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Abstract

The Johnson-Lindenstrauss transform is a dimensional-
ity reduction technique with a wide range of applica-
tions to theoretical computer science. It is specified by
a distribution over projection matrices from Rn → Rk
where k � d and states that k = O(ε−2 log 1/δ) di-
mensions suffice to approximate the norm of any fixed
vector in Rd to within a factor of 1± ε with probability
at least 1 − δ. In this paper we show that this bound
on k is optimal up to a constant factor, improving upon
a previous Ω((ε−2 log 1/δ)/ log(1/ε)) dimension bound
of Alon. Our techniques are based on lower bounding
the information cost of a novel one-way communication
game and yield the first space lower bounds in a data
stream model that depend on the error probability δ.

For many streaming problems, the most näıve way
of achieving error probability δ is to first achieve con-
stant probability, then take the median of O(log 1/δ)
independent repetitions. Our techniques show that for
a wide range of problems this is in fact optimal! As
an example, we show that estimating the `p-distance
for any p ∈ [0, 2] requires Ω(ε−2 log n log 1/δ) space,
even for vectors in {0, 1}n. This is optimal in all pa-
rameters and closes a long line of work on this prob-
lem. We also show the number of distinct elements re-
quires Ω(ε−2 log 1/δ + log n) space, which is optimal if
ε−2 = Ω(log n). We also improve previous lower bounds
for entropy in the strict turnstile and general turnstile
models by a multiplicative factor of Ω(log 1/δ). Finally,
we give an application to one-way communication com-
plexity under product distributions, showing that unlike
in the case of constant δ, the VC-dimension does not
characterize the complexity when δ = o(1).
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1 Introduction

The Johnson-Linderstrauss transform is a fundamental
dimensionality reduction technique with applications
to many areas such as nearest-neighbor search [2, 25],
compressed sensing [14], computational geometry [17],
data streams [7, 24], graph sparsification [40], machine
learning [32, 39, 43], and numerical linear algebra [18,
22, 37, 38]. It is given by a projection matrix that
maps vectors in Rn to Rk, where k � d, while seeking
to approximately preserve their norm. The classical
result states that k = O( 1

ε2 log 1/δ) dimensions suffice
to approximate the norm of any fixed vector in Rn to
within a factor of 1 ± ε with probability at least 1− δ.
This is a remarkable result because the target dimension
is independent of n. Because the transform is linear, it
also preserves the pairwise distances of the vectors in
this set, which is what is needed for most applications.
The projection matrix is itself produced by a random
process that is oblivious to the input vectors. Since the
original work of Johnson and Lindenstrauss, it has been
shown [1, 8, 21, 25] that the projection matrix could be
constructed element-wise using the standard Gaussian
distribution or even uniform ±1 variables [1]. By setting
the size of the target dimension k = O( 1

ε2 log 1/δ),
the resulting matrix, suitably scaled, is guaranteed to
approximate the norm of any single vector with failure
probability δ.

Due to its algorithmic importance, there has been
a flurry of research aiming to improve upon these
constructions that address both the time needed to
generate a suitable projection matrix as well as to
produce the transform of the input vectors [2, 3, 4,
5, 33]. In the area of data streams, the Johnson-
Lindenstrauss transform has been used in the seminal
work of Alon, Matias and Szegedy [7] as a building
block to produce sketches of the input that can be
used to estimate norms. For a stream with poly(n)
increments/decrements to a vector in Rn, the size of the
sketch can be made to be O( 1

ε2 log n log 1/δ). To achieve
even better update times, Thorup and Zhang [42],
building upon the Count Sketch data structure of
Charikar, Chen, and Farach-Colton [16], use an ultra-
sparse transform to estimate the norm, but then have to



take a median of several estimators in order to reduce
the failure probability. This is inherently non-linear
but suggests the power of such schemes in addressing
sparsity as a goal; in contrast, a single transform with
constant sparsity per column fails to be an (ε, δ)-JL
transform [20, 34].

In this paper, we consider the central lower bound
question of Johnson Lindenstrauss transforms: how
good is the upper bound on the target dimension of
k = O( 1

ε2 log 1/δ) to approximate the norm of a fixed
vector in Rn? Alon [6] gave a near-tight lower bound
of Ω( 1

ε2 (log 1/δ)/ log(1/ε)), leaving an asymptotic gap
of log(1/ε) between the upper and lower bounds. In
this paper, we close the gap and resolve the optimality
of Johnson Lindenstrauss transforms by giving a lower
bound of k = Ω( 1

ε2 log 1/δ) dimensions. More generally,
we show that any sketching algorithm for estimating
the norm (whether linear or not) of vectors in Rn must
use space at least Ω( 1

ε2 log n log 1/δ) to approximate the
norm within a 1 ± ε factor with a failure probability
of at most δ. By a simple reduction, we show that
this result implies the aforementioned lower bound on
Johnson Lindenstrauss transforms.

