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Abstract. Assume we are interested in solving a computational task,
e.g., sorting n numbers, and we only have access to an unreliable primi-
tive operation, for example, comparison between two numbers. Suppose
that each primitive operation fails with probability at most p and that
repeating it is not helpful, as it will result in the same outcome. Can we
still approximately solve our task with probability 1−f(p) for a function
f that goes to 0 as p goes to 0? While previous work studied sorting in
this model, we believe this model is also relevant for other problems. We
– find the maximum of n numbers in O(n) time,
– solve 2D linear programming in O(n log n) time,
– approximately sort n numbers in O(n2) time such that each number’s

position deviates from its true rank by at most O(log n) positions,
– find an element in a sorted array in O(log n log log n) time.

Our sorting result can be seen as an alternative to a previous result of
Braverman and Mossel (SODA, 2008) who employed the same model.
While we do not construct the maximum likelihood permutation, we
achieve similar accuracy with a substantially faster running time.

1 Introduction

Many algorithms can be designed in such a way that the input data is accessed
only by means of certain primitive queries. For example, in comparison-based
sorting an algorithm might specify two key indices, i and j, and check whether
the relation qi < qj holds. Except for such yes/no replies, no other type of
information on the key set {q1, . . . , qn} is necessary, or this information might
not even be available. Similarly, in solving a linear program, given a point and
a line, the primitive may return which side of the line the point is on.

Given an oracle that can answer all possible primitive queries on the input
data, one can develop an algorithm without worrying about the input data type
or numerical issues. This allows for more modular and platform-independent
algorithm design. A natural question is what happens if the oracle errs?

There are several ways to model such errors. One natural model is that
each time the oracle is queried it returns the wrong answer with a small error
probability bounded by some p > 0, independent of past queries. In this case,
repeating a query can be used to boost the success probability at the cost of
additional work. In this paper we shall employ a different model introduced by
Braverman and Mossel [3] in the context of sorting. The oracle errs on each
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query independently with probability at most p, but now each possible primitive
query on the input is answered by the oracle only once.

There are good reasons to study this model. First, it may not be possible to
repeat a query, as observed in [3]. For example, in ranking soccer clubs, or even
just determining the best soccer club, the outcome of an individual game may
differ from the “true” ordering of the two teams and it is impossible to repeat
this game. A different example is ranking items by experts [3], which provides an
inherently noisy view of the “true” ranking. Another reason to study this model
is that the oracle may err on a particular query due to a technical problem whose
consequences are deterministic, so that we would obtain the same wrong answer
in any repetition. This is common in computational geometry algorithms due
to floating point errors. Geometric algorithms based on primitive queries that
additionally work with faulty primitives are more modular and tolerant to errors.

In this model, two natural questions arise: (1) Given the answers to all pos-
sible primitive queries, what is the best possible solution one can find if the
computational time is unlimited? (2) How good of a solution can be found effi-
ciently, i.e., by using only a subset of the set of oracle answers?

Previous work. Braverman and Mossel [3] consider the sorting problem
and provide the following answers to the questions above. With high probability,
they construct the maximum likelihood permutation σ with respect to the set of
oracle answers. They prove that permutation σ does not place any key more than
O(log n) positions away from its true position. This fact allows the computation
of σ using only O(n log n) key comparisons. The algorithm employs dynamic
programming and has running time in O(n3+24c3) for some c3 > 0 that depends
on the error probability p.

Feige et al. [5] and Karp and Kleinberg [8] study the model where repeated
queries are always independent. Searching games between questioner and a lying
responder have been extensively studied in the past; see Pelc [11]. In his termi-
nology, our model allows the responder random lies in response to nonrepetitive
comparison questions in an adaptive game. Another related model is studied
by Blum, Luby and Rubinfeld [2]. They consider self-testing and self-correction
under the assumption that one is given a program P which computes a function
f very quickly but possibly not very reliably. The difference with our approach
is that we need to work with unreliable primitives.

