U (I, x R) " (I x R)U. First, define the set

ndurk

2 2
< 16log”(

£ = {(Dl,Dg) : H(HD1 x HD2)U! )) - | U|[3 for all j € [k] and all i € [n]} ,
where U7 is the ith column of U7. By Claim [29] for every i € [n] and j € [k],

Pr
D1,D2

](HD1 x HDy)U?

2 .
< 16log2(ndk/5)||U{||%} > 1= €6/ (nkyupd).

Thus, by a union bound over all i € [n] and j € [k], it follows that £ occurs with probability at
least 1 —ed/(dur),
Pr (D1, D2) € €] 2 1 — €d/(dur),
1,472
where the probability is over the random choice of D1, Do.
From now on, we fix (Dj, D2) € £ and proceed having conditioned on this event.
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Upper bounding HUT(Ik x R)T (I, x R)U
&, note that

From the fact that we have conditioned on (Dy, D2) €
op

L= U@ x R)T (I x R)U Hop = [(UY)TRTRUL + --- (Uy) " R" RUg|op

< H(Ul)TRTRUl

-+ ||[(UR) TRT RU,
op op

= |RUL|5 + - + | RUK|3

< 16log®(ndupk/ed) - ([|U1[[F + - - + [|Uk|[F)
< 16log® (ndurk/€d) - |U||%

= 16pr - log*(ndurk/ed)),

where the equality on the third line above holds because the matrices (U?)T RT RU? are rank one.

Upper bounding HEP For every z € RY with [|z]z = 1, we

(UT (5 x B)T (1 R)Uﬂ

op
have

.CCTEP

2
(U7 (I x R) (I x R)U) } z=Ep| Y «"(U)TRTRU; - (Uy)"RTRUz
L7.5" €[k]

<Ep| > |RU;xl|RU;|2|RU;|||RU||2
Li»j’ €[K]

2
=Ep (Z \RUJ‘%IHRUjlh)

| \J€l¥]

<Ep (ZH (RUjz) ) (Z IRU; llg)

where the second and fourth lines follow from the Cauchy-Schwarz inequality. Using the fact that
we conditioned on (Dq, D) € &€, we get

9

.Z‘TE P

> (RUjz)?

2
(UT(Ik x R)" (I x R)U) ] x < 16log®(ndurk/ed) (Z ||Uj||%> Ep
JE[K]

JE[k]

= 16log®(ndupk/ed) (Z 1U; ||F> > Ep [(P(HDy x HD)Ujz)?]

JE[K] JEK]

= 161og®(ndprk/ed) - |U|E > |Ujz|l3
JEk]

— 1610g? (ndprk/e6) - U3 |U]3
< 161og*(ndprk/ed) - prpa,

since Ep [(P(HD1 x HD»)U;z)?| = 1||[(HDy x HD,)U;z|? = ||U;z||3 for all z.
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2
Since the matrix Ep [(UT(Ik x R)T (I}, x R)U) } is positive semi-definite for any fixed D; and
Da, it follows that

Ep < 161log*(ndupk/ed) - puppia-

Mz‘
op

(U7 (1 < B (I R)U)Q]

Combining one-dimensional TensorSRHT sketches. To conclude, we note that the Gram
matrix of a TensorSRHT, ST.S € R¥*? is the average of m independent samples from R'R, i.e.,
STS = % Zie[m] R;—Ri, for i.i.d. Ry, Ro,..., R, ~ R, and therefore,

(Io % 8) (In x 8) = — 3 (I x R)T (I % Ry).

i€[m]

Recall that (D1, Ds2) € & occurs with probability at least 1 — ed/(dur), therefore we have the
following for the conditional expectation E {UT(Ik x R)T (I} x R)U‘ (D1,Ds) € E},

E[UT (I x B)T (I x R)U| UTu
Pr[(Dy, D2) € &] = 1—€d/(dup)’

E[UT (I x R)T (I % R)U’ (D1, Dy) € €] <
And also by Cauchy-Schwarz we have,
E[UT(Iy x R) (I x R)U| (D1, Dy) € €]
= E[UT (I x B) (I x R)U| =B [UT (I x B)" (I x R)U| (D1, Dy) € &] - Pr[€]
= UTU —d||U||%2Pr[€] - I,

=U'U —d|U||3 - €6/ (dpr) - I
=UTU — (e/2) - I,.