Our results come from lower-bounding the informa-
tion cost of a novel one-way communication complexity
problem. One can view our results as a strengthening
of the augmented-indexing problem [9, 10, 18, 28, 35]
to very large domains. Our technique is far-reaching,
implying the first lower bounds for the space complex-
ity of streaming algorithms that depends on the error
probability δ. In many cases, our results are tight. For
instance, for estimating the `p-norm for any p ≥ 0 in
the turnstile model, we prove an Ω(ε−2 log n log 1/δ)
space lower bound for streams with poly(n) incre-
ments/decrements. This resolves a long sequence of
work on this problem [26, 28, 44] and is simultaneously
optimal in ε, n, and δ. For p ∈ [0, 2], this matches
the upper bound of [28]. Indeed, in [28] it was shown
how to achieve O(ε−2 log n) space and constant prob-
ability of error. To reduce this to error probability
δ, run the algorithm O(log 1/δ) times in parallel and
take the median. Surprisingly, this is optimal! For
estimating the number of distinct elements in a data
stream, we prove an Ω(ε−2 log 1/δ + log n) space lower
bound, improving upon the previous Ω(log n) bound
of [7] and Ω(ε−2) bound of [26, 44]. In [28, 29], an
O(ε−2 + log n)-space algorithm is given with constant
probability of success. We show that if ε−2 = Ω(log n),
then running their algorithm in parallelO(log 1/δ) times
and taking the median of the results is optimal. On
the other hand, we show that for constant ε and sub-
constant δ, one can achieve O(log n) space, ruling out
an Ω(log n log 1/δ) bound. Similarly, we improve the

known Ω(ε−2 log n) bound for estimating the entropy
in the turnstile model to Ω(ε−2 log n log 1/δ), and we
improve the previous Ω(ε−2 log n/ log 1/ε) bound [28]
for estimating the entropy in the strict turnstile model
to Ω(ε−2 log n log 1/δ/ log 1/ε). Entropy has become an
important tool in databases as a way of understand-
ing database design, enabling data integration, and per-
forming data anonymization [41]. Estimating this quan-
tity in an efficient manner over large sets is a crucial
ingredient in performing this analysis (see the recent
tutorial in [41] and the references therein).

Kremer, Nisan and Ron [30] showed the surprising
theorem that for constant error probability δ, the
one-way communication complexity of a function under
product distributions coincides with the VC-dimension
of the communication matrix for the function. We show
that for sub-constant δ, such a nice characterization is
not possible. Namely, we exhibit two functions with the
same VC-dimension whose communication complexities
differ by a multiplicative log 1/δ factor.

Organization: In Section 2, we give preliminar-
ies on communication and information complexity. In
Section 3, we give our lower bound for augmented-
indexing over larger domains. In Section 4, we give
the improved lower bound for Johnson-Lindenstrauss
transforms and the streaming and communication
applications mentioned above.

2 Preliminaries

Let [a, b] denote the set of integers {i | a ≤ i ≤ b},
and let [n] = [1, n]. Random variables will be denoted
by upper case Roman or Greek letters, and the values
they take by (typically corresponding) lower case letters.
Probability distributions will be denoted by lower case
Greek letters. A random variable X with distribution
µ is denoted by X ∼ µ. If µ is the uniform distribution
over a set U , then this is also denoted as X ∈R U .

2.1 One-way Communication Complexity Let
D denote the input domain and O the set of outputs.
Consider the two-party communication model, where
Alice holds an input x ∈ D and Bob holds an input
y ∈ D. Their goal is to solve some relation problem
Q ⊆ D × D × O. For each (x, y) ∈ D2, the set
Qxy = {z | (x, y, z) ∈ Q} represents the set of possible
answers on input (x, y). Let L ⊆ D2 be the set of legal or
promise inputs, that is, pairs (x, y) such that Qxy 6= ∅.
Q is a (partial) function on D2 if for every (x, y), Qxy
has size at most 1. In a one-way communication protocol
P, Alice sends a single message to Bob, following which
Bob outputs an answer in O. The maximum length
of Alice’s message (in bits) over all all inputs is the



communication cost of the protocol P. The protocol
is allowed to be randomized in which the players have
private access to an unlimited supply of random coins.
The protocol solves the communication problem Q if
the answer on any input (x, y) ∈ L belongs to Qxy with
failure probability at most δ. Note that the protocol
is legally defined for all inputs, however, no restriction
is placed on the answer of the protocol for non-promise
inputs. The one-way communication complexity of Q,
denoted by R→δ (Q), is the minimum communication
cost of a protocol for Q with failure probability at
most δ. A related complexity measure is distributional
complexity D→µ,δ(Q) with respect to a distribution µ
over L. This is the cost of the best deterministic
protocol for Q that has error probability at most δ when
the inputs are drawn from distribution µ. By Yao’s
lemma, R→δ (Q) = maxµD→µ,δ(Q). Define R

→,‖
δ (Q) =

maxproduct µD
→
µ,δ(Q), where now the maximum is taken

only over product distributions µ on L (if no such
distribution exists then R

→,‖
δ (Q) = 0). Here, by

product distribution, we mean that Alice and Bob’s
inputs are chosen independently.

