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We explore the thesis that type structure is a syntactic discipline for maintaining levels
of abstraction. Traditionally, this view has been formalized algebraically, but the
algebraic approach fails to encompass higher-order functions. For this purpose, it is
necessary to generalize homomorphic functions to relatioms; the result is an "gbstraction”
theorem that is applicable to the typed lambda calculus and various extensions, including
user-defined types.

Finally, we consider polymorphic functions, and show that the abstraction theorem captures

Strachey's concept of parametric, as opposed to ad hoc, polymorphism.

1. A FABLE

Once upon a time, there was a university with
a peculiar tenure policy. All faculty were
tenured, and could only be dismissed for moral
turpitude. What was peculiar was the defini-
tion of moral turpitude: making a false state-
ment in class. Needless to say, the univer-
sity did not teach computer science. However,
it had a renowned department of mathematics.

One semester, there was such a large enrollment
in complex variables that two sections were
scheduled. In one section, Professor Descartes
announced that a complex number was an ordered
pair of reals, and that two complex numbers
were equal when thelr corresponding components
were equal. He went on to explain how to
convert reals into complex numbers, what "i"
was, how to add, multiply, and conjugate
complex numbers, and how to find their magni-
tude.

In the other section, Professor Bessel announ-
ced that a complex number was an ordered pair
of reals the first of which was nonnegative,
and that two complex numbers were equal if
their first components were equal and either
the first components were zero or the second
components differed by a multiple of 2m. He
then told an entirely different story about
converting reals, "i', addition, multiplica-
tion, conjugation, and magnitude.

Then, after their first classes, an unfortunate
mistake in the registrar's office caused the
two sections to be interchanged. Despite this,
neither Descartes nor Bessel ever committed
moral turpitude, even though each was judged
by the other's definitions. The reason was
that they both had an intuitive understanding
of type. Having defined complex numbers and
the primitive operations upon them, thereafter
they spoke at a level of abstraction that
encompassed both of their definitions.

*Work supported by National Science Foundation
Grant MCS-8017577.

The moral of this fable is that:

Type structure is a syntactic discipline
for enforcing levels of abstraction.

For instance, when Descartes introduced the
complex plane, this discipline prevented him
from saying Complex = Real x Real, which would
have contradicted Bessel's definition. Instead,
he defined -the mapping f: Real x Real ~+ Complex

- .such that f(x, y) = x+ i x y, and proved that

this mappingis a bijection.

More subtly, although both lecturers introduced
the set Int® of . sequences of integers, and
spoke of sets such as Int" + Complex, Int" x
Complex, and Int” + Complex, they never men-
tioned Int* v Complex or Int* n Complex.
Intuitively, they thought of sequences of
integers and complex numbers as entities so
immiscible that the union and intersection of
Int* and Complex are undefined.

More precisely, there is no such thing as the
set of complex numbers. Instead, the type
"Complex" demotes an abstraction that can be
realized or represented by a variety of sets,
with varying unions and intersections with
Int* or Real x Real. :

A second moral of our fable is that types are
not limited to computation. Thus (in the
absence of recursion) they should be explicable
without invoking constructs, such as Scott
domains, that are peculiar to the theory of
computation. Descartes and Bessel would be
baffled by an explanation of their intuition
that introduced undefined or approximate
complex numbers.

What computation has done is to create the
necessity of formalizing type disciplines, to
the point where they can be enforced mechani~
cally. The idea that type disciplines enforce
abstraction clearly underlies such languages as
CLU {1} and ALPHARD {2}, and such papers as {3}
and {4}. More recently, however, many formali-
zations have treated types as'predicates or
other entities denoting specific subsets of
some universe of values {5-9}. This work has
stemmed from Scott's discovery of how to

o,
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N

construct sufficiently rich universes without
encountering Russell's paradox. But it ob-
scures the idea of abstraction, e.g. if types
denote specific subsets of a universe then
their unions and intersections are well-
defined.

The major exception to this trend is the
algebraic view of types {10-12}, in which a
type, with its primitive operations, is an
abstraction over a variety of algebras.
Roughly speaking, type discipline is the
limitation of language to terms of a free
algebra. Each term is uniquely interpretable
within every algebra of the variety, and its
interpretations are related by the homomor-
phisms between the algebras.

Unfortunately, the algebraic approach is
intrinsically first-order; if primitive
operations are to be operations of an algebra
they cannot be higher-order functions on the
carrier of the algebra. It might be possible
to extend algebra to encompass higher-order
functions if homomorphic functions between
carriers induced higher-order functions
between functions on these carriers. Moreover,
the basic homomorphic equation

pE(xy, e 5 X)) = £'(p %q5 «ve 5 P %)

shows how a homomorphism p from A to A' induces
a relation between functions f € |A|“ - IAI and
£' € |a'|" + |A"|. However, this relation is
usually not a function.

The way out of this impasse is to generalize
homomorphisms from functions to relations.

2. AN EXTENDED TYPED LAMBDA CALCULUS

To characterize abstraction in a setting that
permits higher-order functions, we will define
an extension of the explicitly typed lambda
calculus, with constant types, products, and
generic conditional expressions, and show that
its classical set-theoretic semantics obeys an
"abstraction theorem" formalizing our thesis
that type structure preserves abstraction.

The expressions of this language are divided
into type expressions and ordinary expressions.
To define the syntax of type expressions, we
assume that we are given

C: A set of type constants, containing at
least the type constant Bool, :

T: An infinite countable set of type
varisbles.