These two bounds together imply that,
HE (U7 (I x B)T (I R)U‘ (D1, Dy) € €] ~UTU

< e€/2.
op
Now note that the random variables R, R; are independent conditioned on (Dy, D2) € €. Hence,
using the upper bounds L < 16up -log?(ndupk/ed) and M < 16pppus - log? (ndpupk/€d), which hold
when (D1, D3) € &, we have the following by Lemma (here we drop the subscript from I for
ease of notation)

Pr ]UT(JxS)T(IxS)U—UTU ze}
P,D1,Ds op
< Pr HUT(IXS)T(IXS)U—E[UT(IXR)T(IXR)U‘ (Dl,Dz)egw 26/2‘(D1,D2)€5}
op
+ Pr [€]
D1,D2
me? /2
< . Y S
< 8n exp( M+2€L/3>+5/2
<6

)

where the last inequality follows by setting m = Q (log(n /6)1og?(ndk/ed) - pppa/ 62). This shows
that I x S satisfies the (up, p2, €, d, n)-spectral property. O
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5.4 Spectral property of Identity xOSNAP

In this section, we show that tensoring identity operator with OSNAP sketch (Deﬁnition results
in a transform which satisfies the spectral property (Definition with nearly optimal target di-
mension as well as nearly optimal application time. This sketch is particularly efficient for sketching
sparse vectors. We use a slightly different sketch than the original OSNAP to simplify the analysis,
defined as follows.

Definition 21 (OSNAP transform). For every sparsity parameter s, target dimension m, and
positive integer d, the OSNAP transform with sparsity parameter s is defined as,

1
ST’,j = \/? ’ 6r7j ’ JT,j)

for all » € [m] and all j € [d], where 0, ; € {—1,+1} are independent and uniform Rademacher
random variables and 0, ; are independent Bernoulli random variables satisfying, E[6,;] = s/m for
all 7 € [m] and all ¢ € [d].

Lemma 34. Suppose €, 0, pio, pr > 0 and n is a positive integer. If S € R™*4 is a OSNAP sketch

with sparsity parameter s, then the sketch Iy x S satisfies the (up, po,€,d,n)-spectral property,
2

provided that s = (2 (log2(ndk:/65) log(n/od) - %) and m = ) ((,uF,uQ/EQ) : logQ(ndk‘/eé)).

Proof. Fix a matrix U € R¥*" with ||U||% < pr and |U|2, < p2. Partition U by rows into d X n

sub-matrices Uy, Us, ..., U such that UL = [Ul—r UQT U,ﬂ Note that

U1, x 8) (I, x S)U = (U) ' STSUL + - (Up) " ST SU.

The proof first considers the simpler case of an OSNAP sketch of rank 1 and then applies the matrix
Bernstein bound. Let R denote a rank one OSNAP sketch. R is a 1 x d matrix defined as follows,

Ri= /2 o, (28)
S

where o; for all i € [d] are independent Rademacher random variables and also, §; for all i € [d] are
independent Bernoulli random variables for which the probability of being one is equal to .
We proceed to upper bound the operator norm of U (I, x R) " (I x R)U. First, define the set

ndkup
€6

ndkup
€6

&= { R+ (RU)TRU; = 0 (Mo (") - U Uy log(" DUy 1, ) forall =1,k
where C > 0 is a large enough constant. We show that,
Pr[Re&] > 1—ed/(dmur),

where the probability is over the random choices of {c;}cjq) and {0;}ic|g. To show this we first
prove the following claim,

Claim 35. For every matriz Z € R&™, if we let R be defined as in , then,

Pr|Z"RTRZ < C (Z‘ log?(n/8) 2" Z + 1og(n/5)||Z||%In)] >1-6.
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Proof. The proof is by Matrix Bernstein inequality, Lemma. For any matrix Z let A = Z(Z" Z+
pl,) "2, where p = %bg(;/é) | Z]|%. We can write RA = \FEze[d] 0;0;A;, where A; is the ith
row of A. Note that E[§;0;4;] = 0 and ||0;0;4;:]|2 < ||Aill2 < ||Allop- Also note that

S S
> E[(0i0idi)(Gi0idi)] = >0 —[|Aillz = —[| A7

i€(d] i€[d]
and,
* T
> El(6i0iAi)*(8i0:Ay) ZmAA _—A A
i€[d] i€[d]
Therefore,

ZE [(0;074;)(0;0;4;)
i€[d]

ZE [(0;074;) (0;0:A;)]
i€[d]

op op

By Lemma

2501 i

i€(d]

>t <(n+1) malk:
n - eX
i P\ Az +[A]lpt/3 )

op

hence if ¢ = C'/2 - (\/2 log(n/3)| Al| ¢ +log(n/0)[[Allsp), then Pr U\Ziqd} 5io;

plugging ||[RA[3 =2 - || > icld) 8;0;A;||3 into the above we get the following,

A, Zt} < 4. By
op

m
Pr|[RAIZ, < 0%/2 (% log(n/6)| A%, +log(n/5)|4J5 )| = 1~

Now note that for the choice of A = Z(Z"Z + ul,)~ /2, we have ||A]]2, < 127 Zllop

p = 27202, 40
A 2 _ A(Z Z) Z Ai Z Z)
|| ”F - z i (ZTZ)+/L =

< 1 and also

= ™log(n/d). By plugging these into the above we get that,

Pr MRZ(ZTZ + uIn)*l/Qij < 0’2% : logQ(n/é)} >1-04.