Another restricted model of communication is si-
multaneous or sketch-based communication, where Al-
ice and Bob each send a message (sketch) depending
only on her/his own input (as well as private coins) to
a referee. The referee then outputs the answer based
on the two sketches. The communication cost is the
maximum sketch sizes (in bits) of the two players.

Note: When δ is fixed (say 1/4) we will usually suppress
it in the terms involving δ.

2.2 Information Complexity We summarize ba-
sic properties of entropy and mutual information (for
proofs, see Chapter 2 of [19]).

Proposition 2.1.

1. Entropy Span: If X takes on at most s values, then
0 ≤ H(X) ≤ log s.

2. I(X : Y ) ≥ 0, i.e., H(X | Y ) ≤ H(X).

3. Chain rule: I(X1, X2, . . . , Xn : Y | Z) =∑n
i=1 I(Xi : Y | X1, X2, . . . Xi−1, Z)

4. Subadditivity: H(X,Y | Z) ≤ H(X | Z)+H(Y | Z),
and equality holds if and only if X and Y are
independent conditioned on Z.

5. Fano’s inequality: Let A be a “predictor” of X, i.e,
there is a function g such that Pr[g(A) = X] ≥ 1−δ
for some δ < 1/2. Let U denote the support of X,
where |U| ≥ 2. Then, H(X | A) ≤ δ log(|U| − 1) +

h2(δ), where h2(δ) , δ log 1
δ + (1− δ) log 1

1−δ is the
binary entropy function.

Recently, the information complexity paradigm, in
which the information about the inputs revealed by the
message(s) of a protocol is studied, has played a key role
in resolving important communication complexity prob-
lems [11, 13, 15, 23, 27]. We do not need the full power of
these techniques in this paper. There are several possi-
ble definitions of information complexity that have been
considered depending on the application. Our defini-
tion is tuned specifically for one-way protocols, similar
in spirit to [11] (see also [13]).

Definition 2.1. Let P be a one-way protocol. Suppose
µ is a distribution over its input domain D. Let Alice’s
input X be chosen according to µ Let A be the random
variable denoting Alice’s message on input X ∼ µ;
A is a function of X and Alice’s private coins. The
information cost of P under µ is defined to be I(X : A).

The one-way information complexity of a problem
Q w.r.t. µ and δ, denoted by IC→µ,δ(Q), is defined to
be the minimum information cost of a one-way protocol
under µ that solves Q with failure probability at most δ.

By the entropy span bound (Proposition 2.1),

I(X : A) = H(A)−H(A | X) ≤ H(A) ≤ |A|,

where |A| denotes the length of Alice’s message.

Proposition 2.2. For every µ,

R→δ (Q) ≥ IC→µ,δ(Q).

2.3 JL Transforms

Definition 2.2. A random family F of k × n matri-
ces A, together with a distribution µ on F , forms a
Johnson-Lindenstrauss transform with parameters ε, δ,
or (ε, δ)-JLT for short, if for any fixed vector x ∈ Rn,

Pr
A∼µ

[(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22] ≥ 1− δ.

We say that k is the dimension of the transform.

3 Augmented Indexing on Large Domains

Let U ∪ {⊥}, where ⊥ /∈ U , denote the input domain
for some universe U which is sufficiently large. Consider
the decision problem known as augmented indexing with
respect to U (Inda

U ) as shown in Figure 1.
Let µ be the uniform distribution on U and let µN

denote the product distribution on UN .

Theorem 3.1. Suppose the failure probability δ ≤ 1
4|U| .

Then,
IC→µN ,δ(Inda

U ) ≥ N log |U|/2



Problem: Inda
U

Promise Inputs:
Alice gets x = (x1, x2, . . . , xN ) ∈ UN .

Bob gets y = (y1, y2, . . . , yN ) ∈ (U ∪ {⊥})N such
that for some (unique) i:

1. yi ∈ U ,

2. yk = xk for all k < i,

3. yi+1 = yi+2 = · · · = yN = ⊥

Output:
Does xi = yi (Yes/No)?

Figure 1: Communication problem Inda
U

Proof. The proof uses some of the machinery developed
for direct sum theorems in information complexity.

