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Abstract7

We study the distribution of the matrix product G1G2 · · · Gr of r independent Gaussian matrices8

of various sizes, where Gi is di−1 × di, and we denote p = d0, q = dr, and require d1 = dr−1. Here9

the entries in each Gi are standard normal random variables with mean 0 and variance 1. Such10

products arise in the study of wireless communication, dynamical systems, and quantum transport,11

among other places. We show that, provided each di, i = 1, . . . , r, satisfies di ≥ Cp · q, where12

C ≥ C0 for a constant C0 > 0 depending on r, then the matrix product G1G2 · · · Gr has variation13

distance at most δ to a p × q matrix G of i.i.d. standard normal random variables with mean 014

and variance
∏r−1

i=1 di. Here δ → 0 as C → ∞. Moreover, we show a converse for constant r that if15

di < C′ max{p, q}1/2 min{p, q}3/2 for some i, then this total variation distance is at least δ′, for an16

absolute constant δ′ > 0 depending on C′ and r. This converse is best possible when p = Θ(q).17
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1 Introduction27

Random matrices play a central role in many areas of theoretical, applied, and computational28

mathematics. One particular application is dimensionality reduction, whereby one often29

chooses a rectangular random matrix G ∈ Rm×n, m ≪ n, and computes G · x for a fixed30

vector x ∈ Rn. Indeed, this is the setting in compressed sensing and sparse recovery [12],31

randomized numerical linear algebra [18, 20, 36], and sketching algorithms for data streams32

[25]. Often G is chosen to be a Gaussian matrix, and in particular, an m × n matrix with33

entries that are i.i.d. normal random variables with mean 0 and variance 1, denoted by34

N(0, 1). Indeed, in compressed sensing, such matrices can be shown to satisfy the Restricted35

Isometry Property (RIP) [10], while in randomized numerical linear algebra, in certain36

applications such as support vector machines [29] and non-negative matrix factorization [19],37

their performance is shown to often outperform that of other sketching matrices.38

Our focus in this paper will be on understanding the product of two or more Gaussian39

matrices. Such products arise naturally in different applications. For example, in the over-40

constrained ridge regression problem minx ∥Ax − b∥2
2 + λ∥x∥2

2, the design matrix A ∈ Rn×d,41

n ≫ d, is itself often assumed to be Gaussian (see, e.g., [26]). In this case, the “sketch-and-42

solve” algorithmic framework for regression [32] would compute G · A and G · b for an m × n43
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35:2 The Product of Gaussian Matrices is Close to Gaussian

Gaussian matrix G with m ≈ sdλ, where sdλ is the so-called statistical dimension [2], and44

solve for the x which minimizes ∥G · Ax − G · b∥2
2 + λ∥x∥2

2. While computing G · A is slower45

than computing the corresponding matrix product for other kinds of sketching matrices G, it46

often has application-specific [29, 19] as well as statistical benefits [31]. Notice that G · A is47

the product of two independent Gaussian matrices, and in particular, G has a small number48

of rows while A has a small number of columns – this is precisely the rectangular case we will49

study below. Other applications in randomized numerical linear algebra where the product50

of two Gaussian matrices arises is when one computes the product of a Gaussian sketching51

matrix and Gaussian noise in a spiked identity covariance model [37].52

The product of two or more Gaussian matrices also arises in diverse fields such as multiple-53

input multiple-output (MIMO) wireless communication channels [24]. Indeed, similar to the54

above regression problem in which one wants to reconstruct an underlying vector x, in such55

settings one observes the vector y = G1 · · · Gr · x + η, where x is the transmitted signal and η56

is background noise. This setting corresponds to the situation in which there are r scattering57

environments separated by major obstacles, and the dimensions of the Gi correspond to the58

number of “keyholes” [24]. To determine the mutual information of this channel, one needs59

to understand the singular values of the matrix G1 · · · Gr. If one can show the distribution60

of this product is close to that of a Gaussian distribution in total variation distance, then61

one can use the wide range of results known for the spectrum of a single Gaussian matrix62

(see, e.g., [35]). Other applications of products of Gaussian matrices include disordered spin63

chains [11, 3, 15], stability of large complex dynamical systems [22, 21], symplectic maps64

and Hamiltonian mechanics [11, 4, 28], quantum transport in disordered wires [23, 13], and65

quantum chromodynamics [27]; we refer the reader to [14, 1] for an overview.66

The main question we ask in this work is:67

What is the distribution of the product G1G2 · · · Gr of r independent Gaussian matrices of68

various sizes, where Gi is di−1 × di?69

Our main interest in the question above will be when G1 has a small number p = d0 of rows,70

and Gr has a small number q = dr of columns. Despite the large body of work on random71

matrix theory (see, e.g., [34] for a survey), we are not aware of any work which attempts to72

bound the total variation distance of the entire distribution of G1G2 · · · Gr to a Gaussian73

distribution itself.74

1.1 Our Results75

Formally, we consider the problem of distinguishing the product of normalized Gaussian76

matrices77

Ar =
(

1√
d1

G1

)(
1√
d2

G2

)
· · ·

(
1√
dr−1

Gr−1

)(
1√
d1

Gr

)
78

from a single normalized Gaussian matrix79

A1 = 1√
d1

G1.80

We show that, when r is a constant, with constant probability we cannot distinguish the81

distributions of these two random matrices when di ≫ p, q for all i; and, conversely, with82

constant probability, we can distinguish these two distributions when the di are not large83

enough.84
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▶ Theorem 1 (Main theorem). Suppose that di ≥ max{p, q} for all i and dr−1 = d1.85

(a) It holds that86

dT V (Ar, A1) ≤ C1

r−1∑
i=1

√
pq

di
,87

where dT V (Ar, A1) denotes the total variation distance between Ar and A1, and C1 > 088

is an absolute constant.89

(b) If p, q, d1, . . . , dr further satisfy that90

r−1∑
j=1

1
dj

≥ Cr
2

max{p, q} 1
2 min{p, q} 3

2
,91

where C2 > 0 is an absolute constant, then dT V (Ar, A1) ≥ 2/3.92

Part (a) states that dT V (Ar, A1) < 2/3 when di ≥ C ′
1pq for all i for a constant93

C ′
1 depending on r. The converse in (b) implies that dT V (Ar, A1) ≥ 2/3 when di ≤94