In a series of papers culminating in work by Finocchi et al [6], a thorough
study of resilient sorting, searching, and dictionaries in a faulty memory RAM
model was performed. Here, at most δ memory words can be corrupted, while
there is a small set of O(1) memory words that are guaranteed not to be cor-
rupted. The main difference is that only non-corrupted keys need to be sorted
correctly. In contrast to this approach, we need to ensure that with high proba-
bility every key appears near its true position.

Our results. In this paper we assume the same model as in [3]. That is,
primitive queries may fail independently with some probability at most p and
noisy answers to all possible queries are pre-computed and available to the al-
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gorithm. While [3] only considers the problem of sorting, we initiate the study
of a much wider class of problems in this model.

In Section 2 we show how to compute, with probability 1−f(p), the maximum
of n elements in O(n) time. Here f(p) is a function independent of n that tends
to 0 as p does. There is only a constant factor overhead in the running time for
this problem in this model. In Section 3 a sorting algorithm is discussed. Like the
noisy sorting algorithm presented by Braverman and Mossel [3], ours guarantees
that each key is placed within distance O(log n) of its true position, even though
we do not necessarily obtain the maximum likelihood permutation. Also, we need
O(n2) rather than O(n log n) key comparisons. However, our algorithm is faster
than the algorithm of [3], as the running time is O(n2), providing a considerable
improvement over the O(n3+24c3) time of [3]. Finally, in Section 4, we briefly
discuss the noisy search problem. By a random walk argument we show that the
true position of a search key can be determined in a correctly sorted list with
probability (1−2p)2 if all n comparison queries are made. With O(log n log log n)
comparisons, we can find the correct position with probability 1 − f(p). As an
application of our max-finding result, we present in Section 5 an O(n log n) time
algorithm for linear programming in two dimensions. Linear programming is
a fundamental geometric problem which could suffer from errors in primitives
due, e.g., to floating point errors. Our algorithm is modular, being built from
simple point/line side comparisons, and robust, given that it can tolerate faulty
primitives. It is based on an old technique of Megiddo [9]. We do not know how
to modify more “modern” algorithms for linear programming to fit our error
model. The correctness and running time hold with probability 1− f(p).

2 Finding the Maximum of n numbers

We are given an unordered set a1, . . . , an of n distinct numbers and we would
like to output the maximum using only comparison queries. Each comparison
between input elements fails independently with probability p. If the same com-
parison is made twice, the same answer is given.

Our algorithm LinearMax consists of two phases and each phase consists
of several stages. In each stage the set of input numbers is pruned by a constant
fraction such that with sufficiently high probability the maximum remains in
the set. The pruning is done by sampling a set S and comparing each number
outside of S with each number inside of S. During the first phase the size of the
sample set increases with each stage. The second phase begins once the size of
the set of numbers is successfully reduced to below some critical value. Then, we
sample fewer elements in each stage so that the probability to accidently sample
the maximum remains small. We will say that a stage has an error if either the
maximum is removed during the stage or the input is not pruned by a constant
fraction. If during a stage the input set is not sufficiently pruned, the algorithm
stops and outputs “error”. We remark that the purpose of this stopping rule is
to simplify the analysis (this way, we make sure that any stage is executed only
once and allows us directly to sum up error probabilities of different stages).
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If the maximum is removed this will not be detected by the algorithm. In
our analysis we derive a bound for the error probability of each stage and then
use a union bound to bound the overall error probability.

In the proof we show that for any constant 1/2 > λ > 0 there exists a
constant C = C(λ) such that for any p ≤ 1/64, algorithm LinearMax succeeds
with probability at least 1− C · p 1

2−λ.