Let X = (X1, X2, . . . , XN ) ∼ µN , and let A denote
Alice’s message on input X in a protocol for Inda

U with
failure probability δ. By the chain rule for mutual
infomation (Proposition 2.1),

I(X : A) =
N∑
i=1

I(Xi : A | X1, X2, . . . , Xi−1)

=
N∑
i=1

H(Xi | X1, X2, . . . , Xi−1)

−H(Xi | A,X1, X2, . . . , Xi−1)(3.1)

Fix a coordinate i within the sum in the above equa-
tion. By independence, the first expression: H(Xi |
X1, X2, . . . , Xi−1) = H(Xi) = log |U|. For the second
expresson, fix an element a ∈ U and let Ya denote
(X1, X2, . . . , Xi−1, a,⊥, . . . ,⊥). Note that when Alice’s
input is X, the input that Bob is holding is exactly Ya

for some i and a. Let B(A,Ya) denote Bob’s output on
Alice’s message A. Then

Pr[B(A,Ya) = 1 | Xi = a] ≥ 1− δ

and for every a′ 6= a,

Pr[B(A,Ya′) = 0 | Xi = a] ≥ 1− δ

Therefore, by the union bound,

Pr
[
B(A,Ya) = 1 ∧

∧
a′ 6=a

B(A,Ya′) = 0 | Xi = a
]

is at least 1−δ|U| ≥ 3
4 . Thus, there is a predictor for Xi

using X1, X2, . . . , Xi−1 and A with failure probability at
most 1/4. By Fano’s inequality,

H(Xi | A,X1, X2, . . . , Xi−1)

≤ 1
4

log(|U| − 1) + h2 (1/4)

≤ 1
2

log(|U|),

since |U| is sufficiently large. Substituting in (3.1), we
conclude

I(X : A) ≥ N log(|U|)/2

Corollary 3.1. Let |U| = 1/4δ. Then R→δ (Inda
U ) =

Ω(N log 1/δ).

Remark 3.1. Consider a variant of Inda
U where for the

index i of interest, Bob does not get to see all of the
prefix x1, x2, . . . , xi−1 of x. Instead, for every such i,
there is a subset Ji ⊆ [i−1] depending on i such that he
gets to see only xk for k ∈ Ji. In this case, he has even
less information than what he had for Inda

U so every
protocol for this problem is also a protocol for Inda

U .
Therefore, the one-way communication lower bound of
Corollary 3.1 holds for this variant.

Remark 3.2. Now, consider the standard indexing
problem Ind where Bob gets an index i and a single
element y, and the goal is to determine whether xi = y.
This is equivalent to the setting of the previous remark
where Ji = ∅ for every i. The proof of Theorem 3.1
can be adapted to show that R→,‖δ (Ind) = Ω(N log 1/δ)
for |U| = 1

8δ . Let µ be the distribution where Alice gets
X uniformly chosen in UN and Bob’s input (I, Y ) is
uniformly chosen in [N ]×U . As in the proof of the the-
orem, let A be the message sent by Alice on input X.
Let δi denote the expected error of the protocol condi-
tioned on I = i. By an averaging argument, for at least
half the indices i, δi ≤ 2δ. Fix such an i. Look at the
last expression bounding the information cost in (3.1).
Using H(Xi | X1, X2, . . . , Xi−1) ≤ H(Xi | A) and then
proceeding as before, there exists an estimator βi such
that

Pr[βi(A) 6= Xi | I = i] ≤ |U|δi ≤ 2|U|δ ≤ 1
4 ,

implying that I(Xi : A) ≥ (1/2) log(|U|). The lower
bound follows since there are at least N/2 such indices.

3.1 An encoding scheme Let ∆(x,y) , |{i | xi 6=
yi}| denote the Hamming distance between two vectors
x,y over some domain. We present an encoding scheme
that transforms the inputs of Inda

U into well-crafted
gap instances of the Hamming distance problem. This



will be used in the applications to follow. The proof
uses well-known machinery but is somewhat technical,
therefore, we postpone it to the appendix.

Lemma 3.1. Consider the problem Inda
U on length N =

bm, where m = 1
4ε2 is odd and b is some parameter. Let

α ≥ 2 denote a decay factor. Let (x,y) be a promise
input to the problem to Inda

U . Then there exist encoding
functions x  u ∈ {0, 1}n and y  v ∈ {0, 1}n,
where n = O(αb · 1

ε2 · log 1/δ), depending on a shared
random string s that satisfy the following: suppose
the index i (which is determined by y) for which the
players need to determine whether xi = yi belongs to
[(p− 1)m+ 1, pm], for some p. Then, u can be written
as (u1,u2,u3) ∈ {0, 1}n1 × {0, 1}n2 × {0, 1}n3 and v as
(v1,v2,v3) ∈ {0, 1}n1 × {0, 1}n2 × {0, 1}n3 such that:

1. n2 = n · α−p(α− 1) and n3 = n · α−p;

2. each of the ui’s and vi’s have exactly half of their
coordinates set to 1;

3. ∆(u1,v1) = 0 and ∆(u3,v3) = n3/2;

4. if (x,y) is a No instance, then with probability at
least 1− δ,

∆(u2,v2) ≥ n2( 1
2 −

ε
3 );

5. if (x,y) is a Yes instance, then with probability at
least 1− δ,

∆(u2,v2) ≤ n2( 1
2 −

2ε
3 ).