C ′
2 max{p, q}1/2 min{p, q}3/2 for some i for a constant C ′

2 depending on r. When p = Θ(q)95

and r is a constant, we obtain a dichotomy (up to a constant factor) for the conditions on96

p, q and di.97

1.2 Our Techniques98

Upper Bound. We start by explaining our main insight as to why the distribution of a99

product G1 · G2 of a p × d matrix G1 of i.i.d. N(0, 1) random variables and a d × q matrix100

G2 of i.i.d. N(0, 1) random variables has low variation distance to the distribution of a101

p × q matrix A of i.i.d. N(0, d) random variables. One could try to directly understand the102

probability density function as was done in the case of Wishart matrices in [7, 30], which103

corresponds to the setting when G1 = G2. However, there are certain algebraic simplifications104

in the case of the Wishart distribution that seem much less tractable when manipulating the105

density function of the product of independent Gaussians [9]. Another approach would be to106

try to use entropic methods as in [8, 6]. Such arguments try to reveal entries of the product107

G1 · G2 one-by-one, arguing that for most conditionings of previous entries, the new entry108

still looks like an independent Gaussian. However, the entries are clearly not independent –109

if (G1 · G2)i,j has large absolute value, then (G1 · G2)i,j′ is more likely to be large in absolute110

value, as it could indicate that the i-th row of G1 has large norm. One could try to first111

condition on the norms of all rows of G1 and columns of G2, but additional issues arise when112

one looks at submatrices: if (G1 · G2)i,j , (G1 · G2)i,j′ , and (G1 · G2)i′,j are all large, then it113

could mean the i-th row of G1 and the i′-th row of G1 are correlated with each other, since114

they both are correlated with the j-th column of G2. Consequently, since (G1 · G2)i,j′ is115

large, it could make it more likely that (G1 · G2)i′,j′ has large absolute value. This makes116

the entropic method difficult to apply in this context.117

Our upper bound instead leverages beautiful work of Jiang [16] and Jiang and Ma [17]118

which bounds the total variation distance between the distribution of an r × ℓ submatrix119

of a random d × d orthogonal matrix (orthonormal rows and columns) and an r × ℓ matrix120

with i.i.d. N(0, 1/d) entries. Their work shows that if r · ℓ/d → 0 as d → ∞, then the total121

variation distance between these two matrix ensembles goes to 0. It is not immediately122

clear how to apply such results in our context. First of all, which submatrix should we be123

looking at? Note though, that if V T is a p×d uniformly random (Haar measure) matrix with124

orthonormal rows, and E is a d × q uniformly random matrix with orthonormal columns,125

APPROX/RANDOM 2021



35:4 The Product of Gaussian Matrices is Close to Gaussian

then by rotational invariance, V T E is identically distributed to a p × q submatrix of a d × d126

random orthonormal matrix. Thus, setting r = p and ℓ = q in the above results, they imply127

that V T E is close in variation distance to a p × q matrix H with i.i.d. N(0, 1/d) entries.128

Given G1 and G2, one could then write them in their singular value decomposition, obtaining129

G1 = UΣV T and G2 = ETF T . Then V T and E are independent and well-known to be130

uniformly random p × d and d × q orthonormal matrices, respectively. Thus G1 · G2 is close in131

total variation distance to UΣHTF T . However, this does not immediately help either, as it is132

not clear what the distribution of this matrix is. Instead, the “right” way to utilize the results133

above is to (1) observe that G1 · G2 = UΣV T G2 is identically distributed as UΣX, where X134

is a matrix of i.i.d. normal random variables, given the rotational invariance of the Gaussian135

distribution. Then (2) X is itself close to a product W T Z where W T is a random p × d136

matrix with orthonormal rows, and Z is a random d × q matrix with orthonormal columns,137

by the above results. Thus, G1 · G2 is close to UΣW T Z. Then (3) UΣW T has the same138

distribution as G1, so UΣW T Z is close to G′
1Z, where G′

1 and G1 are identically distributed,139

and G′
1 is independent of Z. Finally, (4) G′

1Z is identically distributed as a matrix A1 of140

standard normal random variables because G′
1 is Gaussian and Z has orthonormal columns,141

by rotational invariance of the Gaussian distribution.142

We hope that this provides a general method for arguments involving Gaussian matrices -143

in step (2) we had the quantity UΣX, where X was a Gaussian matrix, and then viewed144

X as a product of a short-fat random orthonormal matrix W T and a tall-thin random145

orthonormal matrix Z. Our proof for the product of more than 2 matrices recursively uses146

similar ideas, and bounds the growth in variation distance as a function of the number r of147

matrices involved in the product.148

Lower Bound. For our lower bound for constant r, we show that the fourth power of the149

Schatten 4-norm of a matrix, namely, ∥X∥4
S4

= tr((XT X)2), can be used to distinguish a150

product Ar of r Gaussian matrices and a single Gaussian matrix A1. We use Chebyshev’s151

inequality, for which we need to find the expectation and variance of tr((XT X)2) for X = Ar152

and X = A1.153

Let us consider the expectation first. An idea is to calculate the expectation re-154

cursively, that is, for a fixed matrix M and a Gaussian random matrix G we express155

E tr(((MG)T (MG))2) in terms of E tr((MT M)2). The real situation turns out to be slightly156

more complicated. Instead of expressing E tr(((MG)T (MG))2) in terms of E tr((MT M)2)157

directly, we decompose E tr(((MG)T (MG))2) into the sum of expectations of a few functions158

in terms of M , say,159

E tr(((MG)T (MG))2) = E f1(M) + E f2(M) + · · · + E fs(M)160

and build up the recurrence relations for E f1(MG), . . . ,E fs(MG) in terms of E f1(M),161

E f2(M), ..., E fs(M). It turns out that the recurrence relations are all linear, i.e.,162

E fi(MG) =
s∑

j=1
aij E fj(M), i = 1, . . . , s, (1)163

whence we can solve for E fi(Ar) and obtaining the desired expectation E tr((AT
r Ar)2).164

Now we turn to variance. One could try to apply the same idea of finding recurrence165

relations for Var(Q) = E(Q2) − (EQ)2 (where Q = tr(((MG)T (MG))2)), but it quickly166

becomes intractable for the E(Q2) term as it involves products of eight entries of M , which167

all need to be handled carefully as to avoid any loose bounds; note, the subtraction of (EQ)2
168
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is critically needed to obtain a small upper bound on Var(Q) and thus loose bounds on E(Q2)169

would not suffice. For a tractable calculation, we keep the product of entries of M to 4th170

order throughout, without involving any terms of 8th order. To do so, we invoke the law of171

total variance,172

Var
M,G

(tr((MG)T (MG))2) = E
M

(
Var

G
(tr((GT MT MG)2))

∣∣∣M)
+Var

M

(
E
G

tr((GT MT MG)2)
∣∣∣M)

.