LinearMax(M,p)
1. n = |M |
2. while |M | ≥ max{n1−λ, 100√

p } do
3. j = 1
4. Select i such that n ·

(
15
16

)i−1 ≥ |M | > n ·
(

15
16

)i
5. while j < 100 · i · log(1/p) and |M | > n ·

(
15
16

)i+1
do

6. Select a set S of si = 4i elements from M uniformly at random
7. Remove all elements in S from M
8. Compare all elements from S with M
9. Let M be the list of elements larger than at least 3

4 · si elements of S
10. j = j + 1
11. if |M | > n ·

(
15
16

)i+1
then output “error” and exit

12. while |M | ≥ 100√
p do

13. j = 1
14. Select i such that

(
16
15

)i ≥ |M | > ( 16
15

)i−1

15. i = i− dlog16/15
100√
p e+ 1

16. while j < 100 · i · log(1/p) and |M | >
(

16
15

)i−1
do

17. Select a set S of si = 4i elements from M uniformly at random
18. Remove all elements in S from M
19. Compare all elements from S with M
20. Let M be the list of elements larger than at least 3

4 · si elements of S
21. j = j + 1
22. if |M | >

(
16
15

)i−1
then output “error” and exit

23. Run any maximum-finding algorithm to determine the maximum m in M

Phase 1 of the algorithm begins at line 2 and Phase 2 begins at line 12. The
stages of the phases correspond to the value of i (in Phase 2 this corresponds to
the value of i after the subtraction in line 15).

We first analyze the expected running time of the algorithm. We observe
that the running time is dominated by the number of comparisons the algorithm
performs. In the first phase in stage i in each iteration of the loop the algorithm
samples 4i elements uniformly at random and compares them to at most n·

(
15
16

)i
elements of M . We will show that the expected number of loop iterations in each
stage is O(1). We need the following lemma.

Lemma 2.1. The probability that in a fixed stage of Phase 1 or 2 the algorithm
performs more than 100k iterations is at most ( 1

2 )k.
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The proof of the lemma can be found in the full version. From the lemma,
it follows immediately that the expected number of loops in a fixed stage is
O(1). By linearity of expectation, the overall expected running time for Phase 1
is O

(
n ·
∑∞
i=1 E[iterations in Stage i] · i ·

(
15
16

)i−1
)

= O(n). In order to analyze
the second stage, let i0 = O(log n) be the maximal value of i, i.e. the first value
of i computed in line 15 when the algorithm enters Phase 2. We observe that for
any stage i ≤ i0 we have

(
16
15

)i ≤ n1−λ. It follows that the expected running time

of the second stage is O
(∑i0

i=1 E[iterations in Stage i] · i ·
(

16
15

)i) = O(n). The
running time of the standard maximum search is also O(n). Hence, the overall
expected running time is O(n). We continue by analyzing the error probability
of the algorithm. An error happens at any stage if

(a) the maximum is contained in the sample set S,
(b) the maximum is reported to be smaller than 1

4 · si of the elements of S, or
(c) the while loop makes more than 100i log(1/p) iterations.

We start by analyzing (a) during the first phase. The error probability at
each loop iteration is |S|/|M |. The number of items in M in stage i of phase
1 is at least n ·

(
15
16

)i ≥ n1−λ. We also have i = O(log n) and n ≥ 100√
p , which

implies |S|/|M | = O(log n)/n1−λ. Summing up over the at most O(i log(1/p)) ≤
O(log2 n) loop iterations, we obtain that the overall error probability of item (a)
in Phase 1 is at most O(log3 n)/n1−λ ≤ O(1)/n1−2λ. Using that n ≥ 100/

√
p

implies n1−2λ ≥ (100/p1/2)1−2λ ≥ 1/(p1/2−λ), we obtain that the overall error
probability of item (a) in Phase 1 is at most C

5 · p
1/2−λ for a sufficiently large

constant C > 0. In the second phase, the error probabiliy is at most

∞∑
i=1

4 · i ·
(

15
16

)i+dlog16/15
100√

p e−1

≤
4
√
p

100
·
∞∑
i=1

i ·
(

15
16

)i−1

≤ C

5
· √p,

for sufficently large constant C > 0.
We continue by analyzing (b). Here, an error occurs in stage i if at least 1

4 ·si
comparisons fail. By the following lemma, this probability is small.