4 Applications

Throughout we assume that n1−γ ≥ 1
ε2 log 1/δ for an

arbitrarily small constant γ > 0. For several of the ap-
plications below, the bounds will be stated in terms of
communication complexity which can be translated nat-
urally to memory lower bounds for analogous streaming
problems.

4.1 Approximating the Hamming Distance
Consider the problem Ham where Alice gets x ∈ {0, 1}n,
Bob gets y ∈ {0, 1}n, and their goal is to produce a
1± ε-approximation of ∆(x, y).

Theorem 4.1. R→δ (Ham) = Ω( 1
ε2 · log n · log 1/δ)

Proof. We reduce Inda
U to Ham using the encoding

given in Lemma 3.1 with α = 2 so that n2 = n3 =
n · 2−p. With probability at least 1 − δ, the Yes
instances are encoded to have Hamming distance at
most n·2−p(1− 2ε

3 ) while the No instances have distance
at least n · 2−p(1 − ε

3 ). Their ratio is at least 1 + ε/3.

Using a protocol for Ham with approximation factor
1 + ε/3 and failure probability δ, we can distinguish the
two cases with probability at least 1− 2δ.

Since we assume that 1
ε2 · log 1/δ < n1−γ for a

constant γ > 0, we can indeed set b = Ω(log n), as
needed here to fit the vectors into n coordinates. Now
apply Corollary 3.1 to finish the proof.

4.2 Estimating `p-distances Since ∆(x,y) =
‖x− y‖pp, for x,y ∈ {0, 1}n, Theorem 4.1 immediately
yields the following for any constant p:

Theorem 4.2. The one-way communication complex-
ity of the problem of approximating the ‖·‖p difference
of two vectors of length n to within a factor 1 + ε with
failure probability at most δ is Ω( 1

ε2 · log n · log 1/δ).

4.3 JL Transforms

Theorem 4.3. Any (ε, δ)-JLT (F, µ) has dimension
Ω( 1

ε2 log 1/δ).

Proof. The public-coin one-way communication com-
plexity, that is, the one-way communication complex-
ity in which the parties additionally share an infinitely
long random string and denoted R→,pubδ , is at least
R→δ − O(log I), where I is the sum of input lengths to
the two parties [30]. By Theorem 4.2,

R→,pubδ (`2) = Ω
(

1
ε2

log n log 1/δ
)
−O(log n)

= Ω
(

1
ε2

log n log 1/δ
)
.

Consider the following public-coin protocol for `2. The
parties use the public-coin to agree upon a k×n matrix
A sampled from F according to µ. Alice computes Ax,
rounds each entry to the nearest additive multiple of
ε/(2
√
k), and send the rounded vector Ãx to Bob. Bob

then computes Ay, and outputs ‖Ãx − Ay‖. By the
triangle inequality,

‖Ay −Ax‖ − ‖Ãx−Ax‖ ≤ ‖Ãx−Ay‖
≤ ‖Ay −Ax‖+ ‖Ãx−Ax‖,

or using the definition of Ãx,

‖Ay −Ax‖ − ε

2
≤ ‖Ãx−Ay‖ ≤ ‖Ay −Ax‖+

ε

2
.

With probability ≥ 1 − δ, we have ‖A(y − x)‖2 =
(1 ± ε)‖y − x‖2, or ‖Ay − Ax‖ = (1 ± ε/2)‖y − x‖.
Using that ‖y − x‖ ≥ 1 in Theorem 4.2 if ‖y − x‖ 6= 0,
we have ‖Ãx−Ay‖ = (1± ε)‖x− y‖. Hence,

kB = Ω
(

1
ε2

log n log 1/δ
)
,



where B is the maximum number of bits needed to
describe an entry of Ãx. With probability at least
1 − δ, ‖Ax‖2 = (1 ± ε)‖x‖2, and so using that x ∈
{0, 1}n, no entry of Ax can be larger than 2n. By
rescaling δ by a constant, this event also occurs, and
so B = O(log n + log 1/ε + log k). Since we assume
that n ≥ 1

ε2 log n log 1/δ, we have B = O(log n), and so
k = Ω

(
1
ε2 log 1/δ

)
, finishing the proof.

4.4 Estimating Distinct Elements We improve
the lower bound for estimating the number F0 of distinct
elements in an insertion-only data stream up to a (1±ε)-
factor with probability at least 1 − δ. We let n be
the universe size, that is, the total possible number of
distinct elements.

