Rapid Development of Custom
Software Architecture Design
Environments

Robert T. Monroe
Carnegie Mellon University

Introduction and Motivation

Introduction and motivation
Capturing design expertise
Customizing design environments
Validation

Wrapup

Software Architecture

Software architecture design focuses on:
— Decomposing a system into components
— Interactions between those components
— Emergent global system properties

SystemserverDetails

Premises

Software Architects can benefit from
powerful design environments

— CAD In other engineering disciplines
— Design analysis, guidance, and reuse

The more closely a tool matches the
problem it addresses, the more leverage
that tool provides

— Hammer~ Nalil, Screwdriver- Screw

Example Environment: C2

Diagram Editor on: "Klax Arch" aspect: #default

StatusADT Vel
B T

/‘_I_"\
RelatvePos

—_ @ |

T T
/J“ /J\ ‘ Status_Logic

Status_Artist Chure_Ardst Palette Artist

e I —+ -
- e

L

Tile_Artist
—

=

Layout_Ilanager

\-._'_/

T
—

GraphicsServer

W

| >

Example Environment: Meta-H

"= * DUALSBO (100%)
(Flle Te') (Edit) [Special Ta') (Layuut Te') (ﬁlﬁnduw ‘G’) [Help ‘-Ta')

Impl. Context

Mame: CVKE
Class: System
archetype: DUALIED
Reference: DUALSED
Configuration: default

Frocessar

DISCREATE_WRITE = DISCREATE_READ

Processar
ETHEL

YME_EUE]

L] H | | ﬁgi}ﬁjuﬁ @;@@

v Y [ANOO[OE.

=
\c
=2

@

i

xample Environment: Aesop/PF

sphitfil (read-on
File Edit VYies Options Structure Tesxt Help
Bead fafs/cs.cu,edu/pro jectsable=2/zunos/aesop/ fedit/ |

Design Edit Preferences Verify Compile Shelf

~ | components

| Filter
= | UnixFilter
3| UnixBinary

(Conktext: statenent
o “m
+Compress , Capitalize b Package T [| File

: Unix Pipe and Filter Style
erences Vsrﬂinomplle Shell help
Wright Specs A ,7
Bindings Closure il
No Multiple Aggregates E‘ Filter
Connection Yalidity & | UnixFilter
No Cycles gy

=1 UnixBinary
B File

Connectors

Merge }jﬂ}pe

stdout I rore |
]

| Input
__| Output

__1Source

Example Environment: ObjecTime

v atrnaAadSirnmDerno | Update View » AtrmnUniSwvcl | Structure Parts View

Package Actor Class
atmaadSimDemo CallCoptrollar(y 1.3)
Interimbmi(v 1.2 Call trollerl(v 1.3}
AtmaccessDevice(v 1, Dsz 1Message(v 1.2)
AtmAdaplayer Signaling@93 (v 1.3)
AtmAadSim Signaling@I 931Uy 1.4)
AtmLaver
Q931

Pdu Protocol Class

1381 CallZontrolProtocaol(v 1.3)
Dsz 1Protocal{v 1.2) : qQS1Cq.!ICDntrDI:
GE31CallControl{v 1.3) E :

(93 1Protocol(v 1.3) | signalingQ29s 10 |

callContralProtocaol

i

F |
F |
F |
F |
F |
F |
F |
F |

5%

493 1ProtocalR 1

Data Class
TEO03(v 1.2)

dss 1Protocol

Problems

Building custom design environments Is:
— Expensive

— Time consuming

— Difficult

Designers’ tooling needs change as their
understanding of the problem, domain, anc
target system evolves

Solution: Armani

Support lightweight, incremental adaptatio
and customization of design environments

— Factor out common infrastructure
— Capture variable design expertise
— Configure infrastructure with expertise

Generic Infrastructure Custom Environment

Unclogging Bottlenecks

Task Armani changes

Domain analysis - Still requires domain understanding
...but provides expressive structure

Creating schema Armani defines schema and

and provides structure for capturing
capturing expertise expertise declaratively

(Re-) design, Core infrastructure reused
implement, integrate |- Basic tooling generated from
tools, and test expertise description.
environment Still must implement rich tooling
Adapt and evolve Configurability and modularity

environment oreatly reduces evolution difficulty

Thesis

Claim 1;

— It Is possible to capture software architecture
design expertise with a language and
mechanisms for expressiadgsign vocabulary,
design rules, andarchitectural styles.