Hence,
(Z7Z + ul) " V2PZTRTRZ(ZT Z + pul,) V2 < 02 log2(n/8)1,,
S

with probability 1 — §, where C' = C’?. Multiplying both sides of the above from left and right by
2
the positive definite matrix (Z T Z + ul,,)*/? gives (recall that p = = %),
ZTRTRZ < C (m Nog2(n/8)ZT 7 + log(n/5)||Z||%~In> .
s
O

By applying Claim [35| with failure probability of €/(dkur) on each of U;’s and then applying
a union bound, we get the following,

Pr[Re€ &) > 1—ed/(dmur).

From now on, we fix R € £ and proceed having conditioned on this event.
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Upper bounding HUT(Ik x R)T(I, x R)U
note that,

L= U7 (I x R) (I x RU| = [[(U2) " RT RO+ (U) 'R RUEop

From the fact that we have conditioned on R € &,
op

m
< Z C (s log?(ndkpp/ed) - UjTUj + log(ndkpr/€d) |U; |7 - In>

1€[k]

op

= HC (’: og?(ndkpp/ed) - UTU + log(ndkpr/€d) ||U||% - In>

op

m
< 0 (™ 1og? (ndkpr e8) - U3, + log(ndbyur /e5) U]}

<C (?ug log®(ndkpp /€b) + pup - 10g(ndkMF/€5)) ~

From the condition R € &, it follows that

2
Upper bounding H]E (UT(Lz€ x R)T (I x R)U) ]

op

E

(U7 (I x BT (I, % R)Uﬂ
<E [0 (TS” Nog2(ndkpu /€8) - UTU + log(ndkur /8)||U % - In) (U7 (< B)T (1 R)U)}

<C (T og? (ndkyp/e8) - UTU + log(ndkpup/ed)|Ul|% - In> E[(UT (I x R)T (I x R)U)]
U'u

1—¢€5/(dmur)

where the last line follows from the fact that the random variable U (I, x R) T (I x R)U is positive

semidefinite and the conditional expectation can be upper bounded by its unconditional expectation
as follows,

< C (7: log*(ndkpup/ed) - UTU +log(ndkur/ed)|U||% - In> -

E|[UT(Iy x R)T (I x R)U|
Pr[R € £]
Therefore we can bound the operator norm of the above as follows,

E[UT(Ix x R) (I x R)U| R € €] <

M = ||E

(U7 (e x BT (I, % R)Uﬂ

op

<2 Hc (”; log?(ndkpug/ed) - (UTU)? + log(ndkup/ed)|U||% - UTU)

op

m

<20 (% tog? (nakyre6) - [U U1, +1og(ndbrar )|V U7 Uy
m

=2C (S log*(ndkpp /€d) - 3 + log(ndkpr/ 65)uFuz> :

Combining one-dimensional OSNAP transforms. To conclude, we note that the Gram
matrix of an OSNAP sketch, STS € R ig the average of m independent samples from R R with
R defined as in —ie, STS = % Zie[m] RZ-TRi for ii.d. Ry, Rs,..., Ry ~ R, and therefore,

(Ik X S)T(Ik X S) = l Z (Ik X Ri)T(Ik X Rl)

1€[m)|
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Note that by a union bound R; € & simultaneously for all i € [m] with probability at least
1 — €§/(dur). Now note that the random variables R, R; are independent conditioned on R; € &£

for all i € [m]. Also note that the conditional expectation E [UT(Ik x R)T (I, x R)U‘ R e 5}
satisfies the following,

E[UT(Ix x R) (I x R)U| R € €]
=E[UT (I x B)T (I x RU] =B [UT (I x B)T (I, R)U‘ Reé&| - Prfé]
= U'U—d|U|%Pr[€] - I,
= U'U —d||U|[ - ed/(dur) - In
SU'U —d|U||% - €/2 - I

We also have,

E [UT(Ik x R)T(Ir x R)U] .U
Pr[R € €] ~ 1—ed/(dur)

E[UT (I x R)" (I x R)U‘ Reg] =
These two bounds together imply that,

<e€/2.
op

|E[UT (I x BT (I x RU|Re €] -UTU

Now, using the upper bounds L < C (%,ug log*(ndkur/ed) + pr - log(ndk,up/é)) and M <
20 (2 - log? (ndkyir/0) - 4 + log(ndkpup /8)prpiz ), which hold when R € £, we have that by Lemma