Theorem 4.4. Any 1-pass streaming algorithm that
outputs a (1 ± ε)-approximation to F0 in an insertion-
only stream with probability at least 1 − δ must use
Ω(ε−2 log 1/δ + log n) bits of space.

Remark 4.1. This improves the previous Ω(ε−2 +
log n) lower bound of [7, 26, 44].

Proof. It is enough to show an Ω( 1
ε2 · log 1/δ) bound

since the Ω(log n) bound is in [7]. We reduce Inda
U

to approximating F0 in a stream. Apply Lemma 3.1
with α = 2 and b = 1 to obtain u and v of length
k = O( 1

ε2 · log 1/δ). With b = p = 1, with probability
at least 1 − δ, the Hamming distance for No instances
is at least k

2 (1− ε
3 ) while for the Yes instances it is at

most k
2 (1− 2ε

3 ) .
Alice inserts a token i corresponding to each i such

that ui = 1. Bob does the same w.r.t. vi. Since the
Hamming weights of u and v are exactly half, by a
simple calculation, 2F0 = ∆(u,v) + k. Thus, there is a
gap of at least 1 + Θ(ε).

Remark 4.2. The best known upper bound for estimat-
ing F0 in an insertion-only stream is O(ε−2 +log n) bits
of space [29], and this holds with constant probability.
Näıvely repeating this O(log 1/δ) times and taking the
median would give space O(ε−2 log 1/δ + log n log 1/δ),
which matches our lower bound unless ε−2 = o(log n).
However, in this case it is possible to improve this näıve
upper bound with a more careful algorithm. Here we
sketch a simple way to achieve O(log n) space with er-
ror probability δ = O(log log n/ log n) whenever ε is con-
stant. Notice that this rules out the possibility of proving
an Ω(log n log 1/δ) bound. We leave a finer analysis of
the upper bound to future work.

To do this, the algorithm of [29] has a sub-
routine RoughEstimator which provides an O(1)-
approximation to F0 at every point in the stream using

O(log n) space. Without increasing the space by more
than a constant factor, it is possible to achieve error
probability 1− 1/poly(log n) for any polynomial, by re-
placing the set [3] = {1, 2, 3} in lines 2-5 of Figure 2 of
[29] with a set [C] for a larger constant C > 0.

Next, we combine this constant-factor approxima-
tion with the second algorithm of [12], which, given such
a constant-factor approximation, has space O(log n)
for constant ε. Importantly, in their analysis they
have O(ε−2) pairwise-independent hash functions hi and
maintain for each i the maximum number of trailing
zeros of any item j for which hi(j) = 0. By Cheby-
shev’s inequality, their argument shows with constant
probability, this number can be used to obtain a (1± ε)-
approximation to F0. This contributes an additive
O(ε−2 log log n) in their space bound. Since ε is a con-
stant, we can instead afford to have O(log n/ log log n)
such hash functions hi (instead of ε−2) and still main-
tain O(log n) space. It now follows that with proba-
bility 1 − O(log log n/ log n), the output is a (1 ± ε)-
approximation, as desired.

4.5 Estimating Entropy Our technique improves
the lower bound for additively estimating the entropy
of a stream. To capture this, the entropy difference of
two n-dimensional vectors x and y is the problem of
computing

H(x,y) =
n∑
i=1

|xi − yi|
‖x− y‖1

log2

‖x− y‖1
|xi − yi|

.

As usual with entropy, if xi− yi = 0, the corresponding
term in the above sum is 0.

Theorem 4.5. The one-way communication complex-
ity of the problem of estimating the entropy difference
up to an additive ε with probability at least 1 − δ is
Ω(ε−2 log n log 1/δ).

Remark 4.3. This improves the previous Ω(ε−2 log n)
lower bound implied by the work of [28].

Proof. We reduce from Ham. Since the input vectors
x,y to Ham are in {0, 1}n, ‖x − y‖1 = ∆(x, y). Also,
if xi = yi, then the contribution to the entropy is
0. Otherwise, the contribution is log2 ∆(x,y)

∆(x,y) . Hence,
H(x,y) = log2 ∆(x, y), or ∆(x, y) = 2H(x,y). Given
an approximation H̃(x,y) with |H̃(x,y)−H(x,y)| ≤ ε
and with probability at least 1− δ,

(1−Θ(ε))∆(x, y) ≤ 2−ε∆(x, y)

≤ 2H̃(x,y)

≤ 2ε∆(x, y)
≤ (1 + Θ(ε))∆(x, y).



so one obtains a (1±Θ(ε))-approximation to Ham with
the same probability. The lower bound now follows from
Theorem 4.1.

Entropy estimation has also been studied in the strict
turnstile model of streaming, in which one has a
stream of tokens that can be inserted or deleted, and
the number of tokens of a given type at any point
in the stream is non-negative. We can show an
Ω(ε−2 log n log 1/δ/ log 1/ε) as follows.

