This supplementary document contains the omitted proofs of lemmas in Section 1 of the main paper. We restate the lemmas and prove them here.

Lemma 0.1. If \hat{A} is a matrix with orthonormal columns such that $\text{range}(\hat{A}) = \text{range}\left(\sqrt[2]{A} \right)$ and if U_1 comprises the first n rows of \hat{A}, then $\|U_1\|_2^2 = \text{sd}_A(A)$ and $\|U_1\|_2^2 = 1/(1 + \lambda/\sigma_i^2) \leq 1$.

Proof. See Lemma 12 of (Avron et al., 2017) for a proof.

Lemma 0.2. If A' is the sub-matrix of A formed by taking rows of A, then $\text{sd}_A(A') \leq \text{sd}_A(A)$.

Proof. The minimax characterization of singular values is as follows:

\[
\sigma_i(A) = \max_{U: \dim(U) = i} \min_{x : \|x\|_2 = 1} \|Ax\|_2 \tag{0.1}
\]

For any vector x, we have $\|A'x\|_2 \leq \|Ax\|_2$ (Since, vector Ax has all the elements of $A'x$ and more). Hence, for any subspace U, $\min_{x : \|x\|_2 = 1} \|A'x\| \leq \min_{x : \|x\|_2 = 1} \|Ax\|_2$. Now, it is easy to see that

\[
\max_{U: \dim(U) = i} \min_{x : \|x\|_2 = 1} \|A'x\|_2 \leq \max_{U: \dim(U) = i} \min_{x : \|x\|_2 = 1} \|Ax\|_2 \Rightarrow \sigma_i(A') \leq \sigma_i(A) \tag{0.2}
\]

Now,

\[
\text{sd}_A(A') = \sum_{i=1}^{\text{rank}(A')} \frac{1}{1 + \lambda/\sigma_i^2(A')} \leq \sum_{i=1}^{\text{rank}(A')} \frac{1}{1 + \lambda/\sigma_i^2(A')} \quad \text{(Using (0.2))}
\]

\[
\leq \sum_{i=1}^{\text{rank}(A)} \frac{1}{1 + \lambda/\sigma_i^2(A)} = \text{sd}_A(A) \tag{0.3}
\]

Lemma 0.3. For any $r \geq 1$, $\text{sd}_{\lambda/r}(A) \leq \min(r \cdot \text{sd}_A(A), \text{rank}(A))$.

Proof. By definition of statistical dimension, $\text{sd}_A(A) \leq \text{rank}(A)$. We also have for all $r \geq 1$, $1/(1 + \lambda/\sigma_i^2) \leq r/(1 + \lambda/\sigma_i^2)$. By summing the inequality for all i, we get $\text{sd}_{\lambda/r}(A) \leq r \cdot \text{sd}_A(A)$.