Claim 2:

— This captured design expertise can be used ta
rapidly and incrementally customize software
architecture design environments.

Capturing Design Expertise

Introduction and motivation
Capturing design expertise
Customizing design environments
Validation

Wrapup

Architectural Design Expertise

The concepts, models, and rules that
skilled architects use when specifying,
constructing, or analyzing a software
architecture.

Armani provides a declarative language
for capturing architecture design expertise

Capturing Design Expertise

Design vocabulary

— Building blocks for system designs

— e.g.client, web-server, database, pipe, RPC
Design rules

— Invariants, heuristics, and analyses

— e.g. “Transaction rate must be >= 1000 tph”
Architectural styles

— Package related vocabulary and design rules
— e.qg. Client-server, pipe-filter, batch sequential

Design Vocabulary Example

Component Type naive-client = {

Port Request={
Property protocol = rpc-client };

Property request-rate : integer
<< default = O; units = “rate-per-sec” >>;

| nvari ant forall p in self.Ports |
(p.protocol = rpc-client);

| nvari ant size(Ports) <=5;

| nvari ant request-rate >= 0;

Heuri sti c request-rate <= 100;

Design Rule Example

System simpleCS ={ ...
I/ simple rule requiring a primary server
| nvari ant exists c : server in self.components |
c.isPrimaryServer == true;

// simple performance heuristic
Heuri stic forall s: server in self.components |
s.transactionRate >= 100;

/[do not allow client-client connections
Anal ysi s no-peer-connections(sys : System) : boolean=
forall c1, c2 in sys.components |
connected(cl, c2) ->
I(declaresType(cl,clientT)
and declaresType(c2, clientT));

Architectural Style Example

St yl e naive-client-server-style = {
/| decl are vocabul ary
Conponent Type naive-client={...};
Conponent Type naive-server ={...};

/| decl are desi gn anal yses
Anal ysi s no-peer-connections(sys : System)
: boolean ={... };

/| declare style-w de design rules

| nvar i ant no-peer-connections(self);

Heuri sti c forall s: server in self.components|
s.transactionRate >= 100;

} I/ end style definition

Predicate-Based Expertise Capture

(Most) expertise represented w/predicates
— Simple type checking tests constraints

— Predicates can
properties, topo

pe written over structure,
010}

Clean, flexible a

nproach to subtyping

Excellent compositionality and modularity
Predicates can apply to typasinstances

Language Supports Approach

Language provides environment foundatio
— Good representations ease environment impl.
— Reconfigures environment “on the fly”
Language provides flexible representation
— Types

— Design rules

— Design instances

Constraint checking forms tool foundation

Customizing Design Environments

Introduction and motivation

Capturing Architecture Design Expertise
Customizing Design Environments
Validation

Wrapup

xample Environment: Armani

i Component Workshop
{Error Message O] %]

Component Workshop

Mo type errors, constraint wiolations, or heuristicviolations discovered.

Component Name: [CalculateHours

Declared Types: |dataFrocessingOpT

nstantiated Types: [dataPracessing0pT -
- PayrollSystem.armani vsd:PayrollSystem

nsert Format Tools Shape Window Help

Properties | Invariants | Heuristics| Substructure

Mame | Type | Yalue
functionMame string "CalculateHours"
validatesinput haolean false
maintainsState hoolean falze System Paymll Syaem
latency float a0.2
Visio-ShapeGUID guidStr "2EACODBE-ABFD-11D2-BC44-008H

thraughputRate float 1a00
functionalSpec URL "hitpiasaew s cmu edw/CalcHours 4

#
* Cempule Pepd
3
- g)

DB Sink DB
Source

B ([E

put Fi

FanQut Binary

Data Data -
[A GenericCompSte

Customizing Design Environments

Fundamental approach
— Provide a fully-functional generic environment
— Support fine- and coarse-grained customizatio

Key design goals
— Incremental effort leads to incremental payoff

— Standard, common customizations are quick,
easy, and incremental.