Lemma 2.2. Let 1 ≥ p ≥ 0 be the failure probability of a comparison. Let k > 0
be a multiple of 4. The probability that at least k/4 out of k comparisons fail is
at most (4ep)k/4.

We also prove this lemma in the full version. Since, p ≤ 1/64, it follows that for
C > 0 sufficiently large, the probability of failure in each phase is

∑O(logn)
i=1 100i ·

log(1/p) · (4ep)i ≤ C
5 ·
√
p . Next, we analyze (c). By Lemma 2.1 and since

p ≤ 1/64, we have that the error probability for this item is bounded by∑∞
i=0

(
1
2

)i·log 1
p =

∑∞
i=0 p

i ≤ C
5 ·
√
p , for C > 0 a sufficiently large constant.

Finally, we consider the error probability of the standard maximum search. A
maximum search over a set of n items uses n − 1 comparisons. If n ≤ 100/

√
p

then the expected number of errors is at most 100p/
√
p = 100

√
p. Let X be the
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random variable for the number of errors. Since the number of errors is integral,
by Markov’s inequality we get that the probability of error is

Pr[at least one error occurs] ≤ Pr[X ≥ 1
100
√
p
·E[X]] ≤ 100

√
p ≤ C

5
· √p

for C a sufficiently large constant. Summing up all errors yields an overall error
probability of at most C · √p.

3 Sorting

In the following section we are given a set S of n distinct keys and the comparison
relation <E with errors. We present an algorihm SortWithBuckets that computes
an output sequence such that the position of every key in this sequence differs
from its rank by at most an additive error of O(log n). In the following, we
use rank(x,R) to refer to the (true) rank of input key x within R ⊆ S, i.e.,
1 + |{y ∈ R : y < x}|. We also use rankE(x,R) to refer to the virtual rank of
x with respect to a set R, i.e., 1 + |{y ∈ R : y <E x}|. Note that there may be
more than one key having the same virtual rank.

The algorithm. In the following, we will assume that n is a power of 2. If
this is not the case, we can add additional special items which will be assumed
to be larger than any input key and run our algorithm on the modified input.
Here we may assume no errors in the comparisons as the algorithm can keep
track of these items. The algorithm will partition the set {1, . . . , n} into buckets
each corresponding to a set of 2i consecutive numbers for certain i. We call this
set the associated range of the bucket. At the beginning we will assume that
there is a single bucket with associated range {1, .., n}. In the next step, we will
subdivide this bucket into two bucket, with associated ranges {1, . . . , n/2} and
{n/2 + 1, . . . , n}, respectively. Then the two resulting buckets are further subdi-
vided into four buckets, and so on. The algorithm stops, if the associated ranges
contain O(log n) numbers. Ideally, we would like our algorithm to maintain the
invariant that each bucket contains all input numbers whose ranks are in its
associated range, e.g., the bucket corresponding to numbers {1, . . . , 2i} is sup-
posed to contain the 2i smallest input numbers. Due to the comparison errors,
the algorithm cannot exactly maintain this invariant. However, we can almost
maintain it in the sense that an item with rank k is either in the bucket whose
associated range contains k or it is in one of the neighboring buckets.

This is done as follows. Let us consider a set of buckets Bj with associated
ranges of 2i numbers such that bucket Bj has associated range{(j − 1)2i +
1, . . . , j2i}. Now assume that the input numbers have been inserted into these
buckets in such a way that our relaxed invariant is satisfied. For each bucket Bj
let us use Sj to denote the set of input keys inserted into Bj . Now we would like
to refine our buckets, i.e., insert the input numbers in buckets B′j with associated
ranges {(j − 1)2i−1 + 1, j2i−1}. This is simply done by inserting an item that is
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previously in bucket Bj into bucket B′r, where

r = b
rankE(x,

⋃
j−2≤k≤j+2 Sj) +

∣∣⋃
k<j−2 Sj

∣∣)
2i−1

c.