Pr

HUT(Ik x )T (I, x YU -~UTU

> €
op

< Pr ([|[UT (1 x )T (I x YU ~E[UT (I x B)T (I x R)U| R ]| >e/2] 5} +Pr[é]
op
me?/8
< . _—_ <
< 8n exp( M+€L/3> +0/2 <9,

where the last inequality follows by setting s = Q (logQ(ndk,uF/aS) log(nd/d) - “—23) and m =

Q (up,ug/e2 . log2(ndk,up/65)). This shows that I x S satisfies the (up, po, €, 0, n)-spectral prop-
erty. O

5.5 High Probability OSE with linear dependence on s)

We are ready to prove Theorem [3] We prove that if we instantiate II? from Definition [IT] with
Thase : OSNAP and Spaee : TensorSRHT, it satisfies the statement of Theorem

Theorem 3. For every positive integers p,d,n, every €,sy > 0, there exists a distribution on
linear sketches 1P € R™*%" which is an (¢,1/poly (n), sy, dP,n)-oblivious subspace embedding as in
Definition @ provided that the integer m satisfies m = Q (p4s,\/62).

Moreover, for any X € R if A € R¥*" s the matriz whose columns are obtained by a
p-fold self-tensoring of each column of X then the matriz TIPA can be computed using Algorithm 1]
in time O (pnm + p°e 2 nnz(X)).
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Proof. Let 6 = m denote the failure probability. Let m ~ p* log%(?—g) -2 and s ~ g—i -log%(?—g)
2

be integers. Let II? € R™*™ be the sketch defined in Definition where Spase € R™*™" is a
TensorSRHT sketch and Thaee € R™*4 is an OSNAP sketch with sparsity parameter s.

Let ¢ = 2M°8:("1 By Lemma it is sufficient to show that 117 is a (e, d, s, d?, n)-Oblivious
Subspace Embedding. Consider arbitrary A € R¥*”™ and A > 0. Let us denote the statisti-

~1/2
cal dimension of A by sy = sy(ATA). Let U = A(ATA+)\In) / . Therefore, ||Ulls < 1

and ||U||% = sy. Since ¢ < 2p, by Lemma the transform g1 X Thase, satisfies (2sy +
2,2,0(e/q),0(5/n?q),n)-spectral property. Moreover, by Lemma the transform I,,4-2 X Spase
satisfies (5sy +9,9,0(e/q), 0(5/n%¢?), n)-spectral property. Therefore, by Lemma the sketch
17 satisfies (s) + 1, 1, ¢, d, n)-spectral property, hence,

Pr {H(H‘JU)TH‘]U ~UTU

< e] >1-4.
op

Since UTU = (ATA + M) Y2ATA(ATA + \1,,)"Y/? and TIU = TIPA(AT A + \1,,)~"/? we have
the following,

Pr (1= e)(ATA+AL,) < (IPA)TTIPA + M, < (14 €)(ATA+ ML) > 1-46.

Runtime: By Lemma [8] for any Spase and Thase, if A is the matrix whose columns are obtained
by p-fold self-tensoring of each column of some X € R%™ then the sketched matrix II?A can be
computed using Algorithm [I When Spase is TensorSRHT and Thase is OSNAP, the runtime of
Algorithm [1| for a fixed vector w € R? is as follows; Computing on’s for each j in lines [3| and
of algorithm requires applying an OSNAP sketch on w € R? which on expectation takes time
O(s -nnz(w)). Therefore computing all on’s takes time O(gs - nnz(w)).

Computing each of le’s in line 7] of algorithm amounts to applying a TensorSRHT of input
dimension m? and target dimension of m on Yél]ill ® YQI; !, This takes time O(mlogm). Therefore
computing all the le’s takes time O(q-mlogm). Note that ¢ < 2p hence the total time of running
Algorithm 1| on a vector w is O(p - mlogy m + ps - nnz(w)). Therefore, sketching n columns of a
matrix X € R¥™ takes time O(p(nmlogym + s - nnz(X))).

O

6 Oblivious Subspace Embedding for the Gaussian Kernel

In this section we show how to sketch the Gaussian kernel matrix by polynomial expansion and
then applying our proposed sketch for the polynomial kernels.

Data-points with bounded /{5 radius: Suppose that we are given a dataset of points z1,-- -z, €
R such that for all i € [n], ||2;]|3 < 7 for some positive value r. Consider the Gaussian kernel
matrix G € R"*" defined as G, ; = e llwi=2;l3/2 for all i, j € [n]. We are interested in sketching the
data-points matrix X using a sketch S : R? — R™ such that the following holds with probability
1—4,

(1= (G + M) = (S4(X))TSy(X) + M % (14 )(G + ALL).