Then @, the set of type expressioms, is the
least set such that

If x ¢ C thenk € 9, (ql)
If t ¢ T thent e @, (Q2)
If w, w' € Q thenw+w' e Q, (Q3)
If w, w' € 8 then w x w' € . Q4)

We also distinguish f., the subset of @ con-
sisting of fixed type expressions, i.e. type
expressions that do not contain occurrences of
members of T.

Next, we assume that we are given

V: An infinite countable set of ordimary
variables.

Then a type assignment is a function from some
finite subset of V to §i. We write

@ ={n | n e F~q for some finite F c V}
for the set of type assignments.
To define the syntax of ordinary expressions,
we assume that, for each w ¢ Q,, we are given

K,: A set of ordinary constants of fixed
type w.

Then we define the family
<E | mTE Q*, w e >
Tw

of sets, in which Egp,is the set of those
ordinary expressions whose free ordinary
variables belong to the domain of 7 and which
take on the type w under the assignment of types
to variables given by n. This is the least
family of sets satisfying

If k e K then k € E , (Ea)
W W
If v ¢ dom 7w then v € E , (Eb)
T, MV
If e € E"’ , and e, € Enw then (Ec)
el(ez) e E v
If e € E[n|v:w],w' then - (Ed)
Aviw. e € Eﬂ,w*m' N
1
If e € E“w and e’ € Enw' then (Ee)
<e, e'> ¢ Eﬂ,wxw' s
If ec€ Ew,me' then (E£)
e.l € E and e.2 ¢ E_ , ,
nw T™w
1
If b ¢ E“’ﬁ 1 and e, e' € Enw then (Eg)

ibtheneslsge €k -
Here dom T denotes the domain of 7, and [nlv:m]
denotes the function with domain dom w u {v}
such that [r|vie] v' = 1f v =v' gthep w
slse 7 v'.

The presence of w in Aviw. e is what we mean by
“explicit" typing; it assures that, under a
given type assignment 7w, every ordinary expres-
sion has a unique type, i.e. Ey, and Egn,+ are
disjoint when w # w'.

To specify the semantics of type expressions,
we assume that we are given

CS: A mapping from C to the class of sets,

such that CS(Bgol) = {frue. false},

and we define a set assignment to be a mapping
from T to the class of sets. Then we use # to
denote the following extension of set assign-
ments from type variables to tyse expressions:
If S is a set assignment then S¥ is the mapping
from Q to the class of sets such that

i

If k ¢ C then S k = CS k , (sl)
IfrsTthenS#'r=S't, (s2)
If w, w' € Q then
# A A (83
S (w>uw') =8 w‘v:S w' o,
If w, w' € 2 then - (s4)

#

st x w') = S# #

wXSw',
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where s + s' denotes the set of all functions
froms to s' and s x s' denotes the set of
pairs <x, x'> §UCh that x ¢ s and x' ¢ s'.
Then the set S'w is the meaning of the type
expression w under the set assignment S. Note
that, when w ¢ ﬂc, S*w is independent of the
set assignment S.

We use * to denote a further extension from
type expressions to t*ge assignments: If § is.a
set assignmert then S¥" is the mapping from
to the class of sets such that

v TT stew . (%)

v € dom W

*
Then S# 7 is the set of environments appropri-

ate to 7 and S.

A conventional semantics for ordinary eXpres-
sions would be obtained by fixing some set
assignment S and defining a family of semantic
functions from Eq, to sty » sty, However, to
capture abstraction properties we will need to
relate the meanings of an expression under
different set assignments. For this reason,
we will treat set assignments as explicit
parameters of the semantic functioms. Speci-
fically, for each 7 € @ and w e Q we will
define a semantic function

*
Vo, € E“w + ‘J s (S# T > S#w) ,

where S denotes the class of all set assign-
ments.

We assume we are given, for each w € Q., a
function

a € K =+ S#m

w w
providing meanings (independent of 8) to the

ordinary constants of type w. Then the
semantic functions are defined by

If k € K then u“m[k] Sn= @ k, (Ma)‘

If v € dom 7 then uﬂ’"v[v] Sn=nv, (M)

If'e1 € Eﬂ,w*m, and e, € Ewm then
um.lel(ez)l Sne= (Mc)
u“’w*w.lell S n (u"w[ezl sn),
If ec E . then
[mivie],w
Mo v Aviw. el S n=f (Md)

vhere f ¢ sty + s#y' 1s such that

£fx= Jdel s [n|vix] ,

u[ﬂlv:w],w

- If ec E_ and e' € E_ , then
W Tw

uﬂ,me'[<e’ e'>] s n= (Me)
<u  lel 8, woole'l s>
If e € E"’mxw. then
umle.ll Sn= [uﬂ’mx‘n.[e] s nly Mf)
"nw'[e'zl Sn= ["n,wa'le] $nl,

and e, e¢' ¢ E_ then
Tw

Ifbe En,B ]
w JAEL b thep e slag 'l S n = (Mg)
il v, [vl S n = grye
shen umjei snglsgu fe'lsn.

3. THE ABSTRACTION THEOREM

We now want to formulate an abstraction theorem
that connects the meanings of an ordinary
expression under different set assignments.

The underlying idea is that the meanings of an
expression in "related" environments will be
"related" values. But here "related" must
denote a different relation for each type
expression and type assignment. Moreover,
while the relation for each type variable is
arbitrary, the relations for compound type
expressions and type assignments must be
induced in a specified way. In other words, we
must specify how an assignment of relations to
type variables is extended to type expressions
and type assignments.