Thus, the algorithm computes the cardinality of the buckets up to Bj−3 and
adds to it the virtual rank of x with respect to buckets Bj−2, . . . , Bj+2. The
idea behind this approach is that rank(x, S) can be written as

∣∣⋃
k<j−3 Sj

∣∣ +
rank(x,

⋃
j−2≤k≤j+2 Sj) since, by our relaxed invariant, the keys in buckets

1, . . . , j − 3 are smaller than x and the keys in j + 3, . . . are larger than x.
Now, since we do not have access to rank(x,

⋃
j−2≤k≤j+2 Sj) we approximate it

by rankE(x,
⋃
j−2≤k≤j+2 Sj). Since the rank involves fewer elements when the

ranges of the buckets decrease, this estimate becomes more and more accurate.
Analysis. Thus, it remains to prove that the relaxed invariant is maintained.

The difficulty in analyzing this (and other) algorithms is that there are many
dependencies between different stages of the algorithm. In our case, the bucket
of an element x is highly dependent on the randomness of earlier iterations.
Since analyzing such algorithmic processes is often close to impossible, we use
a different approach. We first show that certain properties of the comparison
relation <E hold for certain sets of elements with high probability. Then we
show that these properties already suffice to prove that the algorithm sorts with
additive error O(log n). The proof follows using Chernoff bounds and can be
found in the full version.

Lemma 3.1. Let p ≤ 1/20. Let R ⊆ S be a set of k = 9 · 2i ≥ 100000 log n
keys and let x ∈ R. Let X = |{y ∈ R : x < y and y <E x}| + |{y ∈ R : x >
y and y >E x}| be the number of false comparisons of x with elements from R.
Then Pr[X ≥ 2i−1] ≤ n−10 .

Corollary 3.1. For log(100000 log n) ≤ i ≤ log n and 1 ≤ j ≤ n/2i − 8 let
Sij = {x ∈ S : (j − 1) · 2i + 1 ≤ rank(x) ≤ (j + 8) · 2i}. With probability at least
1 − 1/n8 we have that every x ∈ Sij has less than 2i−1 comparison errors with
elements from Sij.

Proof: We apply Lemma 3.1 for each Sij . The number of choices for indices i, j
is bounded by n2. Hence by the union bound, the probability that there is an
error in any of the set is at most n−8.

We now claim that if the comparison relation <E satisfies Corollary 3.1 then
our algorithm computes a sequence such that any element deviates from its true
rank by at most O(log n). In order to prove this claim, let us assume that our
relaxed invariant is maintained for a set of buckets Bj with associated ranges
of size 2i. Let x be an element and j∗ be the bucket whose associated range
contains x. By our relaxed invariant, x is either in bucket Bj∗−1, Bj∗ or Bj∗+1.
Hence, to sort x into the next finer bucket, the algorithm inspects (a subset of)
buckets Bj∗−3, . . . , Bj∗+3. By our relaxed invariant, these buckets only contain
elements x with rank(x) ∈ Si` with ` = j∗ − 4. Now, in order to sort x into a
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finer bucket, we compare x with a subset of elements from Si`. Therefore, the
number of errors in this comparison is certainly bounded by the number of errors
within Si`, which is less than 2i−1. Since the next finer buckets have associated
ranges of size 2i−1, this implies that our relaxed invariant will be maintained.
We summarize our results in the following theorem.

Theorem 3.1. Let p ≤ 1/20. There is a tolerant algorithm that given an input
set S of n numbers computes in O(n2) time and with probability at least 1 −
1/n8 an output sequence such that the position of every element in this sequence
deviates from its rank in S by at most O(log n).

4 Searching

In this section we assume that we are given a sorted sequence of keys a1 < a2 <
. . . < an < an+1 =∞, and a query key q. We know that the sorting is accurate,
and that q is different from all ai. Our task is to determine rank(q), the smallest
index i such that q < ai holds. A noisy oracle provides us with a table containing
answers q <E ai or q >E ai to all possible key comparisons between q and the
numbers ai. Each of them is wrong independently with probability pi ≤ p < 1/2.