Theorem 5. For every r > 0, every positive integers n, d, and every X € R>™ such that ||z;]|o < 7
for all i € [n], where z; is the i™" column of X, suppose G € R™ " is the Gaussian kernel matriz —
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ie., Gjp=e “llwi=21l3/2 for all j, k € [n]. There exists an algorithm which computes Sg(X) € R™*™

in time O (q%2nsy + ¢®e =2 nnz(X)) such that for every e, \ > 0,
Pr (1= (G + ML) 2 (Sy(X)) T Sy(X) + Al < (14 €)(G + Mp)| > 1= 1/poly (n),
g9

where m = © (¢®sr/€?) and ¢ = O(r? + log(n/e))) and sy is A-statistical dimension of G as in
Definition [1].

Proof. Let § = Doly
for every i,j € [n]. Let D be an >< n diagonal matrix with ith diagonal entry e —llwill3/2 and let

K € R™"™ be defined as K;; = e T (note that DK D = G). Note that K is a positive definite
kernel matrix. The Taylor series expansion for kernel K is as follows,

X®l TX®I
K= Z ) :
Therefore G can be written as the followmg series,

(X®'D TX®lD
G = Z )

Note that each of the terms (X®ZD)TX®lD = D(X®H)TX®D are positive definite kernel
matrices. The statistical dimension of kernel (X®'D)T X®!'D for every [ > 0 is upper bounded by
the statistical dimension of kernel G' through the following claim.

( ) denote the failure probability. Note that G;; = e “lleill3/2 . ezl . o=llil/2

Claim 36. For every u > 0 and every integer [,

Su ((X®1D)TX®’D) < 5,(G).
Proof. From the Taylor expansion G = > ;2 w along with the fact that the polynomial
kernel of any degree is positive definite, we have that (X®!/D)TX®'D < G. Now, by Courant-
Fischer’s min-max theorem we have that,

M (X®DYT X®IDY = i
R R i O A P

Let U* be the maximizer of the expression above. Then we have,
T
. o Ga
A(G) =  max  min ——
UeRG-Dxn a0 ||al|5
Ua=0
a'Ga
min T2
a0 |la3
U*a=0
. o (X®ID)TX® Do
> min

-0 a2
b T alB

=)\ ((X®'D)TX®' D).

for all j. Therefore, the claim follows from the definition of statistical dimension,

~ (@) A ((X#'D) T X®' D)

D=2y n” 2 5 (X9D) XD) + i

p ((X®’D)TX®lD) :
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If welet P =3}, w, where ¢ = C - (r? + log(%)) for some constant C, then by the
triangle inequality we have

(X®l)TX®l
!

(X®l)TX®l
[

HK - PHop < Z
I>q

op

<2

I>q F

_Zn T’

< eN/2.

P is a positive definite kernel matrix. Also note that all the eigenvalues of the diagonal matrix
D are bounded by 1. Hence, in order to get a subspace embedding it is sufficient to satisfy the
following with probability 1 — 4,

(1= €/2)(DPD + A < (Sy(X))TSy(X) + My =< (1+¢/2)(DPD + AlL,).

Let the sketch IT! € R™*d" be the sketch from Theorem [3| therefore by Claim we get the
following guarantee on II':

(1- g)((X®lD)TX®lD+/\In) < (X D)TTEX® D+ AL, < (1+ g)((X®lD)TX®lD+/\In), (29)

with probability 1 — —2- as long as ml Q (l4 log®(nd/§) - s)\/e2) and moreover I’ X®!'D can be

computed using O (n . l -my log2 my + ?2 -log®(nd/6) - nnz(X)) runtime where s) is the \-statistical
dimension of G.

We let Sp be the sketch of size m x (3, d") which sketches the kernel P. The sketch Sp is
defined as

1 1 72 i
SP\F@\FHEB\FH \/a

Let Z be the matrix of size (37, d’) x n whose i*! column is

I19.

zi =20 @ 2Pt @aP? . 2l
where x; is the i*" column of X. Therefore the following holds for (SpZ)"SpZ,

(HZX®Z)THZX®Z
l! ’

q
(Sp2)'SpZ = >
=0

and hence,
(HZX®ID)THZX®ID

(SpZD)'SpZD = Z i

=0

Therefore by combining the terms of for all 0 <[ < g, using a union bound we get that with
probability 1 — 9, the following holds,

(1 —€/2)(DPD + \I,,) < (SpZD)"SpZD + \,, < (1 +¢/2)(DPD + \I,).
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Now we define Sy(«) which is a non-linear transformation on the input « defined as

Sy(x) = e ll3/2 (

1 1

Va2l

1

1
~H0(;v®0) D ﬁ

ol S & ) -HQ(:UW)).