(2)173

For the first term on the right-hand side, we use Poincaré’s inequality to upper bound it.174

Poincaré’s inequality for the Gaussian measure states that175

Var
g∼N(0,Im)

(f(g)) ≤ C E
g∼N(0,Im)

∥∇f(g)∥2
2176

for a differentiable function f on Rm. Here we can simply let f(X) = tr((MX)T (MX))2)177

and calculate E ∥∇f(G)∥2
2. This is tractable since E ∥∇f(G)∥2

2 involves the products of at178

most 4 entries of M , and we can use the recursive idea for the expectation above to express179

E ∥∇f(G)∥2
2 =

∑
i

aij E gi(M)180

for a few functions gi’s and establish a recurrence relation for each gi.181

The second term on the right-hand side of (2) can be dealt with by plugging in (1), and182

turns out to depend on a new quantity Var(tr2(MT M)). We again apply the recursive idea183

and the law of total variance to184

Var
M,G

(tr2(GT MT MG)) = E
M

(
Var

G
(tr2((GT MT MG))

∣∣∣M)
+ Var

M

(
E
G

tr2(GT MT MG)
∣∣∣M)

.185

Again, the first term on the right-hand side can be handled by Poincaré’s inequality186

and the second-term turns out to depend on Var(tr((MT M)2)), which is crucial. We187

have now obtained a double recurrence involving inequalities on Var(tr((MT M)2)) and188

Var(tr2((MT M)2)), from which we can solve for an upper bound on Var(tr(AT
r Ar)2). This189

upper bound, however, grows exponentially in r, which is impossible to improve due to our190

use of Poincaré’s inequality.191

2 Preliminaries192

Notation. For a random variable X and a probability distribution D, we use X ∼ D to193

denote that X is subject to D. For two random variables X and Y defined on the same194

sample space, we write X
d= Y if X and Y are identically distributed.195

We use Gm,n to denote the distribution of m×n Gaussian random matrices of i.i.d. entries196

N(0, 1) and Om,n to denote the uniform distribution (Haar) of an m × n random matrix197

with orthonormal rows. For a distribution D on a linear space and a scaling factor α ∈ R,198

we use αD to denote the distribution of αX, where X ∼ D.199

For two probability measures µ and ν on the Borel algebra F of Rm, the total variation200

distance between µ and ν is defined as201

dT V (µ, ν) = sup
A∈F

|µ(A) − ν(A)| = 1
2

∫
Rm

∣∣∣∣dµ

dν
− 1
∣∣∣∣ dν.202

If ν is absolutely continuous with respect to µ, one can define the Kullback-Leibler Divergence203

between µ and ν as204

DKL(µ∥ν) =
∫
Rm

dµ

dν
log2

dµ

dν
dν.205

APPROX/RANDOM 2021



35:6 The Product of Gaussian Matrices is Close to Gaussian

If ν is not absolutely continuous with respect to µ, we define DKL(µ∥ν) = ∞.206

When µ and ν correspond to two random variables X and Y , respectively, we also write207

dT V (µ, ν) and DKL(µ∥ν) as dT V (X, Y ) and DKL(X∥Y ), respectively.208

The following is the well-known relation between the Kullback-Leibler divergence and the209

total variation distance between two probability measures.210

▶ Lemma 2 (Pinsker’s Inequality [5, Theorem 4.19]). dT V (µ, ν) ≤
√

1
2 DKL(µ∥ν).211

The following result, concerning the distance between the submatrix of a properly scaled212

Gaussian random matrix and a submatrix of a random orthogonal matrix, is due to Jiang213

and Ma [17].214

▶ Lemma 3 ([17]). Let G ∼ Gd,d and Z ∼ Od,d. Suppose that p, q ≤ d and Ĝ is the top-left215

p × q block of G and Ẑ the top-left p × q block of Z. Then216

dKL

(
1√
d

Ĝ

∥∥∥∥ Ẑ

)
≤ C

pq

d
, (3)217

where C > 0 is an absolute constant.218

The original paper [17] does not state explicitly the bound in (3) and only states that219

the Kullback-Leibler divergence tends to 0 as d → ∞. A careful examination of the proof220

of [17, Theorem 1(i)], by keeping track of the order of the various o(1) terms, reveals the221

quantitative bound (3).222

Useful Inequalities. We list two useful inequalities below.223

▶ Lemma 4 (Poincaré’s inequality for Gaussian measure [5, Theorem 3.20]). Let X ∼ N(0, In)224

be the standard n-dimensional Gaussian distribution and f : Rn → R be any continuously225

differentiable function. Then226

Var(f(X)) ≤ E
(

∥∇f(X)∥2
2

)
.227

▶ Lemma 5 (Trace inequality, [33]). Let A and B be symmetric, positive semidefinite matrices228

and k be a positive integer. Then229

tr((AB)k) ≤ min
{

∥A∥k
op tr(Bk), ∥B∥k

op tr(Ak)
}

.230

3 Upper Bound231

Let r ≥ 2 be an integer. Suppose that G1, . . . , Gr are independent Gaussian random matrices,232

where Gi ∼ Gdi−1,di
and d0 = p, dr = q and dr−1 = d1. Consider the product of normalized233

Gaussian matrices234

Ar =
(

1√
d1

G1

)(
1√
d2

G2

)
· · ·

(
1√
dr−1

Gr−1

)(
1√
d1

Gr

)
235

236

and a single normalized Gaussian random matrix237

A1 = 1√
d1

G′
1238

239

where G′
1 ∼ Gp,q. In this section, we shall show that when p, q ≪ di for all i, we cannot240

distinguish Ar from A1 with constant probability.241

For notational convenience, let Wi = 1√
di

Gi for i ≤ r and Wr = 1√
d1

Gr. Assume that242

pq ≤ βdi for some constant β for all i. Our question is to find the total variation distance243

between the matrix product W1W2 · · · Wr and the product W1Wr of two matrices.244
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▶ Lemma 6. Let p, q, d, d′ be positive integers satisfying that pq ≤ βd and pq ≤ βd′ for some245

constant β < 1. Suppose that A ∈ Rp×d, G ∼ 1√
d
Gd,d′ , and L ∼ Od′,d. Further suppose that246