This can be formalized by defining a "relation

semantics" for type expressions that parallels

their set-theoretic semantics. For sets s) and
sg, we introduce the set

Rel(s), 83) = {r | r c s; x 83}
of binary relations between s} and sy, and we
write

i(s) = {<x, x> | x € s} € Rel(s, 8)

for the identity relation on a set s. Forr ¢
Rel(sj, s3) and r' € Rel(s{, sj), we write

r + r' for the relation in Rel(s; + s8], sy + 8))
such that

<fy, f> e r + r' iff )
(V<x), %2> € 1) <f) %1, 3 X> e ',
and r x r' for the relation in Rel(s; x si,
sy x s8)) such that
<<x1, x>, <x2, x3>> € r x r' 1ff
<x1, X2> € r and <x|, x3> e r' .
In other words, functions are related if they
map related arguments into related results, and

pairs are related if their corresponding com-
ponents are related.

For set assignments S; and S,, a member of

‘ ‘ Rel(S;t, Sp7) .

teT

is called a(binary)relation assignment between
S, and S;. Having defined + and x for relations
we can extend relation assignments from T to Q
and 9% in essentially the same way as we ex-
tended set assignments. If R is a relation
assignment between S; and S; then

R# 3 K i Rel(Sfm, Sgw)

we

is such that
If k € C then R# k = I(CS k) , (R1)
If te Tthen R T =R T, (R2)

If w, w' € { then

(R3)
R#(m + ') = R#w - R#

w',
If w, w' € @ then : (R4)

R#(m x w') = R#w X-R#J*_,
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and

* * *
R# € ‘ ‘ Rel(Sf T, sﬁ m)
wE Q*
is such that
i
<ny, nz> € R w 1iff (®%)
(yv-e dom w) <njv, nav> ¢ R#(nv) .

It is easily seen that + and x preserve
identity relations. Thus we have the

Identity Extension Lemma Suppose IA is a
relation assignment such that IA t = I(S T)
for all 1 € Top ¢ T. Then

IA#w = I(S#w) for all w such that

F(w) E To .

and

fx fH*
JA" 7 = I(8 ) for all 7 such that

(v¥v e dom ) F(mv) € T .
Here F(w) denotes the set of (free) variables
occurring in w.
Finally, we can state the

Abstraction Theorem Let R be a relation
assignment between set assignments 8; and Sjp.
For all m ¢ 9°, w € R, e € Ep, and

<np, np> e Rf*n,

<u_ fel Sini, u [el Sanp> e lu .

In essence, the semantics of any expression
maps related environments into related values.
For the case where e is a constant, -this
theorem depends upon the fact that, by thﬁ
identity extension lemma with T; empty, R'w is
an identity relation whenever w ¢ Q.. The
remainder of the proof is by structural
induction on the syntax of ordinary expres-
sions.

The abstraction theorem is closely related to
Proposition 1 in {13}. This relationship will
be discussed in Section 9.

4. TYPE DEFINITION

Several programming languages, of which CLU {1}
is perhaps the earliest, permit one to intro-
duce a new type by defining its representation
in terms of builtin or previously defined types
and defining its primitive operations in terms
of procedures that act upon the representation.
Within the scope of such a definition, the new
type is opaque, i.e. the meaning of the scope:
is an abstraction over appropriately related
definitions of the type.

In this section, we extend our illustrative
language to provide this kind of type defini-
tion, and derive a consequence of the
abstraction theorem that formalizes type
opacity.

First, we introduce the notion of txpe sub-
stitution. For 1t ¢ T and w, w' € 9, we write
w'/1T - w to denote the type expression obtained
from w' by substituting w for all (free)
occurrences of 1, and for m € Q" we write

7/t + w to denote the type assignment such that
(n/t > w) v= (nv)/t+w for all v ¢ dom 7.

Since the definitions of # and * are algebraic
in nature, it is easy to show that
S#(m'/r +w) = (S | T: S#w]#w' ,
S#*(ﬂ/T +w) =[S | T8 S#w]#*ﬂ
R#(w'/T +w) = [R | T: R#m]#w' .

R#*(w/r > w) [R | T R#w]#*n

.

*
Second, for 1 ¢ @ and T € T, we define
m-T=T"7 1 {v [ v edomn and 1 € F(nv)}

where F(mnv) denotes the set of type variables
occurring (free) in the type expression nv, and
™ 1 F denotes the restriction of m to F. Then
m - t© is the least restriction of m that is
unchanged by all substitutions for t:

(r-1t)/t>w=1m1-1.

#*
Thus, if n € S 7 then

n 1 dom(m - 1) ¢ S#*(n - 1)
= S#*((n -/t w
= [§ | T: S#m]#*(w -1) .
In conjunction with
S#(w'/T > w) = [8 | T S#m]#m' R

this justifies the following extension of
ordinary expressions, which provides the pure
definition of types (without primitive oper-
ations):

IfteT, w,w €, TE n*, and

e € Ew—r,w' then (Eh)
lettype T = w jne € En,(w'/r+m) ,

If tTeT, w, w' €Q, Te 9*, and

e E-Eﬂ—r,w' then (Mh)
“ﬂ,(w'/r+m)ll§s&x2ﬁ t=winel sn-=

#
u“_T’w,[e] [s | 1: S'w)] (n 1 dom(m-t)) .
Notice that the condition e € Ep-¢,u' limits the
ordinary variables occurring free in e to var-
iables whose types do not depend upon T.

This extension preserves the abstraction theo-
rem. Moreover, the abstraction theorem implies
a relationship between the meanings of leLiype
T =w ip e for different representations w:

Pure Type Definition Theorem Let S be a set
assignment, w), wy € @, and r be a relation
between S*w; and S#wz. For all n € n*, T eT,
w' e 9, e € Egog, o' and n e 57,

<u“,(w'/1m1)lw t=uw ln el s Ny
uﬂ,(w'/r*wz)[lSSSXES T=uw inel s
e [IA | ©: r]# W',

where IA is the relation assignment such that
IA T =I(S 1) for all 7 ¢ T.