We have that Sy(X) = SpZD, therefore with probability 1 — §, the following holds,

(1 —e)(G+ M) = (Sy(X))TSy(X) + A, < (1+€)(G + AL,).

Note that the target dimension of Sy is m = mg +my + - -- + my ~ ¢°log®(nd/d)sy/e?. Also, by
Theorem time to compute Sg(X) is O ("Ei; log*(nd/s) - sy + ‘61—2 -log®(nd/$) - nnz(X)).

O]
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A Direct Lower and Upper Bounds

We introduce the following notation. We say f(z) < g(z) if for some some universal constant C' we
have f(x) < Cg(x) for all z € R and . Note this is slightly different from the usual f(z) = O(g(z))
in that it is uniform in x rather than asymptotic. We similarly say f(z) 2 g(z) if g(x) < f(z) and

f(x) ~ g(x) if both f(x) S g(x) and f(z) Z g().

We will also make heavy use of the LP norm notation for random variables in
R, that is for p > 1 we write || X||;, = (E|X|?)'/P. A very useful result for computing the LP-norm
of a sum of random variables is the following:

Lemma 37 (Latala’s inequality, [Lat97]). If p > 2 and X, X4,..., X, are iid. mean 0 random

variables, then we have
1/s
p(n
~ = - X ;s
SUP{S (p) [ HL

The following simple corollary will be used for both upper and lower bounds:

n

X

i=1

max{Q,Z} Ssgp}. (30)

Lp

Corollary 38. Let p > 2,C > 0 and a > 1. Let (X;)icpn) be iid. mean 0 random variables such
that || Xil| ,» ~ (Cp)®, then [|32; Xill pp ~ C* max{2*\/pm, (n/p)"/Pp"}.
Proof. We will show that the expression in eq. is maximized either by minimizing or maximizing

1/s
s. Hence we need to chat that % (%) s% it has no other optimums in the valid range. For this,

1 1
we note that 42 (%) /o s* = (%) /e ((1 —a)s + log %) Given o > 1 the derivative is non-
decreasing in s, which gives the lemma. O

For the lower bound we will also use the following result by Hitczenko, which provides an
improvement on Khintchine for Rademacher random variables.

Lemma 39 (Sharp bound on Rademacher sums [Hit93]). Let o0 € {—1,1}" be a random Rademacher

sequence and let a € R™ be an arbitrary real vector with sorted entries |ai| > |a2| > - - |ay|, then
1/2
@0} lle ~ Do+ vB(3ab)” (31)
i<p 1>p
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Finally the lower bound will use the Paley-Zygmund inequality (also known as the one-sided
Chebyshev inequality):

Lemma 40 (Paley-Zygmund). Let X > 0 be a real random variable with finite variance, and let
0 € [0,1], then

Pr[X > 0E[X]] > (1 — 0)? = (32)
A classical strategy when using Paley-Zygmund is to prove E[X] > 2¢ for some € > 0, and then
take 6 = 1/2 to give Pr[X > ¢] > E[X]* /4E[X?]).

A.1 Lower Bound for Sub-Gaussians

The following lower bound considers the sketching matrix consisting of the direct composition of
matrices with Rademacher entries. Note however that the assumptions on Rademachers are only
used to show that the p-norm of a single row with a vector is ~ ,/p. For this reason the same lower
bound hold if the Rademacher entries are substituted for, say Gaussians.

Theorem 41 (Lower bound). For some constants C1,Ca, B > 0, let d,m,c > 1 be integers, let
e €[0,1] and § € [0,1/16]. Further assume that d > log1/6 > ¢/B. Then the following holds.

Let MW ... M© € R™* pe matrices with all independent Rademacher entries and let M =
M o...0 M. Then there exists some unit vector y € R such that if

El

m < C1 max {306_210g1/(5’ g1 (C'Qlogl/5

c . )} then Pr[|Myl3—1|>¢|>a  (33)

Proof. Let y =[1,...,1]7/v/d € R? and let z = y®°. We have

1 2 1
2 _ 1 _ 2
1Myl — 1= M Owo-oMOal| —1= - 57 (T] 22)) ~1 (34)
J€Im] i€[d]
where each Z; ; = ZkeﬁM ;2 /v/d are independent averages of d independent Rademacher random

variables. By Lemma [39 we have |Z;;||;, ~ min{,/p,v/d} which is \/p by the assumption d >
log1/4 as long as p < log1/§. By the expanding Z;fj into monomials and linearity of expectation
1= Jo(d+3d(d - 1)V = (3 - 2/d)"/".