G and L are independent. Let Z ∼ Oq,d be independent of A, G and L. Then247

dT V (AGL, AZT ) ≤ C

√
pq

d
,248

where C > 0 is an absolute constant.249

Proof. Let A = UΣV T be its singular value decomposition, where V has dimension d × p.250

Then251

AGL = UΣ(V T GL) d= UΣX,252

where X is a p × q random matrix of i.i.d. N(0, 1/d) entries. Suppose that Z̃ consists of the253

top p rows of ZT . Then254

AZT = UΣ(V T ZT ) d= UΣZ̃.255

Note that X and Z are independent of U and Σ. It follows from Lemma 3 that256

dKL(AGL∥AZT ) = dKL(UΣX∥UΣZ̃) = dKL(X∥Z̃) ≤ C
pq

d
,257

where C > 0 is an absolute constant. The result follows from Pinsker’s inequality (Lemma 2).258

◀259

The next theorem follows from the lemma above.260

▶ Theorem 7. It holds that261

dT V (W1 · · · Wr, W1Wr) ≤ C

r∑
i=1

√
pq

di
,262

where C > 0 is an absolute constant.263

Proof. Let Wr = UΣV T and Xi ∼ Oq,di
, independent from each other and from the Wi’s.264

Applying the preceding lemma with A = W1 · · · Wr−2, G = Wr−1 and L = U , we have265

dT V (W1 · · · Wr−2Wr−1Wr, W1 · · · Wr−2XT
r−1ΣV T ) ≤ C

√
pq

dr−1
,266

Next, applying the preceding lemma with A = W1 · · · Wr−3, G = Wr−1 and L = Xr, we have267

dT V (W1 · · · Wr−2XrΣV T , W1 · · · Wr−3XT
r−2ΣV T ) ≤ C

√
pq

dr−2
,268

Iterating this procedure, we have in the end that269

dT V (W1W2X3ΣV T , W1X2ΣV T ) ≤ C

√
pq

d2
.270

Since U , Σ and V are independent and X2
d= U , it holds that X2ΣV T d= Wr. Therefore,271

dT V (W1 · · · Wr, W1Wr) ≤ C

r−1∑
i=2

√
pq

di
. ◀272

Repeating the same argument for W1Wr, we obtain the following corollary immediately.273

▶ Corollary 8. It holds that274

dT V (Ar, A1) ≤ C

r−1∑
i=1

√
pq

di
,275

where C > 0 is an absolute constant.276
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35:8 The Product of Gaussian Matrices is Close to Gaussian

4 Lower Bound277

Suppose that r is a constant. We shall show that one can distinguish the product of r278

Gaussian random matrices279

Ar =
(

1√
d1

G1

)(
1√
d2

G2

)
· · ·

(
1√
dr−1

Gr−1

)(
1√
d1

Gr

)
,280

from one Gaussian random matrix281

A1 = 1√
d1

G′
1282

when the intermediate dimensions d1, . . . , dr−1 are not large enough. Considering h(X) =283

tr((XT X)2), it suffices to show that one can distinguish h(Ar) and h(A1) with a constant284

probability for constant r. By Chebyshev’s inequality, it suffices to show that285

max
{√

Var(h(A1)),
√

Var(h(Ar))
}

≤ c(Eh(Ar) − Eh(A1))286

for a small constant c. We calculate that:287

▶ Lemma 9. Suppose that r is a constant, di ≥ max{p, q} for all i = 1, . . . , r. When288

p, q, d1, . . . , dr → ∞,289

Eh(Ar) = pq(p + q + 1)
d2

r

+ (1 + o(1))pq(p − 1)(q − 1)
d2

r

r−1∑
j=1

1
dj

.290

▶ Lemma 10. Suppose that r is a constant, di ≥ max{p, q} for all i = 1, . . . , r. There exists291

an absolute constant C such that, when p, q, d1, . . . , dr are sufficently large,292

Var(h(Ar)) ≤ Cr(p3q + pq3)
d4

1
.293

We conclude with the following theorem, which can be seen as a tight converse to294

Corollary 8 up to a constant factor on the conditions for p, q, d1, . . . , dr.295

▶ Theorem 11. Suppose that r is a constant and di ≥ max{p, q} for all i = 1, . . . , r. Further296

suppose that d1 = dr. When p, q, d1, . . . , dr are sufficiently large and satisfy that297

r−1∑
j=1

1
dj

≥ Cr

max{p, q} 1
2 min{p, q} 3

2
,298

where C > 0 is some absolute constant, with probability at least 2/3, one can distinguish Ar299

from A1.300

4.1 Calculation of the Mean301

Suppose that A is a p × q random matrix, and is rotationally invariant under left- and302

right-multiplication by orthogonal matrices. We define303

S1(p, q) = EA4
11 (diagonal)304

S2(p, q) = EA4
21 (off-diagonal)305

S3(p, q) = EA2
i1A2

j1 (i ̸= j) (same column)306
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S4(p, q) = EA2
1iA

2
1j (i ̸= j) (same row)307

S5(p, q) = EA2
1iA

2
2j (i ̸= j)308

S6(p, q) = EAikAilAjkAjl (i ̸= j, k ̸= l) (rectangle)309
310

Since A is left- and right-invariant under rotations, these quantities are well-defined. Then311

E tr((AT A)2) = E
∑

1≤i,j≤q

(AT A)2
ij =

q∑
i=1

E(AT A)2
ii +

∑
1≤i,j≤q,i̸=j

E(AT A)2
ij

= q E(AT A)2
11 + q(q − 1)E(AT A)2

12

312

313

and314

E(AT A)2
11 = E

( p∑
i=1

A2
i1

)2
=

p∑
i=1

EA4
i1 +

∑
1≤i,j≤p,i ̸=j

EA2
i1A2

j1

= EA4
11 + (p − 1)EA4

21 + p(p − 1)EA2
11A2

21

=: S1(p, q) + (p − 1)S2(p, q) + p(p − 1)S3(p, q)

315

E(AT A)2
12 = E

( p∑
i=1

Ai1Ai2

)2
=

p∑
i=1

EA2
i1A2

i2 +
∑

1≤i,j≤p,i̸=j

EAi1Ai2Aj1Aj2

= pS4(p, q) + p(p − 1)S6(p, q).