— More complex customizations are possible
— Leverage design language as much as possib

Core Environment Infrastructure

Generic elements:
Design Parser Design Unparser .
Armani Parser Armani Unparser — D esSli g n R e p W/ A P I
Build “ T Export

Design "y " Design)| — Parser & unparser
Core Armani
— Type checker

Core Design Rep AP
e Mer. . e Desien — Analysis Engine
Request Query Request Query

Avrchitecture Design Representation
Report

Armani Tool Ertor Armani Tool B Visio - System Workshop &

A\ 4

Type Manager Analysis Engine

Error Reporter
Armani Tool Java VM

Visio-based GUI (external tool)

Generic Armani Environment

:: Yizio Professional - Simple_Genernc_Example.vsd:Simple_Generic_E xample
1 Fi Inzert Format To Shape hdow Help

Part Binding
Binding

i Component Workshop

Component Workshop

Connopentilon : Component Workshop JS[=] B3

Declared Type
Component Workshop
nstantiated Type

Component Name: [:
Declared Typ

nstantiated Typ:

Capabllities:
— Define arch.
specifications

— Brings some rigo
to box-and-line
drawings

Limitations

— Limited semantic

— Architect must
build-up design
concepts

Customization Techniques

Fine-grained
— Add or modify envt’s stored design expertise
— Customize graphical depictions within a GUI

Coarse-grained
— Integrate external tools
— Completely replace GUI

Fine-Grained Customization

E expertise (repeat)

Generlc Infrastructure

Add To or Retrieve
From Design Expertise JEIRLE

: Define or
Repository Modify Define or Modify

Expertise Visualizations

Coarse-Grained Customization

Coarse-Grained external tool integration

Some expertise Is better captured with tool
nen itdoes something to or with a design
nen It Is contained in legacy tools

nen you have to specihpw to evaluate it
Instead of juswhat to evaluate

More effort, (potentially) more power

Integrated Tool Examples

Multiple Armani user interfaces
Performance analysis tool (Lockheed stud

Change impact and configuration
consistency analysis tools (MetaS study)

Security and fault-tolerance analysis tool
(DesignExpert study)

Runtime architecture evolution checking
(C2 study)

Integrating External Tools : Uls

Command Line Interpreter

— Scriptable textual interpreter

— Integrated with direct Armani API calls

— Simple procedure-call connector, same proces

Core Design Rep Process

Y Java

. Method
Core DCSIgn Rep Full Invocation Command TTY
Abrchitecture Design Rep. Java Interpreter 1/0
API Armani Tool

Integrating External Tools : Uls

AcmeStudio GUI

— Acme design environment front-end
— Integrated via Acme text stream connector
— Transport protocol encapsulated in connector

Core Design Rep Process AcmeStudio Process

Core Design Rep AcmeStudioGUI
Avrchitecture Design Rep. java Armani Tool
N rmani Too

Integrating External Tools : Uls

Visio-based Armani GUI

— Highly configurable COTS-based front-end
— Integrated using sophisticated COM-based Iint
— Workshops generated by “factory” in connecto

Core Design Rep Process Visio System Interaction
e . Workshop Templates

Armani Tool

Element
Workshops

Arman 00

Core Design Rep Visio-

Avrchitecture DesignRep. Armani
Intf

Design Environment Conclusions

Environment demonstrates feasibility of
configuring tools with design expertise

Case studies will demonstrate utility...

Environment leverages design language

Support for both fine- and coarse-grained
customization was critical

Validation

Introduction and motivation

Capturing Architecture Design Expertise
Customizing Design Environments
Validation

Wrapup

Thesis

Claim 1;

— It Is possible to capture software architecture
design expertise with a language and
mechanisms for expressiadgsign vocabulary,
design rules, andarchitectural styles.

Claim 2:

— This captured design expertise can be used ta
rapidly and incrementally customize software
architecture design environments.

Experimental Structure

Basic approach: proof by existence

Step 1: task analysis
— Establish a baseline and find current bottlenec

Step 2: build multiple Armani environments
— Demonstrate breadth, power, and incremental

Step 3: external case studies
— Determine if others can use this technique

Step 1. Task Analysis Findings

Current technigues require months or year
of effort to build a custom environment

Currently, most development time and effo
IS devoted to (re)building infrastructure

If adaptability is not built in from the
beginning, evolving an environment can be
very difficult

Step 1: Task Analysis

Approximate Time Required (in Engineer/Days, Weeks, Months, or Years)

Best Case

Average Case

Worst Case

Traditional

Armani

Traditional

Armani

Traditional

Armant

(1) Domain
Analysis

Week

Week

Month

Weeks

Years

Months or
Years

(2) Schema
Capture

Days

Hours

Weeks

Days

Months

Weeks

(3) Design,
implement, test
and deploy

environment

Months

Hours
or Days

Months or
Years

Days or
Weeks

Years

Months

Cumulative time
to initial
deployment

Months

Days

Months or
Years

Weeks

Years or
nevet

Months or
never

(4) Time required
for environment
updates and
modifications.

