Supplementary Material for "Optimal Deterministic Coresets for Ridge Regression"

Praneeth Kacham

David P. Woodruff

Carnegie Mellon University

Carnegie Mellon University

This supplementary document contains the omitted proofs of lemmas in Section 1 of the main paper. We restate the lemmas and prove them here.

Lemma 0.1. If \hat{A} is a matrix with orthonormal columns such that $\operatorname{range}(\hat{A}) = \operatorname{range}(\begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix})$ and if U_1 comprises the first n rows of \hat{A} , then $\|U_1\|_F^2 = \operatorname{sd}_{\lambda}(A)$ and $\|U_1\|_2^2 = 1/(1 + \lambda/\sigma_1^2) \leq 1$.

Proof. See Lemma 12 of (Avron et al., 2017) for a proof.

Lemma 0.2. If A' is the sub-matrix of A formed by taking rows of A, then $\operatorname{sd}_{\lambda}(A') \leq \operatorname{sd}_{\lambda}(A)$.

Proof. The minimax characterization of singular values is as follows:

$$\sigma_i(A) = \max_{U:\dim(U)=i} \min_{x \in U: ||x||_2=1} ||Ax||_2$$
(0.1)

For any vector x, we have $||A'x||_2 \le ||Ax||_2$ (Since, vector Ax has all the elements of A'x and more). Hence, for any subspace U, $\min_{x \in U: ||x||_2 = 1} ||A'x|| \le \min_{x \in U: ||x||_2 = 1} ||Ax||_2$. Now, it is easy to see that

$$\max_{U:\dim(U)=i} \min_{x \in U: ||x||_2=1} ||A'x||_2 \le$$

$$\max_{U:\dim(U)=i} \min_{x \in U: ||x||_2=1} ||Ax||_2$$

$$\implies \sigma_i(A') \le \sigma_i(A)$$

$$(0.2)$$

Now,

$$\begin{split} \operatorname{sd}_{\lambda}(A') &= \sum_{i=1}^{\operatorname{rank}(A')} \frac{1}{1 + \lambda/\sigma_i(A')^2} \\ &\leq \sum_{i=1}^{\operatorname{rank}(A')} \frac{1}{1 + \lambda/\sigma_i(A)^2} \quad \text{(Using (0.2))} \\ &\leq \sum_{i=1}^{\operatorname{rank}(A)} \frac{1}{1 + \lambda/\sigma_i(A)^2} \\ &= \operatorname{sd}_{\lambda}(A) \end{split}$$

Lemma 0.3. For any $r \ge 1$, $\operatorname{sd}_{\lambda/r}(A) \le \min(r \cdot \operatorname{sd}_{\lambda}(A), \operatorname{rank}(A))$.

Proof. By definition of statistical dimension, $\operatorname{sd}_{\lambda}(A) \leq \operatorname{rank}(A)$. We also have for all $r \geq 1$, $1/(1 + \lambda/r\sigma_i^2) \leq r/(1 + \lambda/\sigma_i^2)$. By summing the inequality for all i, we get $\operatorname{sd}_{\lambda/r}(A) \leq r \cdot \operatorname{sd}_{\lambda}(A)$.

References

Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. Sharper bounds for regularized data fitting. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-PROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, pages 27:1-27:22, 2017. doi: 10.4230/LIPIcs.APPROX-RANDOM.2017.27. URL https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.27.