316

317

When S1(p, q) = S2(p, q), we have318

E tr((AT A)2) = q(pS1(p, q) + p(p − 1)S3(p, q)) + q(q − 1)(pS4(p, q) + p(p − 1)S6(p, q))319

= pqS1(p, q)+pq(p−1)S3(p, q)+pq(q−1)S4(p, q)+p(p−1)q(q−1)S6(p, q).320
321

When A = G, we have322

S1(p, q) = S2(p, q) = 3, S3(p, q) = S4(p, q) = S5(p, q) = 1, S6(p, q) = 0323
324

and so325

E tr((AT A)2) = 3pq + pq(p − 1) + pq(q − 1) = pq(p + q + 1).326
327

Next, consider A = BG, where B is a p × d random matrix and G a d × q random matrix of328

i.i.d. N(0, 1) entries. The following proposition is easy to verify, and its proof is postponed329

to Appendix A.330

▶ Proposition 12. It holds that EA4
21 = EA4

11.331

Suppose that the associated functions of B are named T1, T2, T3, T4, T6, T5. Then we can332

calculate that (detailed calculations can be found in Appendix B)333

S1(p, q) = 3dT1(p, d) + 3d(d − 1)T4(p, d)334

S3(p, q) = 3dT3(p, d) + d(d − 1)T5(p, d) + 2d(d − 1)T6(p, d)335

S4(p, q) = dT1(p, d) + d(d − 1)T4(p, d)336

S5(p, q) = dT3(p, d) + d(d − 1)T5(p, d)337

S6(p, q) = dT3(p, d) + d(d − 1)T6(p, d)338
339

It is clear that S1, S3, S4, S5, S6 depend only on d (not on p and q) if T1, T3, T4, T5, T6 do so.340

Furthermore, if T1 = 3T4 then we have S1 = 3S4 and thus S4 = d(d + 2)T4. If T3 = 2T6 + T5341

then S3 = d(d + 2)T3 and S3 = 2S6 + S5. Hence, if T3 = T4 then S3 = S4. We can verify342
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that all these conditions are satisfied with one Gaussian matrix and we can iterate it to343

obtain these quantities for the product of r Gaussian matrices with intermediate dimensions344

d1, d2, . . . , dr−1. We have that345

S3 = S4 =
r−1∏
i=1

di(di + 2), S1 = 3S4, S6 =
r−1∑
j=1

(
j−1∏
i=1

di(di + 2)
)

dj

 r−1∏
i=j+1

di(di − 1)

 .346

Therefore, normalizing the i-th matrix by 1/
√

di, that is,347

A =
(

1√
d1

G1

)(
1√
d2

G2

)
· · ·

(
1√
dr−1

Gr−1

)(
1√
d1

Gr

)
,348

we have for constant r that349

E tr((AT A)2) = 1
d2

1d2
2 · · · d2

r−1d2
1

(pq(p + q + 1)S3 + pq(p − 1)(q − 1)S6)

≈ pq(p + q + 1)
d2

r

+ pq(p − 1)(q − 1)
d2

r

r−1∑
j=1

1
dj

.

(4)350

4.2 Calculation of the Variance351

Let M ∈ Rp×p be a random symmetric matrix, and let G ∈ Rp×q be a random matrix of i.i.d.352

N(0, 1) entries. We want to find the variance of tr((GT MG)2). The detailed calculations of353

some steps can be found in Appendix C.354

Our starting point is the law of total variance, which states that355

Var(tr((GT MG)2)) = E
M

(
Var

G
(tr((GT MG)2))

∣∣∣M)
+ Var

M

(
E
G

tr((GT MG)2)
∣∣∣M)

(5)356

Step 1a. We shall handle each term separately. Consider the first term, which we shall357

bound using the Poincaré inequality for Gaussian measures. Define f(X) = tr((XT MX)2),358

where X ∈ Rp×q. We shall calculate ∇f .359

f(X) =
∥∥XT MX

∥∥2
F

=
∑

1≤i,j≤q

(XT MX)2
ij =

∑
1≤i,j≤q

( ∑
1≤k,l≤p

MklXkiXlj

)2
.360

Then361

∂f

∂Xrs
=

∑
1≤i,j≤q

2
( ∑

1≤u,v≤p

MuvXuiXvj

)( ∑
1≤k,l≤p

∂

∂Xrs
(MklXkiXlj)

)
.362

Note that363

∂

∂Xrs
(MklXkiXlj) =


MklXlj , (k, i) = (r, s) and (l, j) ̸= (r, s)
MklXki, (k, i) ̸= (r, s) and (l, j) = (r, s)
2MrrXrs, (k, i) = (r, s) and (l, j) = (r, s)
0, otherwise.

364

we have that365

∂f

∂Xrs
= 4

 ∑
1≤u,v≤p

MuvXusXvs

MrrXrs + 2
∑

(l,j) ̸=(r,s)

 ∑
1≤u,v≤p

MuvXusXvj

MrlXlj366
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+ 2
∑

(k,i) ̸=(r,s)

 ∑
1≤u,v≤p

MuvXuiXvs

MkrXki367

= 4

 ∑
1≤u,v≤p

MuvXusXvs

MrrXrs +
∑

(l,j)̸=(r,s)

(∑
u,v

MuvXusXvj

)
MrlXlj

368

= 4
∑
l,j

(∑
u,v

MuvXusXvj

)
MrlXlj .369

370

Next we calculate E(∂f/∂Xrs)2 when X is i.i.d. Gaussian.371 (
1
4

∂f

∂Xrs

)2
=
∑
l,j

l′,j′

∑
u,v

u′,v′

MuvMu′v′MrlMrl′ EXusXu′sXvjXljXv′j′Xl′j′372

We discuss different cases of j, j′, s.373

When j ̸= j′ ≠ s, it must hold that u = u′, v = l and v′ = l′ for a possible nonzero374

contribution, and the total contribution in this case is at most q(q − 1)B(1)
r,s , where375