Proof: By the identity extension lemma,

[1A | t: r]#*(x ~ 1) is an identity relation,
and thus contains <n 1 dom(m-1), n 1 dom(m-1)>.
The rest of the theorem ‘follows by applying the
abstraction theorem to the definition of the
lettvpe construct. "~



Types, Abstraction and Parametic Polymorphism 517

Since our language is higher-order, it is
trivial to extend the pure lettype construction
to include the definition of primitive oper-
ations; the extension is semantically insigni-
ficant and can be defined as syntactic sugar.
For simplicity, we only consider defining a
single primitive with name Vps abstract type
Ups and definition ept

*
Ift1eT, w, w', w, e, TEN, €€

P

1» and e then

E : e E
[w-rlvp:mp],w p n,(mp/t#w)

lsiiype T=wmMh v =e dne

is a member of E with the same

meaning as
(lettype T = w jn Avp: . e)(ep) .

Notice that, unlike the algebraic approach to
type definition, the operation type wp can be
higher-order. The more complicated case, where
several primitive operations, or even several
types, are defined is conceptually similar.

, (w'/1w)

When applied to this extension, the pure type
definition theorem leads to the

General Type Definition Theorem Let

S be a set assignment,

wy, w2, (d', mp e 9,

r be a relation between S#wl and S#wz,
* {#*

1TeQ ,nes mw

T eT,

vp eV,

e e E
[ﬂ—1|vp:wp],w"

€1 € En,(wp/r-vwl)’

€2 € En,(mplt»mz)
be such that

<u“!(mp/1-’wl)(e1] S n,

un‘,(mp/'r-'wz)[ ez] S n>

e [IA ‘ T r]#mp ,
where IA is the relation assignment such that
IA 1= I(S 1) for all t ¢ T. Then
<Hﬂ’(wv/.r_,w1)[hm TEw
with vp: wp =e; inel sn,

N“’(wv/T*mz)IIESSXEE T = w2

v.:w =e; in el S n>
pivpme2dnel S

e {IA | T: )] w' .

It can be argued that, to achieve complete type

opacity, the extended Lettvpe ... HiLh con-
struction should be restricted by requiring

that 1 not occur (free) in w'. In this case,
[1o | t: r]¥ ' in the conclusion of the
general type definition theorem can be replaced
by the identity relation 1aty', so that

Wy o lestype T = w0y

mhvp:mp-‘eigl_e]Sn
is independent of i.

5. FROM SETS TO DOMAINS

Although this paper is primarily concerned with
gset-theoretic semantics, in this section and the
next we digress to consider the interpretation

of types as domains rather than sets. We define
a domain to be a complete partial ordering, i.e.
a partial ordering containing a least element 1L
and least upper bounds of all directed subsets.

The essential changes in the semantics of our
language are that the class of sets is replaced
by the class of domains, set assignments become
domain assignments, + between domains is re-
defined to denote a pointwise-ordered set of
continuous functions, and the products in (S4)
and (S*) are also pointwise ordered. Since
constant types must denote domains, CS(Bgol)
becomes the domain

\./

4

and the semantics of the conditional expression
is extended to

If b e ETr
*
u JAL b then e glas 'l S n =
b) S n=
il vy poogi®) 5 n = e '
shen v Jel § 7 (Mg')
bl Sn=
slag &£ uy oo (bl S n = false
then v le'l s n
glse Lo,
Then ordinary expressions can be extended to
include a generic fixed-point operator:
If ec En,w+m then Y e € E“w N (Ei)

and e, e' ¢ E_ then
Tw

If eec En,m*m
least fixed~point of u

then um[y_ e] S n is the
,W[el Sn (i)
in the domain sty .

The addition of a fixed-point operator, as well
as the extension of the meaning of conditionals,
causes the abstraction theorem to fail. To save
the situation, we must require the relations
denoted by type expressions and assignments to
be complete relatioms.

A subset C of a domain D is complete iff C
contains ip and, for every directed X € D, 1f
X © C then the least upper bound of X belongs
to C. A relation between domains s; and sz is
complete iff it is a complete subset of the
pointwise-ordered product s * s8z.

Identity relations are complete, and complete-
ness is preserved by the action of + and x upon
relations. Thus it is consistent to restrict
the sets Rel(s;, s2) to complete relatioms.
This restriction is sufficient to regain the
abstraction theorem.

(Further difficulties arise if domains are taken
to be complete lattices rather than complete
partial orderings, because of the behavior of
the conditional construct for the overdefined
element T . These difficulties can be

resolved by taking R Bool to be the partial
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5

identity relation that does not relate T to
itself, or by using a doubly strict conditionmal
and strengthening the definition of a complete
subset to require it to contain T. These
complications are typical of the vagaries of
overdefined elements.)

As an aside, we note that ideals are a special
case of complete subsets: A complete subset C
of a domain D is an ideal iff it is downward
closed, i.e. (Vx ¢ D)(VyeC x C y implies
x € C. The operations + and X preserve ideal
relations, but binary identity relations are
not ideals. However, if one works with unary,
rather than binary relations (which is a
special case of the extension to multinary
relations discussed in Section 9) then identity
relations are trivially ideals, and our oper-
ations + and x become the operations B and B
used in {7}.

Finally, we note that the partial orderings of
domains are complete relations that are pre-
served by + and x, i.e.

E-s +-E-s' = E-s > g'?