Hours or
Days

Minutes

Weeks or
Months

Step 2: Build Test Environments

Demonstrate breadth, power, incrementalit
— Breadth: build environments for diverse styles

— Power: add significant design expertise to the
environments

— Incrementality: adapt and extend environments

Style selection
— All case studies based on published style spec
— At least one from each “Boxology” category

Step 2: Environments Built

s sy _lspesincsyye | orcon | pofned | befed | oennes _
Base Style Specific Style of Effort Defined Defined Defined
Call and Return

DriverSubprogramwis_| 400 | 12 | 6 | 12
pata-Centric
S O MreeTierclientsener | 350 | o | 1 | 12
rierarchical (BN I M0 T T
Data Flow
Data Sharing

Interacting
Processes C2 rebuild in Armani 8.00 39 7 5

Step 2: Driver-Subprogram Style

Driver-Subprogram Style

11 Visio Professional - SimpleTransactionSystem vsd:Simple_Transaction_System [H[=] E3
Category: Call and Return File Edit View lsert Fomat Tools Shape Window Help

B Driver Subprogra

s

Semantics Statistics W @ Al

Primary component types: Generic Online
_ Dl‘iVCf Driver Driver System Simole_Transaction_Syger

- Subprogram E

. Batch Sub-
- Subdrlver Driver Program

Primary connector type: E H,_

) . Sub- Local
PIOCCSSng RCqHGSt Driver Request

Sample design rule: R_

- A system has exactly one Remote
Reguest

toplevel Driver component,
but may have multiple
Subdriver components.
New types defined: 18
Style-wide design rules: 3
Time to define: 3.5 hours -
Lines of Armani code: 73 B GenericCampSte|

Environment Statistics
New shapes defined: 7
Customization time: 3 hours

DB-Driver-Subprogram Style
Category: Call and Return

%1 Visio Professional - Simple_DB_Trans_System vsd:Simple_DB_Trans_System [H[=]E3
. .. File Edit Wiew Inset Format Tools Shape Window Help
Semantics Statistics :

[DB Driver Subpre

Extended component types: r
vV

- Transaction Manager

Geneti
- Database Driver Dri System Sinple, 08, Trans Sysr

- DB Access SubProgram

Batch
Extended connector types: Driver

- DB Query Update E

- Transaction Request St
Driver Manager

Sample design rule: E

- A system has exactly one B- AccesDataba

Transaction Manager that must be ubprograrn

connected to all databases. E
Local DB-Trans

New types defined: 12 Regues! Request
Additional design rules: 6 H,_

Time to define: 2.0 hours DB QU Rerate

. . Reguest Regquest
Lines of Armani code: 63

B GenericCDmpStE

Environment Statistics
New shapes defined: 12
Customization time: 2 hours

Step 3: External Case Studies

Qualitative “external” case studies asked:
— Can other people use Armani effectively?

— Powerful design expertise capture capabllities
— What aspects of Armani worked well?

— What worked poorly?

Case study selection criteria
— Real architects or developers
— Solving a real problem

Step 3: External Case Studies

Conducted four external case studies:

— SEI's MetaS architectural style project
» Change impact and configuration consistency arsal

— UC Irvine C2-integration

» Run-time architecture evolution analysis

— Lockheed Martin/EDCS

» Built environment to model and analyze GTN
» Integrated performance analysis tool

— KeySoftware’s “DesignExpert” tool
» Developed analyses for reliability and fault-talece

Step 3. Case Study Observations

Can other people use Armani effectively?
— Yes.

Powerful design expertise capture?

— Yes.

— Case studies spanned broad variety of experti
— Case study tools solved real design problems

Step 3. Case Study Observations

What aspects of Armani worked well?
— Core concepts are flexible and powerful

— Design representation and checking
Infrastructure more valuable than GUI

What did not work so well?