B(1)
r,s =

∑
1≤l,l′≤p

∑
u

MulMul′MrlMrl′ =
∑

u

⟨Mu,·, Mr,·⟩2.376

When j = j′ ≠ s, it must hold that u = u′ for a possible nonzero contribution, and the377

total contribution in this case is at most (q − 1)B(2)
r,s , where378

B(2)
r,s =

∑
l,l′

∑
u,v,v′

MuvMuv′MrlMrl′ EX2
usXvjXljXv′jXl′j379

= ∥M∥2
F ∥Mr,·∥2

2 + 2
∑

u

⟨Mu,·, Mr,·⟩2.380

381

When j = s ̸= j′, it must hold that v′ = l′ for possible nonzero contribution, and the382

total contribution in this case is at most (q − 1)B(3)
r,s , where383

B(3)
r,s =

∑
j′ ̸=s

∑
l,l′

∑
u,v

MuvMu′l′MrlMrl′ EXusXu′sXvsXlsX2
l′j′

384

=
∑
l,l′

(2⟨Ml,·, Ml′,·⟩ + tr(M)Mll′)MrlMrl′ .385

386

When j = j′ = s, the nonzero contribution is387

B(4)
r,s =

∑
l,l′

∑
u,v

u′,v′

MuvMu′v′MrlMrl′ EXusXu′sXvsXlsXv′sXl′s.388

Since u, u′, v, v′, l, l′ needs to be paired, the only case which is not covered by B
(1)
rs , B

(3)
rs and389

B
(3)
rs is when u = v, u′ = v′ and l = l′, in which case the contribution is at most390 ∑

l

∑
u,u′

MuuMu′u′M2
rl EX2

usX2
u′sX2

ls ≲ tr2(M) ∥Mr,·∥2
2 .391

Hence392

B(4)
r,s ≲ B(1)

r,s + B(2)
r,s + B(3)

r,s + tr2(M) ∥Mr,·∥2
2 .393
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It follows that394 ∑
r,s

B(1)
r,s = q

∑
u,r

⟨Mu,·, Mr,·⟩2 = q tr(M4)395

∑
r,s

B(2)
r,s = q

∑
r

∥M∥2
F ∥Mr,·∥2

2 + 2q
∑
u,r

⟨Mu,·, Mr,·⟩2 = q ∥M∥4
F + 2q tr(M4)396

∑
r,s

B(3)
r,s =

∑
r,s

∑
l,l′

(2⟨Ml,·, Ml′,·⟩ + tr(M)Ml′l′)MrlMrl′

≤ 2q tr(M4) + q tr(M) ∥M∥F

√
tr(M4)

397

398

Note that tr(M4) ≤ tr2(M2) = ∥M∥4
F . Hence399

1
16 E ∥∇f∥2

2 ≤
∑
r,s

((q − 1)(q − 2)B(1)
rs + (q − 1)B(2)

rs + (q − 1)B(3)
rs + B(4)

rs )400

≲
∑
r,s

(q2B(1)
rs + qB(2)

rs + qB(3)
rs + tr2(M) ∥Mr,·∥2

2)401

≲ q3 tr(M4) + q2 ∥M∥4
F + q2 tr(M) ∥M∥F

√
tr(M4) + q tr2(M) ∥M∥2

F .402
403

By the Gaussian Poincaré inequality,404

Var
G

(tr((GT MG)2)|M)

≲ E ∥∇f∥2
2

≲ q3 tr(M4) + q2 ∥M∥4
F + q2 tr(M) ∥M∥F

√
tr(M4) + q tr2(M) ∥M∥2

F .

(6)405

For the terms on the right-hand side, we calculate that (using the trace inequality (Lemma 5))406

E tr((GT MG)4) = E tr((MGGT )4) ≤ E
∥∥GGT

∥∥4
op

tr(M4) = E ∥G∥8
op tr(M4)

≲ max{p, q}4 tr(M4),
407

E
∥∥GT MG

∥∥4
F

≤ E ∥G∥8
op ∥M∥4

F ≲ max{p, q}4 ∥M∥4
F ,408

E tr2(GT MG)
∥∥GT MG

∥∥2
F

≤ E ∥G∥8
op tr2(M) ∥M∥2

F ≲ max{p, q}4 tr2(M) ∥M∥2
F409

410

and411

E tr(GT MG)
∥∥GT MG

∥∥
F

√
tr((GT MG)4)412

≤ E ∥G∥2
op tr(G) · ∥G∥2

op ∥M∥2
F ·
√

∥G∥8
op tr(M4)413

= E ∥G∥8
op tr(M) ∥M∥F

√
tr(M4)414

≲ max{p, q}4 tr(M) ∥M∥F

√
tr(M4).415

416

This implies that each term on the right-hand of (6) grows geometrically.417

Step 1b. Next we deal with the second term in (5). We have418

E
G

tr
(
(GT MG)2) =

∑
i,j

E
G

(GT MG)2
ij =

∑
i,j

E
G

(∑
k,l

MklGkiGlj

)2
419

=
∑
i,j

∑
k,l,k′,l′

MklMk′l′ E
G

GkiGljGk′iGl′j .420
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421

When i ≠ j, for non-zero contribution, it must hold that k = l and k′ = l′ and thus the422

nonzero contribution is423 ∑
i̸=j

∑
k,l

M2
kl = q(q − 1) ∥M∥2

F .424

When i = j, the contribution is425 ∑
i

∑
k,l,k′,l′

MklMk′l′ EGkiGliGk′iGl′i = 2q ∥M∥2
F + q tr2(M). (7)426

Hence427

E
G

tr
(
(GT MG)2) = q(q + 1) ∥M∥2

F + q tr2(M)428

and when M is random,429

Var
(
E tr((GT MG)2)

∣∣M)
= Var

(
q(q + 1) ∥M∥2

F + q tr2(M)
)

≤ q2(q + 1)2 Var(∥M∥2
F ) + q2 Var(tr2(M)) + 2q2(q + 1)

√
Var(∥M∥2

F ) Var(tr2(M)).

(8)430

Step 2a. Note that the Var(tr2(M)) term on the right-hand side of (8). To bound this431

term, we examine the variance of g(G), where g(X) = tr2(XT MX). We shall again calculate432

∇g. Note that433

∂g

∂Xrs
= 2 tr(XT MX)

∑
i

∑
k,l

Mkl
∂

∂Xrs
XkiXli434

and435

∂

∂Xrs
(XkiXli) =


Xli, (k, i) = (r, s) and (l, i) ̸= (r, s)
Xki, (k, i) ̸= (r, s) and (l, i) = (r, s)
2Xrs, (k, i) = (r, s) and (l, i) = (r, s)
0, otherwise.

