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This supplementary document contains the omitted proofs of lemmas in Section 1 of the main paper. We restate
the lemmas and prove them here.

Lemma 0.1. If Â is a matrix with orthonormal columns such that range(Â) = range(

[
A√
λI

]
) and if U1

comprises the first n rows of Â, then ‖U1‖2F = sdλ(A) and ‖U1‖22 = 1/(1 + λ/σ2
1) ≤ 1.

Proof. See Lemma 12 of (Avron et al., 2017) for a proof.

Lemma 0.2. If A′ is the sub-matrix of A formed by taking rows of A, then sdλ(A′) ≤ sdλ(A).

Proof. The minimax characterization of singular values is as follows:

σi(A) = max
U :dim(U)=i

min
x∈U :‖x‖2=1

‖Ax‖2 (0.1)

For any vector x, we have ‖A′x‖2 ≤ ‖Ax‖2 (Since, vector Ax has all the elements of A′x and more). Hence, for
any subspace U , minx∈U :‖x‖2=1 ‖A′x‖ ≤ minx∈U :‖x‖2=1 ‖Ax‖2. Now, it is easy to see that

max
U :dim(U)=i

min
x∈U :‖x‖2=1

‖A′x‖2 ≤

max
U :dim(U)=i

min
x∈U :‖x‖2=1

‖Ax‖2

=⇒ σi(A
′) ≤ σi(A) (0.2)

Now,

sdλ(A′) =

rank(A′)∑
i=1

1

1 + λ/σi(A′)2

≤
rank(A′)∑
i=1

1

1 + λ/σi(A)2
(Using (0.2))

≤
rank(A)∑
i=1

1

1 + λ/σi(A)2

= sdλ(A)

Lemma 0.3. For any r ≥ 1, sdλ/r(A) ≤ min(r · sdλ(A), rank(A)).

Proof. By definition of statistical dimension, sdλ(A) ≤ rank(A). We also have for all r ≥ 1, 1/(1 + λ/rσ2
i ) ≤

r/(1 + λ/σ2
i ). By summing the inequality for all i, we get sdλ/r(A) ≤ r · sdλ(A).
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