Let conf(j) denote the number of table entries that would be in conflict
with rank(q) = j. Our first algorithm, Search, takes O(n) time to read the
whole table and to output a position j that minimizes conf(j); ties are broken
arbitrarily. By the same argument as in Braverman and Mossel [3], Search
reports a maximum likelihood position for q, given the answer table. As opposed
to the sorting problem, we can prove a lower bound to the probability that
Search correctly computes the rank of q.

Theorem 4.1. Search reports rank(q) with probability at least (1− 2p)2.

Proof: We want to argue that positions j to the left or to the right of rank(q)
are less likely to get reported because they have higher conflict numbers. By
definition,

conf(j) =
{

conf(j − 1) + 1, if q <E aj−1

conf(j − 1)− 1, if q >E aj−1

holds, as can be quickly verified. Let us first consider the indices j = rank(q), . . . , n
to the right of rank(q). It makes our task only harder to assume that each or-
acle answer is wrong with maximum probability p. Thus, the oracle’s process
of producing these answers, for indices j increasing from rank(q) to n, corre-
sponds to a random walk of the value of conf(j) through the integers, starting
from conf(rank(q)). With probability 1 − p, the value of conf(j) will increase
by 1 (since q < aj holds, by assumption), and with probability p decrease. With
probability ≥ (1−p)·(1− p

1−p ) = 1−2p, conf(j) will increase in the first step and
never sink below this value again; see the full version for an easy proof of this
fact. Thus, with probability ≥ 1−2p, all j to the right of rank(q) will have values
conf(j) higher than conf(rank(q)) and, therefore, not get reported. A symmetric
claim holds for the indices j to the left of rank(q). Consequently, Search does
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with probability ≥ (1− 2p)2 report rank(q).

Theorem 4.1 casts some light on what can be achived utilizing all information
available. If sequence a1, . . . , an is given as a linear list, the O(n) time algorithm
Search is of practical interest, too. For a sorted sequence stored in an array, we
have a more efficient tolerant binary search algorithm based on Search. The
proof of Theorem 4.2 can be found in the full version.

Theorem 4.2. Given any constant error bound p ∈ (0, 1/4) we can in time
O(log n · log log n) compute the rank of an element in a sorted list of length n
with probability at least 1− f(p). Here function f(p) goes to 0 as p goes to 0.

5 Linear Programming in 2 Dimensions

As an application of our LinearMax algorithm, we consider the linear pro-
gramming problem in two dimensions, namely, the problem of minimizing a
linear objective function subject to a family F of half-plane constraints. We as-
sume our problem is in standard form [4], namely that the problem is to find the
lowest (finite) point in the non-empty feasible region, defined by the intersection
of a non-degenerate family F of n half-planes. Define a floor to be a half-plane
including all points in the plane above a line, whereas a ceiling is a half-plane
including all points in the plane below a line. We say a half-plane is vertical if
the line defining it is vertical. In the standard setting, we can assume that ver-
tical lines have been preprocessed and replaced with the constraint L ≤ x ≤ R
for reals L and R, and that no two ceilings and no two floors are parallel. The
half-planes are given in a sorted list according to their slope. Our algorithm is
based on several basic geometric primitives which can make mistakes.

Error Model: We are given a few black boxes that perform side comparisons.
The first box is SideComparator, which is given four lines `A, `B , `C , and

`D, and decides if the the intersection of `A and `B is to the left of the intersection
of `C and `D. This description can be simplified to the following: “given two
points, is one to the left of the other”? (however, since the input does not contain
explicit points, we have chosen to describe the test in this more abstract way).

The second box is VerticalComparator, which is given four lines `A, `B , `C ,
and `D, and returns the line in the set {`C , `D} whose signed vertical distance is
larger from the intersection point of `A and `B . This description can be simpli-
fied to the following: “given a point and two lines, which line is closer in vertical
distance”? (again, since the input does not contain explicit points, we choose to
describe the test in this more abstract way).