We apply Lemma 3.1 with α = ε−2, b =
O(log n/ log(1/ε)) to obtain u and v. For each coor-
dinate i in u, Alice inserts a token i if the value at the
coordinate equals of 0 and a token of n+ i if the value
equals 1. Let u = (u1,u2,u3) and v = (v1,v2,v3). Bob
can compute the split of v because he can compute n1,
n2, and n3 based on p (which itself depends on i). Bob
deletes all the tokens corresponding to coordinates in
u1, which is possible because v1 = u1. For coordinates
in v2 he mimics Alice’s procedure i.e. a token i for 0 and
a token n+i for 1. For v3 he does nothing. The number
of tokens equal n3+2n2 = n·ε−2p(2ε−2−1). The tokens
corresponding to u3 appear exactly once. For every co-
ordinate where u2 and v2 differ, the stream consists of 2
distinct tokens, whereas for each of the remaining coor-
dinates the stream consists of a token appearing twice.
Therefore, number of tokens appearing exactly once
equals n3 +2∆(u2,v2) = nε−2p+2∆(u2,v2). The num-
ber of tokens appearing twice equals n2 −∆(u2,v2) =
n · ε−2p(ε−2 − 1) − ∆(u2,v2). In the setting of Theo-
rem A.3 of [28], if ∆ = ∆(u2,v2), then the entropy H
satisfies

∆ =
HR

2B
+ C − C logR− A

2B
logR,

where

A = nε−2p,

B = nε−2p+2(ε−2 − 1),
C = ε−2,

R = A+ 2BC.

Notice that A,B,C, and R are known to Bob. Thus,
to decide whether ∆ is small or large, it suffices to
have a 1

ε -additive approximation to HR/(2B), or since
B/R = Θ(ε2), it suffices to have an additive Θ(ε)-
approximation to H with probability at least 1−δ. The
theorem follows by applying Corollary 3.1.

Theorem 4.6. Any 1-pass streaming algorithm that
outputs an additive ε-approximation to the entropy in
the strict turnstile model with probability at least 1 − δ
must use Ω(ε−2 log n log 1/δ/ log(1/ε)) bits of space.

Remark 4.4. This improves the previous
Ω(ε−2 log n/ log 1/ε) lower bound of [28].

4.6 VC-Dimension and Sub-constant Error Re-
call that the VC-dimension V C(f) of the communica-
tion matrix for a binary function f is the maximum
number ` of columns for which all 2` possible bit pat-
terns occur in the rows of the matrix restricted to those
columns. In [30], Kremer, Nisan, and Ron show the sur-
prising result that the VC-dimension V C(f) of the com-
munication matrix for f exactly characterizes R→,‖1/3 (f),
namely,

Theorem 4.7. ([30]) R→,‖1/3 (f) = Θ(V C(f)).

We show that for sub-constant error probabilities δ, the
VC-dimension does not capture R→,‖δ (f).

Theorem 4.8. There exist problems f, g for which
V C(f) = V C(g) = N , yet

• R→,‖δ (f) = Θ(N).

• R→,‖δ (g) = Θ(N log 1/δ).

Proof. For f , we take the Indexing function. Namely,
Alice is given x ∈ {0, 1}N , Bob is given i ∈ [N ], and
f(x, i) = xi. It is easy to see that V C(f) = N , and it is
well-known [30, 31] that R→,‖δ (f) = Θ(N) in this case,
if, say, δ < 1/3.

For g, we take the problem Ind with |U| = 1
8δ . By

Remark 3.2 following Corollary 3.1 (and a trivial upper
bound), R→,‖δ (Ind) = Θ(N log 1/δ). On the other hand,
V C(g) ≤ N since for each row of the communication
matrix, there are at most N ones. Also, V C(g) = N
since the matrix for f occurs as a submatrix for g. This
completes the proof.

The separation in Theorem 4.8 is best possible, since
the success probability can always be amplified to 1− δ
with O(log 1/δ) independent repetitions.
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A Proof of Lemma 3.1

We first define and analyze a basic encoding scheme. Let
w ∈ Um. Let s : Um → {−1,+1}m be a random hash
function. We define enc1(w, s) to be the majority of the
±1 values in the m components of s(w). This is well-
defined since m is odd. We contrast this with another
encoding defined with an additional parameter j ∈ [m].
Define enc2(w, j, s) to be just the j-th component of
s(w).

To analyze this scheme, fix two vectors w, z ∈ Um
and an index j. If wj 6= zj , then

Pr[enc1(w, s) 6= enc2(z, j, s)] = 1
2 .

On the other hand, suppose wj = zj . Then, by a
standard argument involving the binomial coefficients,

Pr[enc1(w, s) 6= enc2(z, j, s)] ≤ 1
2 (1− 1

2
√
m

) = 1
2 − ε.