— Declarative design language requires
reorientation of thought process

— Building complex analysis and generation
tooling still requires significant effort

Wrapup

Introduction and motivation

Capturing Architecture Design Expertise
Customizing Design Environments
Validation

Wrapup

Contributions

A techniquefor rapidly developing custom
software architecture design environments

A design languagthat captures both design
expertise and architectural instances

A reference architectufer highly
configurable design environments

A set of case studigbat illustrate how to
use the technique, language, and
environment effectively

Related Work

Aesop and Acme
Architecture Description Languages (ADLs

Configurable programming environments
— esp. Gandalf and The Synthesizer Generator

Design patterns
Formal specification languages (esp. PVS)

Constraint-based prog. tools and language
DSSA

Future Work

Generalized reconfiguration strategies
Integration with full lifecycle processes
Guidance In selecting styles and expertise

Discovering new uses for the tools

Conclusions

The Armani approach to capturing design
expertise and incrementally configuring
design environments works.

The Armani conceptual framework can
capture a significant range of interesting
architectural design expertise.

Predicate types are a useful abstraction fo
capturing and composing design expertise

The End

Robert T. Monroe
Carnegie Mellon University

Predicate Composition

Type FastT ={ Type DatabaseT = { Type TransactionalT = {
Prop. latency = ... Prop. schema = ... Prop. transProtocol = ..
Prop. throughput = ... Prop. transRate = ... Prop. rollbackPolicy = ..
Invariant latency < ... Prop. multiThreaded =. Invariant (transProtocol
Invariant throughput >... } 1= ")

}

\W

Type FastTransDatabaseT =
Prop. schema = ...
Prop. transRate = ...
Prop. multiThreaded = ...
Prop. latency = ...
Prop. transProtocol = ...

Standard Customization Process

Load design expertise captured with
Armani design language into generic envt.

Create custom icons to represent new
design elements (optional)

Modify expertise as needed
Repeat

Obsolesced slide...

Tools manipulate Armani designs through
programmatic API. (In or out of Java VM)

& Visio - System Workshop EE
|l

. ; Armani
Armani Design "Linked" &7 Parser

Representation Armani

Tool
Compo
~»| nent 17 (orinth

Conne Type
ctor i Manager/

Constraint
Checker

Armani
Exporter

Java-Based "Pure-Java" Design
Workshops Representation

Armani Environment Architecture

& Visio - System Workshop FJE
I 2]

COM

Armani
: O‘e,‘,xe‘-‘ Parser
Representation Armani

Compo T0_0|
nent (or intf)

+
Linked Tool L Component
Interface L H Workshop

Textual

|
|
|
|
| Armani
|
|
|
|

Type
Manager/
4_|—>Constraint
| = ™ Checker
Type Workshop %’onrrllzﬁtoor C
L ,7 Il p ,7 &A Armani
Jd 1 = g . EditMe() | Lrman,

Pt Core Java

L __ _ Representation _ _ _ _

Java-Based "Pure-Java" Design
Workshops Representation

Description

o> m—
-

Generic Armani Environment

The generic Armani environment provides:
— API for manipulating design representation

— Parser and unparser for design language

— GUI

— Design checker

— Tool integration framework

Customizing Visualizations

Different types of vocabulary elements
require different visualizations

Visio," used as the generic GUI front end,
handles visualization specialization

GUI Front-end Is just another tool

— It can be exchanged for a different front-end

— Visualizations are highly independent of
underlying semantic representation

Customizing Visualizations
Inheritance m m
N K

Blockln DB VIS? .
J BlockingDB

Model

Challenge: Visualization semantics don’t work
compose like architectural semantics

Solution:

— Associate visualizations with “templates” or “magtro
Instead of types.

Task Analysis - State of Practice

Task

Approximate Time Required

Best Case Average Case Worst Case

(1) Domain Analysis

Week Month(s) Year(s)

(2) Schema Capture

Days Weeks Months

(3) Design,
implement, test and
deploy environment

Years or until project

Month(s) Months or Years .
cancellation

Cumulative time to
initial deployment

Months Months or Years Years or until
project cancellation

(4) Time required for
environment updates

and modifications.

Hours or Days Months Months

Creating a Design Environment

Creating a custom environment requires ...
— Domain analysis

— Create schema for designs and design experti
— Design, implement, test, and deploy envt.

— Modify and evolve environment as needed

Integrating External Tools : Uls

Armani Ul implemented as external tool

Three Integration connector types providec

— Direct Java API call for Java-based tools that
run in the same process space as the Armani
core infrastructure

— Acme text stream for Acme-compliant tools

— Custom COM interfaces for arbitrary external
tool integration.

» Builds tool-specific, semantically rich, interfacen
top of the generic Armani Java interfaces