436

We have437

∂g

∂Xrs
= 4 tr(XT MX)

∑
l

MrlXls = 4
∑

1≤j≤q
1≤l,u,v≤p

MuvMrlXlsXujXvj438

Next we calculate E(∂g/∂Xrs)2 when X is i.i.d. Gaussian.439 (
1
4

∂g

∂Xrs

)2
=

∑
j,l,u,v

j′,l′,u′,v′

MuvMu′v′MrlMrl′ EXlsXl′sXujXvjXu′j′Xv′j′440

In order for the expectation in the summand to be non-zero, we must have one of the following441

cases: (1) s ̸= j ̸= j′, (2) s = j ̸= j′, (3) s = j′ ̸= j, (4) s ̸= j = j′, (5) s = j = j′. We442

calculate the contribution in each case below.443
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Case 1: it must hold that l = l′, u = v and u′ = v′. The contribution is (q − 1)(q − 2)B(1)
rs ,444

where445

B(1)
rs =

∑
l,u,u′

MuuMu′u′M2
rl = tr2(M) ∥Mr,·∥2

2 .446

Case 2: it must hold that u′ = v′. The contribution is (q − 1)B(2)
rs , where447

B(2)
rs =

∑
l,l′,u,u′,v

MuvMu′u′MrlMrl′ EXlsXl′sXusXvsX2
u′j′448

= tr(M)
(

tr(M) ∥Mr,·∥2
2 + 2

∑
l,l′

Mll′MrlMrl′

)
449

450

Case 3: this gives the same bound as Case 2.451

Case 4: it must hold that l = l′. The contribution is (q − 1)B(4)
rs , where452

B(4)
rs =

∑
l,u,u′,v,v′

MuvMu′v′M2
rl EXujXvjXu′jXv′j = 3 ∥Mr,·∥2

2 ∥M∥2
F453

Case 5: the contribution is B
(5)
rs , where454

B(5)
rs =

∑
l,u,v

l′,u′,v′

MuvMu′v′MrlMrl′ EXlsXusXvsXl′sXu′sXv′s.455

The only uncovered case is l = u′, l′ = v, u = v′ and its symmetries. In such a case the456

contribution is at most457

C
∑
l,u,v

MuvMluMrlMrv = C
∑

u

⟨Mr,·, Mu,·⟩2.458

Note that459 ∑
r,s

B(1)
rs = q tr2(M) ∥M∥2

F ,460

∑
r,s

B(2)
rs = q tr2(M) ∥M∥2

F + 2q tr(M)
∑
l,l′

Mll′⟨Ml,·, Ml′,·⟩461

≤ q tr2(M) ∥M∥2
F + 2q tr(M) ∥M∥F

√
tr(M4),462 ∑

r,s

B(4)
rs = q ∥M∥4

F ,463

∑
r,s

B(5)
rs ≲

∑
r,s

B(1)
rs +

∑
r,s

B(2)
rs + tr(M4).464

465

Therefore,466

1
16 E ∥∇g∥2

2 ≤
∑
r,s

((q − 1)(q − 2)B(1)
rs + (q − 1)B(2)

rs + (q − 1)B(4)
rs + B(5)

rs )467

≲ q3 tr2(M) ∥M∥2
F + q2 tr(M) ∥M∥F

√
tr(M4) + q2 ∥M∥4

F + q tr(M4).468
469

By Poincaré’s inequality,470

Var
G

(tr2(GT MG))

≲ E ∥∇g∥2
2

≲ q3 tr2(M) ∥M∥2
F + q2 tr(M) ∥M∥F

√
tr(M4) + q2 ∥M∥4

F + q tr(M4).

(9)471

Similar to before, each term on the right-hand side grows geometrically.472
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Step 2b. Next we deal with VarM (EG tr2 (GT MG
)

|M).473

E tr2 (GT MG
)

= E
(∑

i,k,l

MklGkiGli

)2
=
∑
i,j

∑
k,l,k′,l′

MklMk′l′ EGkiGliGk′jGl′j .474

When i ≠ j, for non-zero contribution, it must hold that k = l and k′ = l′ and thus the475

nonzero contribution is476 ∑
i̸=j

∑
k,k′

MkkMk′k′ = q(q − 1) tr2(M).477

When i = j, the contribution is (this is exactly the same as (7) in Step 1b.)478 ∑
i

∑
k,k′,l,l′

MklMk′l′ EGkiGliGk′iGl′i = 2q ∥M∥2
F + q tr2(M).479

Hence480

E tr2 (GT MG
)

= 2q ∥M∥2
F + q2 tr2(M)481

and when M is random,482

Var
(
E tr2(GT MG)

∣∣M)
= Var

(
2q ∥M∥2

F + q2 tr2(M)
)

≤ 4q2 Var(∥M∥2
F ) + q4 Var(tr2(M)) + 2q3

√
Var(∥M∥2

F ) Var(tr2(M)).

(10)483

Step 3. Let Ur denote the variance of tr((AT
r Ar)2) and Vr the variance of tr2(AT

r Ar).484

Combining (5), (6), (8), (9), (10), we have the following recurrence relations, where485

C1, C2, C3, C4 > 0 are absolute constants.486

Ur+1 ≤ C1Pr + 2Ur + 1
d2

r

Vr + 3
dr

√
UrVr487

Vr+1 ≤ C2Qr + 1
d2

r

Ur + Vr + 2
dr

√
UrVr488

Pr+1 ≤ C3Pr489

Qr+1 ≤ C4Qr490

U0 = V0 = 0491
492

In the base case, set M = Ip (the p × p identity matrix in (6)) and note that the second term493

in (5) vanishes. We see that P1 ≲ (p3q + pq3)/d4
1 after proper normalization. (Alternatively494

we can calculate this precisely, see Appendix D.) Similarly we have Q1 ≲ p3q3/d4
1. Note that495

Q1/d2
1 ≲ (p3q + pq3)/d4

1. Now, we can solve that496

Ur+1 ≤ Cr p3q + pq3

d4
1

497

for some absolute constant C > 0.498
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A Proof of Proposition 12585

Proof. We have586
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B Omitted Calculations in Section 4.1592
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C Omitted Calculations in Section 4.2599

In Step 1a.
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In Step 1b.