More precisely, if the intersection of `A and `B is the point (α, β), and we
draw the line x = α, then we look at the signed distance from (α, β) to the
intersection point of `C and x = α as well as the intersection point of `D and
x = α. Here, by signed, we mean that if (α, β) is above one of these intersection
points, then its distance to that point is negative, otherwise it is non-negative.
If the signed distances are the same, i.e., the lines `C and `D meet x = α at the
same point, VerticalComparator reports this.
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Such primitives are basic, and play an essential role in geometric algorithms.
We assume the primitives have a small error probability p of failing. In the

case of SideComparator, the box reports the opposite side with probability
p. In the case of VerticalComparator, the box reports the further line (in
signed vertical distance), or fails to detect if two lines have the same signed
distance, with probability p. Multiple queries to the tester give the same answer.

The output of our algorithm is not given explicitly, but rather is specified as
the intersection of two half-planes in F (since this is all that can be determined
given abstract access to the input lines).

Theorem 5.1. There is an algorithm LP that terminates in O(n log n) time
with probability at least 1 − 1/n. The correcntess probability is 1 − f(p) where
f(p) approaches 0 as p approaches 0.

We now review Megiddo’s algorithm and then describe our main new ideas.
Megiddo’s Algorithm: Megiddo’s algorithm defines: g(x) = max{aix+bi |

y ≥ aix + bi is a floor}, and h(x) = min{aix + bi | y ≤ aix + bi is a ceiling}.
A point x is feasible iff g(x) ≤ h(x), that is, if it is above all floors and below
all ceilings. The algorithm has O(log n) stages. The number of remaining con-
straints in F in the i-th stage is at most (7/8)i · n. If at any time there is only
a single floor g in F , then the algorithm outputs the lowest point on g that is
feasible. Otherwise it arbitrarily groups the floors into pairs and the ceilings into
pairs, and computes the pair (`A, `B) whose intersection point has the median
x-coordinate of all intersection points of all pairs.

The algorithm checks if the intersection point (α, β) of `A and `B is feasible,
i.e., if g(α) ≤ h(α). The algorithm then attempts to determine if the optimum
is to the right or the left of (α, β). It is guaranteed there is a feasible solution -
an invariant maintained throughout the algorithm - and only one side of (α, β)
contains a feasible point if (α, β) is infeasible. Megiddo defines the following:
sg = min{ai | y ≥ aix+ bi is a floor and g(α) = aiα+ bi},
Sg = max{ai | y ≥ aix+ bi is a floor and g(α) = aiα+ bi},
sh = min{ai | y ≤ aix+ bi is a ceiling and h(α) = aiα+ bi},
Sh = max{ai | y ≤ aix+ bi is a ceiling and h(α) = aiα+ bi}.

Suppose first that (α, β) is infeasible. This means that g(α) > h(α). Then
if sg > Sh, any feasible x satisfies x < α. Also, if Sg < sh, then any feasible x
satisfies x > α. The last case is that sg − Sh ≤ 0 ≤ Sg − sh, but this implies the
LP is infeasible, contradicting the above invariant.

Now suppose that (α, β) is feasible. As Megiddo argues, if g(α) < h(α) then
if sg > 0, then the optimal solution is to the left of α. Also, if Sg < 0 then the
optimal solution is to the right of α. Otherwise sg ≤ 0 ≤ Sg, and (α, β) is the
optimal solution. Finally, if g(α) = h(α), then if (1) sg > 0 and sg ≥ Sh, then
the optimum is to the left of α, or if (2) Sg < 0 and Sg ≤ sh, then the optimum
is to the right of α. Otherwise (α, β) is the optimum.

Hence, in O(n) time, the algorithm finds the optimum or reduces the solu-
tion to the left or right of (α, β). In this case, in each of the pairs of constraints
on the other side of α, one of the two constraints can be removed since it can-
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not participate in defining the optimum. When there are a constant number of
constraints left, the algorithm solves the resulting instance by brute force.