Now define X; = [T;efq 272, ~1, then EX; = 0 and || X, ;, > Hnie[c} 23||,,-1= 1Zi 1% —1 >

K¢p° for some K, assuming p > 2. In particular, || X;|/,. > HZi,jHii —1=(3-2/d)*? -1~ 32
by the assumption d > ¢ > 1.

we get || Z; ;

We have ||[|[My[3 —1]|,, = % sze[m} XmHLp is a sum of iid. random variables, so we can use
Corollary [3§ to show

K max { /35 /m, (m/p) Kyt fm Y < [1a0yl3 — 1
L
< Kymax {\/SCp/m, (m/p) Ky mp (36)

(35)

for some universal constants K1, Ko, K3, K4 > 0.
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C
Assume now that m < max {AK%B%_QW, %s_l (4AK1 @) } as in the theorem. We

take p = 4A% for some constant A to be determined. We want to show [||[My||3 — 1| ,, > 2e.
For this we split into two cases depending on which term of m < max{(1), (2)} dominates. If (1) >

. . 2 o c 4e2 o
W W ) > K3/ > K3, |3 = 2e.
(2) we pick the first lower bound in eq 1} and get ||| Myl — 1|, > K3\/3%p/m > K3, |%; = 2¢
3

Otherwise, if (2) > (1), we pick the other lower bound and also get:

e K¢ (4Alog1/5)c

[

KC C
YWl — (37)

HHMyH% - 1HLP = K3(m/p m = 2 Kag-1 (4AK1%)

where we used (m/p)/P > e~1/(¢™) > 1/2 for m > 1. Plugging into Paley-Zygmund (Lemma
we have

Pr[|Myll} — 1] > ¢| > Pr [|Iaryl3 - 1" > |8yl - 1 277] (38)
1Myl =1\
24<||||My|§_1”j;> ’ 39

where we used that p > 1 so (1 —27P)2 > 1/4.
There are again two cases depending on which term of the upper bound in eq. (36]) dominates.

Myl|2—
If \/3%p/m > (m/p)'/PK$p¢/m we have using the first lower bound that [10wi3=1]],, Ks

T3],z = V2K
For the alternative case, (m/p)"/?KSp®/m > \/3°p/m, we have

MyIE =l o Ks  (m/p)'? (K1>C> Ky <K1>
IMylI3 = 1] 20 = V2K (m/2p)1/20 \2K, ) = 2K \2K,

(40)

where (g}é% > e~ 1/(em) > 1 /1/2 for m > 1.

Comparing with we see that it suffices to take A < min{longa/Ky log2é2/K1}/32' This
choice also ensures that 1 < p <log1/é as we promised. Note that we may assume in eq. that
K3 < K4 and K1 < Ky. We then finally have

L K3 N7 1o L(Ks ( Ki \NT 1 e/

n > 0 = > gt 41

1 (ﬂm) =y and <2K4 <2K2> ) =5 ’ (41)
which are both > § for ¢ > 1 and § < 1/16. O

A.2 Upper bound for Sub-Gaussians

Theorem 42 (Upper bound). Let €, € [0,1] and let v > 0, 1 < ¢ < % be some constants.

Let T € R™? be a matriz with iid. rows T1,..., T, € R% such that E[(T12)?] = ||=|3 and
| T, < /ap|z|a for somea >0 andp > 4. Let M =T o ... ¢ T where TW ... T are
independent copies of T. Then M has the JL-moment property, ||||Mz|s — ||z||2]l;» < 6P, given

m 2 (4a67)208210gci/6 + (4ae?)e™! (bg;y/é) . (42)
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Remark 2. In the case of random Rademachers we set a = v/3/4 to get
m=0 <3c€—210gl/5 27 4 o1 (ﬁbgl/fs)cew) '
¢y ¢y

Note that depending on -+ this matches either of the terms of the lower bound. Setting v = 0(1/c)
or v = ©(1) we have either

m=0 (3 tagis et (Vlos1/s)) o m=0 (0 L s or (VR

c

Finally, in the case of constant ¢ = O(1),y = ©(1) we simply get
m =0 (5_2 log1/6 + ¢! (log 1/5)C> .

Proof of Theorem [{2 Without loss of generalization we may assume ||z||;2 = 1. We notice that
Ml =1 < || & Sii)? -1,
(Myz)? — 1. Then EZ = 0 and |Zl ,» = | (M) — 1], S (M), = Moy by sym-
metrization. Now by the assumption ||Tiz||;, < /ap||z|2 = \/ap, and by Lemma we get that
| Mz, = ‘ Ti(l) ®-® Ti(C)xHLP < (ap)®/?, and so || Zi||;» < (2ap)® for all i € [m)].