C xCE ,=C '
-s —s =s xs
In conjunction with reflexivity, this implies
that both the identity extension lemma and the
abstraction theorem remain true if identity
relations on domains are replaced by the
partial orderings, i.e. if I(s) is redefined to
be C 5. This "order-relation" semantics of
type expressions will be used in the next
section.

6. REPRESENTATIONS

In {4}, the abstraction properties of types
were characterized by a "representation'
theorem. In this section we show that this
theorem is a special case of the abstraction
theorem.

For domains s) and s;, a representation between
s} and s, is a pair <¢, y> of continuous
functions such that

¢ € s * 82 , Y E S >8] ,

vod1, ovC 1

Sz’
where * denotes functional composition, i.e.
(v=¢) x = y(¢ x), and I; denotes the identity
function on s. (1f the partial orderings s;
and s, are regarded as categories, then a
representation is an adjunction, with ¢ being’
the left adjoint -of ¥.)

We write Rep(s), sy) for the set of represen-
tations between s; and sp. Domains and the
representations between them form a category
REP in which composition is <¢, y>-<¢', ¢'>

= <¢+¢', y'*y> and the identity representation
for a domain s is IP(s) = <Ig, Ig>.

For <¢, > € Rep(sy, sp) and <¢', ¢'> ¢
Rep(s}, s}), we define

<¢, y> > <¢', ¥'> e Rep(sy > s8], sz > 83)
and

<¢, ¥> x <¢', ¢'> € Rep(sy x si, sy x s3)

by
<, P> > <¢', P'> = <¢, ¥>
where ¢ £; = ¢'*£)°y
¥ £y = W'efaed
and
<¢, P> x <¢', P'> = <, ¥>
where ¢ <x;, x{> = <¢ x;, ¢'x]>
¥ <xp, X3> = <¢ x3, v'xi> .
(Thus + and x are functors from REP x REP to

REP.)

For domain assignments S; and Sy,
‘I Rep(S;T, S27)
teT

is the set of representation assignments between
S; and Sp. If P is such an assignment then

P# € [ ! Rep(S?m, Sgw)
we f

is such that
#

If k € C then P' k = IP(CS k) , (Pl)
If t € T then P# T=PrT, (P2)
If w, w' € Q then
# oo o . (P3)
P(w+w')=Puw-+Pu,
If w, w' € © then
B, o ot ot (B4)
P'(w*xw') =PwXxPuw ,
and
* rT‘ * *
P# € N Rep(Sq T, Sg )
TeQ
is such that
#*_ .
P 1= <d, ¥>
where ¢ ny v = ¢,(mv) P*)

¥ n2 v = py(nzv)
and <¢v, wv> = P#(ﬂv) .
This "representation semantics" of type expres-
sions is closely related to their order-relation
semantics. For each <¢, ¥> ¢ Rep(si, 82), we

define <¢, y> € Rel(s), s3) to be the complete
relation such that

<x)1, X2> € <¢, ¢> iff xlEsl v %2,
or equivalently

<X, X2> eWiff ¢x1Esz X2 .
Then

() =L = 1(s) ,

<4, B> > <0, B> = <h, P> > <p', ¥,

<p, P> % <¢"’ p'> = <, P> x <p', ¥'>,

so that
IfRt=PrtforallTteT
then R# w= P# w for all w e @

* x *
and R# T = P# 7 for all me & .



<

Types, Abstraction and Parametic Polymorphism 519

5

Thus the abstraction theorem implies the

Representation Theorem Let P be a represen-
tation assignment between domain assignments
S; and Sy. For_all 7 e Q*, welR ec Enw’

and <ny, N> € P**n,

<u  lel sy ny, el Sz mp> e phy .

7. POLYMORPHIC FUNCTIONS

In {4} we proposed an extension of the typed
lambda calculus in which the binding of type
variables was introduced to permit the con-
struction of polymorphic functions. (A similar
but more general extension of the typed lambda
calculus was developed independently in {14},
with the entirely different motivation of
extending the connection between the typed
lambda calculus and intuitionistic logic.)

The basic idea is that an ordinary expression

e of type w can be abstracted on a type vari-
able T to give At. e of type At. w, which can
be thought of as the type of polymorphic
functions that, when applied to a type T,

yield a value of type w. Then an ordinary
expression p denoting a polymorphic function of
type AT. w' can be applied to a type expression
w to give an ordinary expression p[w) of type
w'/t + w. The intent is that (At. e)[w] should
have the same meaning as leLtype t = w jip e, or
equivalently as the result of substituting w
for 1 in all type expressions occurring in e.

For example,
At. Af: 1+ 1. Ax: 1. £Q(£(%)) _
denotes a polymorphic doubling function of type
AT, (1) + (1),
and
(At. Af: T > 1. Ax:t. £(£(x)) (Bool]

has the same meaning as

Jekiype v = Bool ip Af: T -+ 1. Ax: t. £(£f(x))

or as
Af: Bgol + Bool. Ax: Bgol. f(£f(x)) .

To make these ideas precise, we extend the
syntax of type expressions by

If T eTand we @ then At. w e R . (25)

The operator At binds the occurrences of T in
w, so that alpha conversion (i.e. renaming) is
applicable to type expressions. We will regard
alpha~variants of type expressions as identical
and assume that the definition of substitution
for type variables includes the use of alpha
conversion to avoid collisions of type var-
iables. '

Then the syntax of ordinary expressions is
extended by

If e € E"_ then At. e € E N (E3)

Tyw TyAT0

If e € ETr . then e{w] ¢ E (Ek)

s4T.w T, (w'/Tw)’

In (Ej), notice that e € Ey-1,u Prevents e from
containing free (though not bound) occurrences
of any ordinary variable v whose type mv

contains free occurrences of t. This reflects
the fact that the meaning of 7 in At. e is
different from its meaning in the surrounding
context.