Intuition of Our Algorithm: Let Π be a partition of the set F of in-
put floors and ceilings into pairs. Inspired by our maximum-finding algorithm,
instead of computing the median of pairs of intersection points, we randomly
sample a set S of Θ(log n) pairs from Π. For each pair in Π, we find if the opti-
mum is to the left or right of the intersection point. If (α, β) is the intersection
point of a pair of constraints in Π, we useVerticalComparator to find the
lower floor {y ≥ aix + bi is a floor and g(α) = aiα + bi} as well as the upper
ceiling {y ≤ aix+ bi is a ceiling and h(α) = aiα+ bi}. By non-degeneracy, each
of these sets has size at most 2. We modify our earlier linearmax algorithm to
return the maximum two items (i.e., constraints) instead of just the maximum,
using VerticalComparator to perform the comparisons. By a union bound,
we have the lower floor and upper ceiling with large probability. Using the slope
ordering of sg, Sg, sh, and Sh we know which side of (α, β) the optimum is on.

To avoid performing the same comparison twice, in any phase each primitive
invocation has as input at least one of the lines in our sample set. Since we discard
the sample set after a phase, comparisons in different phases are independent.
To ensure that comparisons in the same phase are independent, when computing
the upper ceiling and lower floor of a sampled intersection point (α, β), we do not
include the other sampled pairs of constraints in the comparisons. This does not
introduce errors, with high probability, since we have only Θ(log n) randomly
sampled constraints, while the union of the upper ceiling and lower floor of an
intersection point has at most four constraints, and so it is likely the upper
ceilings and lower floors of all sampled pairs are disjoint.

Since the sample size is O(log n), we can show that with high probability we
throw away a constant fraction of constraints in each phase, and so after O(log n)
recursive calls the number of remaining constraints is bounded as a function of
p alone. The total time is O(n log n). Our main algorithm is described below.

LP(F , p)
1. If there are at most poly(1/p) constraints in F solve the problem by brute force.
2. If there is at most one floor constraint f ∈ F , if the slope of f is positive,

output the intersection of f and the line x = L. If the slope of f is negative,
output the intersection of f and the line x = R.

3. Otherwise, randomly partition the floors into pairs, as well as the ceilings
into pairs (possibly with one unpaired floor and one unpaired ceiling).
Let the set of pairs be denoted Π.
Draw a set S of Θ(log |F|) pairs of constraints from the pairs in Π
uniformly at random, without replacement.

4. Let ΦF be the set of floors in F , excluding those in S.
Let ΦC be the set of ceilings in F , excluding those in S.

5. For each pair (`A, `B) of constraints in S,
a. Let U(`A, `B) =Lowest(`A, `B , ΦF , p).
b. Let L(`A, `B) =Highest(`A, `B , ΦC , p).
c. Compute Tester(`A, `B , U(`A, `B), L(`A, `B)).
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d. Let T ⊆ S be the pairs for which Tester does not output “fail”, and compute
the majority output direction dir of the result of Tester on the pairs in T .

12. For each pair (`A, `B) of constraints in Π \ S,
13. For each pair (`C , `D) ∈ S, compute SideComparator(`A, `B , `C , `D).
14. If for at least a 2/3 fraction of pairs in S, the pair (`A, `B) is to the right

(resp. to the left), and if dir is to the left (resp. to the right), then
remove the constraint in the pair (`A, `B) from F that cannot
participate in the optimum assuming the optimum is really
to the left (resp. to the right) of the pair (`A, `B).

15. Return LP (F \ S, p).

We defer the analysis to the full version. The subroutines Lowest, Highest, and
Tester are also described there. Intuitively, Lowest finds the upper envelope4

of a point (that is, the lowest ceilings), and Highest finds the lower envelope
(the highest floors). Tester tests which side of the optimum the point is on
based on the slope information in the union of upper and lower envelopes.
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