∑
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D Exact Variance when r = 2621

Suppose that A is rotationally invariant under both left- and right-multiplication of an622

orthogonal matrix. Define623

U1(p, q) = Var((AT A)2
ii)624

U2(p, q) = Var((AT A)2
ij) i ̸= j625

U3(p, q) = cov((AT A)2
ii, (AT A)2

ik) i ̸= k (same row, one entry on diagonal)626

U4(p, q) = cov((AT A)2
ij , (AT A)2

ik) j ̸= k (same row, both entries off-diagonal)627

U5(p, q) = cov((AT A)2
ii, (AT A)2

jj) i ̸= j (diff. rows and cols, both entries on diagonal)628

U6(p, q) = cov((AT A)2
ii, (AT A)2

jk) i ̸= j ̸= k (diff. rows and cols, one entry on diagonal)629

U7(p, q) = cov((AT A)2
ij , (AT A)2

kl) i ̸= j ̸= k ̸= l (diff. rows and cols, nonsymmetric around diag.)630631

It is clear that they are well-defined.632

Var(tr((AT A)2))633

= Var
(∑

i,j

(AT A)2
ij

)
634

=
∑

i,j,k,l

cov((AT A)2
ij , (AT A)2

kl)635

=
∑
i,j

Var((AT A)2
ij) + 2

∑
i

∑
j ̸=l

cov((AT A)2
ij , (AT A)2

il) +
∑
i ̸=k
j ̸=l

cov(E(AT A)2
ij , (AT A)2

kl)636

= q Var((AT A)2
11) + q(q − 1) Var(E(AT A)2

12)637

+ 2
[
2q(q − 1) cov((AT A)2

11, (AT A)2
12) + q(q − 1)(q − 2) cov((AT A)2

12, (AT A)2
13)
]

638

+ q(q − 1) cov(E(AT A)2
11, (AT A)2

22) + q(q − 1) cov(E(AT A)2
12, (AT A)2

21)639

+ 2q(q − 1)(q − 2) cov((AT A)2
11, (AT A)2

23)640

+ 2q(q − 1)(q − 2) cov((AT A)2
12, (AT A)2

31)641

+ q(q − 1)(q − 2)(q − 3)E(AT A)2
12(AT A)2

34642

= qU1(p, q) + q(q − 1)U2(p, q) + 2q(q − 1)(2U3(p, q) + (q − 2)U4(p, q))643

+ q(q − 1)(U5(p, q) + U2(p, q)) + 2q(q − 1)(q − 2)(U6(p, q) + U4(p, q))644

+ q(q − 1)(q − 2)(q − 3)U7(p, q)645

= qU1(p, q) + q(q − 1)(2U2(p, q) + 4U3(p, q) + U5(p, q))646

+ 2q(q − 1)(q − 2)(2U4(p, q) + U6(p, q)) + q(q − 1)(q − 2)(q − 3)U7(p, q).647
648

Let us calculate U1, . . . , U7 for a p × q Gaussian random matrix G.649

U1(p, q) = E(GT G)4
11 − (E(GT G)2

11)2 = E ∥G1∥8
2 − (E ∥G1∥4

2)2

= p(p + 2)(p + 4)(p + 6) − (p(p + 2))2

= 8p(p + 2)(p + 3)
650
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U2(p, q) = E(GT G)4
12 − (E(GT G)2

12)2 = E

(∑
r

Gr1Gr2

)4

− (E⟨G1, G2⟩2)2

=
∑
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EGr1Gs1Gt1Gu1Gr2Gs2Gt2Gu2 − p2

= 3
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EG2
r1G2
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r2G2

t2 +
∑

r

G4
r1G4

r2 − p2

= 3p(p − 1) + 9p − p2 = 2p(p + 3).

651

U3(p, q) = E(GT G)2
11(GT G)2

12 − E(GT G)2
11 E(GT G)2

12

= E(GT
1 G1)2GT

1 G2GT
2 G1 − E ∥G1∥4

2 E⟨G1, G2⟩2

= E(GT
1 G1)2GT

1 (EG2GT
2 )G1 − p(p + 2) · p

= E(GT
1 G1)3 − p2(p + 2)

= E ∥G1∥6
2 − p2(p + 2) = p(p + 2)(p + 4) − p2(p + 2) = 4p(p + 2)
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U4(p, q) = E(GT G)2
12(GT G)2

13 − E(GT G)2
12 E(GT G)2
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= EGT
1 G2GT

2 G1GT
1 G3GT

3 G1 − p2

= EGT
1 E(G2GT

2 )G1GT
1 E(G3GT

3 )G1 − p2

= E(GT
1 G1)2 − p2 = E ∥G1∥4

2 − p2 = p(p + 2) − p2 = 2p

653

U5(p, q) = E(GT G)2
11(GT G)2

22 − E(GT G)2
11 E(GT G)2

22

= E ∥G1∥4
2 ∥G2∥4

2 − E ∥G1∥4
2 ∥G2∥4

2 = 0
654

U6(p, q) = E(GT G)2
11(GT G)2

23 − E(GT G)2
11 E(GT G)2

23

= E ∥G1∥4
2 ⟨G2, G3⟩2 − E ∥G1∥4

2 E⟨G2, G3⟩2 = 0
655

U7(p, q) = E(GT G)2
12(GT G)2

34 − E(GT G)2
12 E(GT G)2

34

= E⟨G1, G2⟩2⟨G3, G4⟩2 − E⟨G1, G2⟩2 E⟨G3, G4⟩2 = 0
656

657

Therefore658

Var(tr((GT G)2)) = qU1 + q(q − 1)(2U2 + 4U3 + U5) + 2q(q − 1)(q − 2)(2U4 + U6)659

+ q(q − 1)(q − 2)(q − 3)U7660

= qU1 + q(q − 1)(2U2 + 4U3) + 4q(q − 1)(q − 2)U4661

= 4pq(5 + 5p + 5q + 2p2 + 5pq + 2q2).662
663

When r = 2, recalling that E(A2 − A1) = (1 + o(1))p2q2/d3 (see (4)), we have that664 √
Var(tr(( 1√

d
GT · 1√

d
G)2))

p2q2/d3 ≤ 6d

max{p, q} 1
2 min{p, q} 3

2
.665

If the right-hand side above is at most a small constant c, we can distinguish A2 from A1666

with probability at least a constant.667
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