We now use Corollary 38 which implies

1
T2

The second inequality comes from the following consideration: If the second term of dominates,
then (4a)°\/p/m < m'/?(2ap)°/m which implies m!/? < (]9/2)215?721 < 2¢ for p > 4.

All that remains is to decide on p. We take p = % which is > 4 by assumption, and
m = max{(4ae?)**pe=2, (4ae?)pc~'}. Then

is the mean of iid. random variables. Call these Z; =

S (4a)*y/p/m +m'/(2ap)°/m S (4a)*\/p/m + (4ap)®/m. (43)

Lr

1 P
H > Zi| £ (4a)® max{e?(4ae?) P, P (dae”) " P} (44)
m 7 Lp
=e PP (45)
= oeP, (46)
which is exactly the JL moment property. 0

A.3 Lower Bound for TensorSketch
For every integer d, ¢, the TensorSketch of degree ¢, M : R* — R™ is defined as,

M(2%9) = F~L((FCyz) o (FCyx) 0 - - - (FCyx)), (47)

for every € RY where C1, - - - Cq € R™*? are independent instances of CountSketch and F € C™*™
is the Discrete Fourier Transform matrix with proper normalization which satisfies the convolution
theorem, also note that, o denotes entry-wise (Hadamard) product of vectors of the same size.

Lemma 43. For every integer d,q, let M : R* — R™ be the TensorSketch of degree q < d, see
[@7). For the all ones vector z = {1},

34
Var {HMx@qH%} > (W — 1) 12®7||4.
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Proof. Note that since F is normalized such that it satisfies the convolution theorem, F~! is indeed
a unitary matrix times 1/y/m, |[M2®9|3 = L|(FCiz) o (FCaz) 0 -+ (FCqz)||3. Consider the first
entry of the vector (FCiz) o (FCax) o ---(FCyx). Because the first row of F is all ones {1},

the first element of the mentioned vector for the choice of x = {1}¢ is []L, (Zje[d] O'i(j)> =

I, (Zje[d] o j)), where o' : [d] — {—1,+1} are fully independent random hash functions used
by the CountSketch C; for all i € [g]. Let us denote by V' the following positive random variable,

2 . 4
Note that [|[M2®4|]3 > £ hence E[|M2®4|3] > E{LQ] Also note that E[V?] = glE{(Zje[d} Jz(j)) }

m

because ¢'’s are independent. We can write

4
E (Z ﬂj)) =3d> —2d =3(1 - 6%)!!96\\%,

J€ld]

hence if d > g,

E[V?] 2 (1/2)-37 - |23,

2
Therefore E[HMQC@(]H%] > ]E{T:L/Q] > 3¢

= 2m?2

|2®9||3. It is also true that E[||Mz®9||3] = ||2®4||3 [ANW14].
0

Lemma 44. For every integer d,q every € > 0, every 0 < ¢ < ﬁ, let M : R¥ — R™ be the

TensorSketch of degree q, see . If m < 392 then for the all ones vector x = {1}¢ we hawve,
Pr[[M2®3 - 2®73] > 1/2- |2®73] > 6.

Proof. Note that since F is normalized such that it satisfies the convolution theorem, F~! is indeed
a unitary matrix times 1/y/m, |[M2®7|]3 = L|(FCyiz) o (FCaz) 0 -+ - (FCyx)||3. Consider the first
entry of the vector (FCiz) o (FCax) o --- (FCyx). Because the first row of F is all ones {1}™,

the first element of the mentioned vector for the choice of z = {1} is []L, (Zje[d] ai(j)) =

I, (Zje[d] a( j)), where o' : [d] — {—1,+1} are fully independent random hash functions used
by the CountSketch C; for all i € [g]. Let us denote by V the following positive random variable,

V= ﬁ (Z]Ui(j)) .

i=1 \j€[d

v N2 ,
Note that [|[Mz®7)]3 > . Note that E[V!] =[!_ E {(Zje[d} az(j)) } for every t because o'’s are
independent. Note that for ¢ = 2 we have,

4
E (Zaiu)) =3d2—2d23<1—6id>|1xu%,

J€ld]

o8



hence if d > q,

E[V?| = (37/2) - ]

Now consider ¢t = 4. By Khintchine’s inequality, Lemma [17, we have,

Jeld

8
E (Z a%j)) <105 ||z,
]

hence,

E|[V*] <1057 - %13,

Therefore by Paley Zygmund we have the following,

(SIS

Pr [Hm@‘fn% > ||x®qu%] > Pr|V > 38/2- ]}

=Pr V2 >39/4 |2%)3]
>Pr|V2>1/4-E[V?]]
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