We repeat the above scheme to amplify the gap
between the two cases. Let s = (s1, s2, . . . , sk) be a
collection of k = 10

ε2 ·log 1/δ i.i.d. random hash functions
each mapping Um to {−1,+1}a. Define

enc1(w, s) = (enc1(w, s1), enc1(w, s2), . . . , enc1(w, sk)),

and

enc2(z, j, s) = (enc1(z, j, s1), . . . , enc2(z, j, sk)),

For ease of notation, let w′ = enc1(u, s) and z′ =
enc2(z, j, s).

Fact A.1. Let X1, X2, . . . , Xk be a collection of i.i.d.
0-1 Bernoulli random variables with success probability
p. Set X̄ =

∑
iXi/k. Then,

Pr[X̄ < p− h] < exp(−2h2k), and
Pr[X̄ > p+ h] < exp(−2h2k).

In the above fact, with k = 10ε−2 log 1/δ and h = ε/3,
we obtain that the tail probability is at most δ. In the
case wj 6= zj we have p = 1

2 , so

(A.1) Pr[∆(w′, z′) < k( 1
2 −

ε
3 )] ≤ δ.

In the second case, p = 1
2 − ε,

(A.2) Pr[∆(w′, z′) > k( 1
2 −

2ε
3 )] ≤ δ.

The two cases differ by a factor of at least 1 + ε/3 for ε
less than a small enough constant.

Divide [N ] into b blocks where the q-th block
equals [(q − 1)m + 1, qm] for every q ∈ [b]. We use
the above to define an encoding for promise inputs
(x,y) to the problem Inda

U , where the goal is to
decide for an index i belonging to block p whether
xi = yi. Let j = i − (p − 1)m denote the offset
of i within block p. We also think of x and y as
being analogously divided into b blocks x[1],x[2], . . . ,x[b]

and y[1],y[2], . . . ,y[b] respectively. Thus, the goal is to
decide whether the j-th components of x[p] and y[p] are
equal.

Fix a block index q. Let s[q] denote a vector
of k i.i.d. random hash functions corresponding to
block q. Compute enc1(x[q], s[q]) and then repeat each
coordinate of this vector αb−q times. Call the resulting
vector x′[q]. For y[q], the encoding y′[q] depends on the
relationship of q to p and and additionally on j (both p
and j are determined by y). If q < p, we use the same
encoding function as that for x[q], i.e. enc1(y[q], s[q])
repeated αb−q times. If q > p, the encoding is a 0
vector of length αb−q · k. If q = p, the encoding equals
enc2(y[p], j, s[q]) using the second encoding function,
again repeated αb−p times. For each q, the lengths of
both x′[q] and y′[q] equal αb−q ·k. Finally, define a dummy
vector x[b+1] of length k/(α−1) all of whose components
equal 1, and another dummy vector y[b+1] of the same
length all of whose components equal 0. We define the
encoding x  u to be the concatenation of all x′[q] for
all 1 ≤ q ≤ b + 1. Similarly for y  v. The encodings
have length

n = k/(α− 1) +
∑

1≤q≤b

αb−q · k

= αb · k/(α− 1)
= O(αb · 1

ε2 · log 1/δ).

Moreover, the values are in {−1, 0,+1} but a simple fix
to be described at the end will transform this into a 0-1
vector.

We now define the split u = (u1,u2,u3) and v =
(v1,v2,v3). Define u1 (respectively u2, u3) to be the



concatenation of all x′[q] for q < p (respectively q = p,
q > p). Define vc for c = 1, 2, 3 analogously.

First, note that u1 = v1 because x′[q] = y′[q] for
q < p. Next, the lengths of u3 and v3 equal

k/(α− 1) +
∑

p+1≤q≤b

αb−q · k = αb−p · k/(α− 1)

= n · α−p = n3.

Since u3 is a ±1 vector while v3 is a 0 vector,
‖u3 − v3‖1 = n3. Last, we look at u2 and v2. Their
lengths equal αb−p · k = n · α−p(α − 1) = n2. We now
analyze ‖u2 − v2‖1 = 2∆(x′[p],y

′
[p]). We distinguish be-

tween the Yes and No instances via (A.1) and (A.2).
For an No instance, xi 6= yi, so by (A.1), with proba-
bility at least 1− δ,

‖u2 − v2‖1 ≥ 2n2( 1
2 −

ε
3 ).

For a Yes instance, a similar calculation using (A.2)
shows that with probability at least 1− δ,

‖u2 − v2‖1 ≤ 2n2( 1
2 −

2ε
3 ).

To obtain the required 0-1 vectors, apply a simple
transformation of {−1 → 0101, 0 → 0011,+1 → 1010}
to u and v. This produces 0-1 inputs having a relative
Hamming weight of exactly half in each of the ui’s and
vi’s. The length quadruples while a norm distance
of d translates to a Hamming distance of 2d, which
translates to the bounds stated in the lemma.