The concept of polymorphism was first recog-
nized by Strachey {15}, who distinguished
between "parametric" and "ad hoc" polymorphism.
Intuitively, a parametric polymorphic function
is one that behaves the same way for all types,
while an ad hoc polymorphic function may have
unrelated meanings for different types. For
example, an ad hoc function might add integers,
"or'" Boolean values, and compose functions.

In {4} our intention was to permit only para-
metric polymorphism. Thus, for example, the
language provides no way of branching on types.

8. SEMANTICS OF POLYMORPHISM

Several authors {5-9} have developed domain-
theoretic semantics for the langauge described
in the previous section, or for closely related
languages. However, these models do not des-
cribe parametric polymorphism, since the domains
associated with polymorphic types include ad hoc
functions.

I am convinced that a satisfactory model should
exclude ad hoc polymorphism. Moreover, based
on the intuition that types are not limited to °*
computation, I believe that, in the absence of
recursive definitions of either values or types,
it should be possible to give a set-theoretic
semantics. This section and the next summarize
the progress that has been made towards this
goal. At present (March 1983) success has not
been achieved, but the current results are
encouraging.

The most naive definition one might give for the
set associated with a polymorphic type is the
collection of functions that accept sets and
give values of the appropriate type. However,
this collection is far too large to be a set.
Moreover, it includes ad hoc functions.

Thus we define the set associated with a
polymorphic type to be

If TeTand w ¢ Q then
S#(Ar. w) = {p | dom p = SET
and (Vs e SET) p(s) € [S}rt: s]#u
and parametricsTw(p) },

where SET is the class of all sets and
parametricgry(p), to be defined later, excludes
ad hoc functions. We hope that this exclusion
is so severe that S¥(Atr. w) is (isomorphic to)

a set; whether this is the case for all w is

the central unsolved question about our proposed
model.

The semantics of ordinary expressions is more
straightforward:
If ec E then
T=T,0

s

#
u“,At.mlAT. el Sn=pe S (AT. w)

is such that
p(e) = u __ [el [s]t: s] (n]dom(n-1)) ,

(M3)

(s5) -

l..



520 J.C. Reynolds

N

If e € E , then

m,AT.w
u“’(wl/,t_)m)le[m]l Sn ‘ (I{k)

#
uﬂ’.AT.w.le] Sn (8w .

Next, we specify the relation semantics of

At. w. The following definition preserves the
validity of the abstraction theorem (and is
essentially determined by this requirement):

If T € T and w € § then
R#(AT- w) € Rel(S#(AT. w), Sg(AT. w))
_is the relatiom such that
<p1, P2> € R#(AT. w) 1ff
(Vsy, sz € SET)(Vr € Rel(sy, s2))
<p1s], p282> € [R | T3 r]#w .

(RS)

However, the identity extension lemma raises a
problem. Let S be a set assignment and IA the
relation assignment such that IA T = I(S 1)
for all Tt € T. Then (RS) implies (taking r to
be an identity relation) that IA#(AT- w) is a
partial identity relation. But for IA#(AT. w)
tﬁ be a total identity relation, all p in
S¥(A1. w) must satisfy

(Vs), s € SET)(Vr € Rel(s;, s3))
<p 81, p 83> € [IA | 1 rlte .
Thus, if the identity extension lemma is to

remain true, parametricgyy must be at least as
restrictive as the following definition:

parametricsTm(p) =
(Vsy, s2 € SEI)(Vr € Rel(s), s2)) (PAR)
<p 81, p 82> € [1A | 7: rlfu ,
where IA t = I (S 1) for all 1 € T.

However, we must be sure that this definition
is permissible, i.e. that all ordinary expres-
sions of polymorphic type denote functions that
are parametric. Let S be a set assignment, «
ned®, teT,wel ec Eg,At.p and n € sy,
Then the identity extension lemma gives
*

<n, N> € IA# T,

the abstraction theorem gives

#
<uﬂ,AT.m[e] S, wu fel s n> ¢ IA" (87, w)

and (R5) gives
(Vsy, s; € SET)(Vr € Rel(sy, 83))

T,AT.0

>
<uﬂ,Ar.m[e] §n sy, uﬂ,AT.w[e] Sns;

e [1a | 1: r]#w ,

so that parametricsTw(u [e]S n) holds.

MTyAT @

This is the essential link between abstraction
and parametric polymorphism: The abstraction
theorem guarantees that, in an environment in
which all polymorphic functions are parametric,
the meaning of any ordinary expression will be
parametric. .

We are currently investigating the question of
whether S¥(At. w) is small enough to be a set,
and have obtained an affirmative answer for
"low-order" w's without any embedded A's.

These results are obtained from (PAR), but would
also hold for any more restrictive definition of
parametricgy, that was still permissible. They
are all based on the algebraic nature of low-
order types.

For nonnegative integers nj, ... , ng, the
collection
S#(Ar. (rnl > T) X ... X (rnk > 1) *> 1)

is isomorphic to the carrier of the initial
one-sorted algebra whose signature has operators
1, ... , k with arities ny, ... , nk. As
special cases of this result,

S#(Ar. T X T > T)

is isomorphic to a two-element set (e.g. of
truth values) and

S#(AT. (t>1) x1T=+1)

is isomorphic to the set of natural numbers.

This result generalizes to multiple binders and
occurrences of free type variables. Let

90 =T
nr+l =Tu {w ¥ .oo Xwg +7 ]
Wy +oe s W€ and T € T}
and
Tb = {‘l‘l, cee g TN} N

be a finite subset of T. If w € Qz then
S#(Arl. oo ATy w)

is isomorphic to a set that can be defined
algebraically.

Specifically, w can be written in the form
W] X eee X X @] X ees Xwp T

where each wy has the form t or ... + 1 for some
Tt ¢ Tp, and each w{ has the form T or ... + 1 for
some T € T - Ty. Let I be the many-sorted
signature with sorts T and operators 1, ... , m
of arities wj, ... , wy. Let S; be the set
assignment mapping t € T, into {}and T €6 T - T
into St, let F be the free I-algebra generated
by S;, and let S; be the set assignment mapping
7 € T into the T-component of the carrier of F.
Then S#(Arl. cen ATN. w) is isomorphic to

Sﬁ(wi X oo Xwp *T).

Interesting special cases include

S#(AT- T>a) = S#a N

S#(AT. (a > 1) 1) = S#u y
stiar. (@) x (1) » 1) =stasshe,
S#(Ar. (axT+1) xT>1) = (S#a)* ,

where o and B are free type variables, = denotes
isomorphism, + denotes disjoint union, and s
denotes the set of finite sequences of members
of s. (The last isomorphism was suggested by a
anctional encoding of lists devised by C.
Bohm.)

We conjecture that, when At;. ... ATy. w 18
closed and w contains no A's,S8¥(Ar;. ... Aty. w)
is isomorphic to the subset of E<>,, (where <>
is the empty type assignment) whose members are
in normal form. However, even if this conjec-
ture, or the more general conjecture that $¥(w)
is always isomorphic to some set, is false,
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a set-theoretic semantics of polymorphism may
still be viable. The key may be to formulate
a2 more general abstraction theorem and resul-
ting definition of parametricgry. This poss-—
ibility is explored in the next section.

9, A MORE GENERAL ABSTRACTION THEOREM

There are two ways in which the abstraction
theorem can be generalized. First, binary
relations can be replaced by multinary rela-
tions. Second, and less trivially, individual
relations can be replaced by families of
relations of the kind used by Kripke {16} to
model intuitionistic logic.

These generalizations are suggested by recent
work by G. Plotkin {13}. Proposition 1 in {13}
is essentially the generalization of our
abstraction theorem to multinary relations, and
Proposition 2 is the further generalization to
Kripke-like families of relations. Actuaily,
these propositions deal with the pure typed
lambda calculus and assume a fixed arbitrary
set assignment, but their extension to our
illustrative language and to varying set
assignments is straightforward.

Moreover, Plotkin showed that his Proposition 2
completely characterizes the meanings of the
typed lambda calculus, in the semse that every
meaning satisfying this proposition is the
meaning of some ordinary expression. This
result encourages the hope that his general-
ization will lead to a definition of
parametricg, so restrictive that the collec-
tions of parametric polymorphic functions will
be sets.

To generalize from binary to multinary rela-
tions, we assume we are given a fixed index
set I of arbitrary cardinality. If & =

<44 | i ¢ I> is an I-indexed family of sets,
then

Rel(s) = {r | rec -T]- bi}
: I

ie

is the set of I-ary relations among the 44.
For a set s, the I-ary identity relation on s
is

I(s) = {<x | 1 e I> | x ¢ 8}
€ Rel(<s | 1 e I>) .
To generalize further to Kripke semantics, we
assume we are given a fixed partial ordering W
(of "alternative worlds"), and we define a
Kripke relation among the 4; to be a function
from W to Rel(4) that is monotone when Rel(d)

is ordered by inclusion. Thus

Krel(s) = {f | £eW oM Rel(s)}

is the set of Kripke relations among the 4j.
For a set s, the identity Kripke relation on s
is IK(s) € Krel(<s | i € I>) such that

IK(s) w = I(s) for all w e W.

For k ¢ Krel(4) and k' € Krel(4') we define
k + k' e Krel(<s, + 4] | 1 ¢ 1)

to be the Kripke relation such that

§ e (k+k") wiff
(Vw'>w) (Vxekw')
<f4%, | ieI>ekw',
and .

k x k' e Krel(<s, x 45 | 1eI»

to be the Kripke relation such that
<<xg, x> | 1 e I> e (k x k') wiff
X ekwand x' € k'w .
If S = <S4 | £ € I> is an I-indexed family of

set assignments, then

1_r Krel(<S,t | 1€
TeT

is the set of Kripke relation assignments among
the Si' If X 1is such an assignment then

K# € -TT_ Krel(<$ﬁw | 1 eI
we q
is such that
If k ¢ C then K" ¢k = IK(CS k) , (K1)
If 1 ¢ T then K# Tt=K1, (xk2)
If w, w' € N then

i

(K3)
K#(m +uw') = K#m -+ K#w' , .
L]
If mé w' e then# . (K&)
K(wxw')=KowxKao',

If Tt e T and w € Q@ then
K#(AT. w) € Krel(<$ﬁ(Ar. w) | ie I>)
is the Kripke relation such that
pe K#(AT. w) w iff
(Vs e SET)) (Vk e Krel(s))
<piéi | ieI>e K | T8 k]#m W,

(K5)

and

g e N N Kre1(<s’:*n | 1 ¢ 1>)

mTef
is such that
f%
nekK mwiff

(Vv ¢ dom m)<n,v | iel>e K w. &)

Then we have the

Generalized Abstraction Theorem Let K be a
Kripke relation assignment among set assign-
ments Sy. For a}} TeQ, wel, eckE,
weW,and n €e K" 7w,

#

<u“w[e] Si ny |1 e>eKuw.
Moreover, the

Generalized Identity Extension Lemma Suppose
TIA is a Kripke relation assignment such that

IA t = IK(S 1) for all T € Tg € T. Then

IA#w - IK(S#m) for all w such that

F(w) E TO »

* *
IA# - IK(S# w) for all w such that

(Vv € dom m) F(av) = Tp ,

and
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will hold if parametric is defined by

Stw
parametricg  (p) =
(vs e SE)(vk € Krel(8))(Vw e W)
<pd; |1el>e[In |t who v,
where IA T = IK(S 1) for all 1 ¢ T,

and the generalized abstraction theorem shows
that this definition is permissible.

10. EXISTENTIAL TYPE QUANTIFICATION

In {14}, J.-Y. Girard proposed an extension of
the typed lambda calculus based on an analogy
with intuitionistic logic, in which a type
expression is interpreted as a proposition, and
an ordinary expression as a proof of the pro-
position that is its type. Specifically, the
type operators -, %, and + (disjoint union) are
interpreted as implication, conjunction, and
disjunction. This analogy led Girard to intro-
duce new type operations corresponding to uni-
versal and existential quantification. His
universal quantifier V coincides with our 4,
but his existential quantifier I goes beyond
the language proposed in{4}.

Gordon Plotkin and John Mitchell have recently
suggested that existential types capture the
idea of encapsulating primitive operations with
abstract types; essentially an object of type
1. w consists of a representation type W
along with a primitive operation of type

wp/1 - w.,

The following is a syntactic description that
recasts theilr ldeas in the notation of this
paper: The syntax of type expressions is
extended by

If 1t ¢ Tand w ¢ @ then 31. w e Q , (n6)

where 31 binds the occurrences of T in w (and
alpha-variants are regarded as identical).
Then the syntax of ordinary expressions is
extended by

*
Ifnefl,1eT, w, wp e Q, and

ep € E then (ER)

T, (wp/1ow)

<w, ep: AT, ¥p » € E", dt.w. ’

P
* ,
Ifne, teT, vp € v, w', wp € Q,

' , ecE

e € En, dr. wp

and 1 ¢ F(w') then
= a!
abstract T, v, =e' lnecE .
In (EL), notice that t and w, must occur

explicitly in < w,ep: AT.w 3 to insure that
this expression has a unique type.

[n-rlvp:mp],w" (Em)

The intent is that, for 7 ¢ Q*, teT, vp eV,
1
w, w', wp e Q, e, € E“,(w J1w) ec
v and T ¢ E(w'),

E
[n—1|vp:wp],m
abstract T,vp = < w,epi  T.up »ine (*)

should have the same meaning as

Astivpe t = w WALh Vo wy = ep dn e -

As discussed in Sections 4 and 7, this Jlettvpe
expression has the alternative desugaring

(At. Avpiup. e)[w](ep) (**)

(which is actually more general, since the
restriction T ¢ F(w') can be dropped). But the
present approach embodies the idea of '"packag-
ing" the representation type w with the imple-
mentation of the primitive operation (or tuple
of primitive operations) ep-

The semantics of ¥ is no harder (or easier) than
that of A, since the existential comstructs can
be defined in terms of the universal ones. The
essential idea, suggested to the author by D.
Leivant, is that 3t. w should have the same
meaning as At'. (At.(w =+ t')) + 1', where 1' is
distinct from T and does not occur free in w.
Thus we define

If T € T and w € € then
sfear. w.
= S#(AT'. (at. (w > t")) > ")
where ' # T and ' £ F(w)

and similarly for R# and K#. Then the semantics
of the new constructions for ordinary expres-
sions is:

(S6)

If v € ﬂ*, 1eT, w, w, € Q, and

P
ep € Eﬂ,(wp/1+w) then .

< w, ep: qt. wp >
has the same meaning as (M2)
At'. Ap: A'r.(wP +1t'). p[m](ep)

where p ¢ dom 7, t' # 1, and t'does not
occur free in w,, w, v for any v € dom T,
or any type expression occurring in ep-

*
Ifre,teT, v

p € Vv, w', w

p € qQ,

1]
e € Ew, HT.wp’ eE E[ﬂ-Tlvp:mP],w"
and 1 £ F(w') then
sbstract v, vp = e' in e (tim)

has the same meaning as

e'[w'](Ar. Avp: 0p e) .

Then (*) has the same meaning as
(AT'. Ap: AT. (wp > 1", p[m](ep))
[w'] (AT, Avp: Wy e) ,

which reduces to (**).

11. FUTURE DIRECTIONS

Beyond the central problem of determining if
S#(AT- w) is always a set, the following are
promising directions for further research:

(a) Connections with category theory should be
explored. For example, binary relations can be
made into a Cartesian closed category by defi-
ning suitable morphisms between relations.
Moreover, this category is (isomorphic to) a
full subcategory of the Cartesian closed
category SET*, where I is the partial ordering
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A similar story can probably be told about
Kripke relations.

(b) To deal with recursive definition, of both
values and types, a domain-theoretic model of
parametric polymorphism should be sought.

While several domain-theoretic models of poly-
morphism have been proposed {5-9}, none of them
provides domains containing only parametric
functions.

(c) Polymorphism and its models should be
extended to encompass some concept of subtype,
including noninjective implicit conversionms,
as discussed in {17}.

(d) The theory should be applied to imperative
Algol-like languages. In this connection, the
distinction, made in {18} and {19}, between
data types and phrase types is germane. We
have recently started exploring the practical
potential of phrase-type definitions for data
representation structuring in the sense of
{20}.
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