
Rapid Development of Custom
Software Architecture Design
Environments

Robert T. Monroe

Carnegie Mellon University

Introduction and Motivation

� Introduction and motivation

�Capturing design expertise

�Customizing design environments

�Validation

�Wrapup

Software Architecture

�Software architecture design focuses on:
– Decomposing a system into components

– Interactions between those components

– Emergent global system properties

client

server

rpc

System serverDetails

Security
Manager

database

Connection
Manager

Premises

�Software Architects can benefit from
powerful design environments
– CAD in other engineering disciplines

– Design analysis, guidance, and reuse

�The more closely a tool matches the
problem it addresses, the more leverage
that tool provides
– Hammer ↔ Nail, Screwdriver ↔ Screw

Example Environment: C2

Example Environment: Meta-H

Example Environment: Aesop/PF

Example Environment: ObjecTime

Problems

�Building custom design environments is:
– Expensive

– Time consuming

– Difficult

�Designers’ tooling needs change as their
understanding of the problem, domain, and
target system evolves

expertise
expertise

expertise

Generic Infrastructure Custom Environment

Solution: Armani

�Support lightweight, incremental adaptation
and customization of design environments
– Factor out common infrastructure

– Capture variable design expertise

– Configure infrastructure with expertise

Unclogging Bottlenecks

Task Armani changes Gain
Domain analysis - Still requires domain understanding

- …but provides expressive structure

Small

Creating schema
and
capturing expertise

- Armani defines schema and
provides structure for capturing
expertise declaratively

Large

(Re-) design,
implement, integrate
tools, and test
environment

- Core infrastructure reused

- Basic tooling generated from
expertise description.

- Still must implement rich tooling

Huge

Adapt and evolve
environment

- Configurability and modularity
greatly reduces evolution difficulty

Large

Thesis

�Claim 1:
– It is possible to capture software architecture

design expertise with a language and
mechanisms for expressing design vocabulary,
design rules, and architectural styles.

�Claim 2:
– This captured design expertise can be used to

rapidly and incrementally customize software
architecture design environments.

Capturing Design Expertise

� Introduction and motivation

�Capturing design expertise

�Customizing design environments

�Validation

�Wrapup

Architectural Design Expertise

The concepts, models, and rules that
skilled architects use when specifying,
constructing, or analyzing a software
architecture.

Armani provides a declarative language
for capturing architecture design expertise

Capturing Design Expertise

�Design vocabulary
– Building blocks for system designs

– e.g. client, web-server, database, pipe, RPC

�Design rules
– Invariants, heuristics, and analyses

– e.g. “Transaction rate must be >= 1000 tph”

�Architectural styles
– Package related vocabulary and design rules

– e.g. Client-server, pipe-filter, batch sequential

Design Vocabulary Example

Component Type naïve-client = {

Port Request = {
Property protocol = rpc-client };

Property request-rate : integer
<< default = 0; units = “rate-per-sec” >>;

Invariant forall p in self.Ports |
(p.protocol = rpc-client);

Invariant size(Ports) <= 5;
Invariant request-rate >= 0;
Heuristic request-rate <= 100;

}

Design Rule Example
System simpleCS = { …

// simple rule requiring a primary server
Invariant exists c : server in self.components |

c.isPrimaryServer == true;

// simple performance heuristic
Heuristic forall s : server in self.components |

s.transactionRate >= 100;

// do not allow client-client connections
Analysis no-peer-connections(sys : System) : boolean=

forall c1, c2 in sys.components |
connected(c1, c2) ->

!(declaresType(c1,clientT)
and declaresType(c2, clientT));

… };

Architectural Style Example
Style naïve-client-server-style = {
// declare vocabulary
Component Type naïve-client = {...};
Component Type naïve-server = {...};
...
// declare design analyses
Analysis no-peer-connections(sys : System)

: boolean = { ... };
...
// declare style-wide design rules
Invariant no-peer-connections(self);
Heuristic forall s : server in self.components|

s.transactionRate >= 100;
...
} // end style definition

Predicate-Based Expertise Capture

� (Most) expertise represented w/predicates
– Simple type checking tests constraints

– Predicates can be written over structure,
properties, topology

�Clean, flexible approach to subtyping

�Excellent compositionality and modularity

�Predicates can apply to types or instances

Language Supports Approach

�Language provides environment foundation
– Good representations ease environment impl.

– Reconfigures environment “on the fly”

�Language provides flexible representation for
– Types

– Design rules

– Design instances

�Constraint checking forms tool foundation

Customizing Design Environments

� Introduction and motivation

�Capturing Architecture Design Expertise

�Customizing Design Environments

�Validation

�Wrapup

Example Environment: Armani

Customizing Design Environments

�Fundamental approach
– Provide a fully-functional generic environment

– Support fine- and coarse-grained customization

�Key design goals
– Incremental effort leads to incremental payoff

– Standard, common customizations are quick,
easy, and incremental.

– More complex customizations are possible

– Leverage design language as much as possible

Core Environment Infrastructure

Core Design Rep

Architecture Design Representation

Build

Design

Export

Design

Design Parser

Armani Parser

Design Unparser

Armani Unparser

Type Mgr.

Request
Design

Query

Analysis

Request

Design

Query

Report

Error

Analysis Engine

Armani Tool

Error Reporter

Armani Tool

Type Manager

Armani Tool

Java VM

Core Armani
API

Generic elements:
– Design Rep w/API

– Parser & unparser

– Type checker

– Analysis Engine

– GUI
Visio - System Workshop

Visio-based GUI (external tool)

Generic Armani Environment

�Capabilities:
– Define arch.

specifications

– Brings some rigor
to box-and-line
drawings

�Limitations
– Limited semantics

– Architect must
build-up design
concepts

Customization Techniques

�Fine-grained
– Add or modify envt’s stored design expertise

– Customize graphical depictions within a GUI

�Coarse-grained
– Integrate external tools

– Completely replace GUI

Fine-Grained Customization

expertise
expertise

expertise

Generic Infrastructure Custom Environment

Add To or Retrieve
From Design Expertise

Repository Define or
Modify

Expertise

Define or Modify
Visualizations

(repeat)

Coarse-Grained Customization

�Coarse-Grained ≈ external tool integration

�Some expertise is better captured with tools
– When it does something to or with a design

– When it is contained in legacy tools

– When you have to specify how to evaluate it
instead of just what to evaluate

�More effort, (potentially) more power

Integrated Tool Examples

�Multiple Armani user interfaces

�Performance analysis tool (Lockheed study)

�Change impact and configuration
consistency analysis tools (MetaS study)

�Security and fault-tolerance analysis tool
(DesignExpert study)

�Runtime architecture evolution checking
(C2 study)

Integrating External Tools : UIs

�Command Line Interpreter
– Scriptable textual interpreter

– Integrated with direct Armani API calls

– Simple procedure-call connector, same process

Core Design Rep Process

Core Design Rep

Architecture Design Rep.
Full

Java

API

……

…… …

Command

Interpreter

Armani Tool

Java

Method

Invocation TTY

I/O

Integrating External Tools : UIs

�AcmeStudio GUI
– Acme design environment front-end

– Integrated via Acme text stream connector

– Transport protocol encapsulated in connector

Core Design Rep Process

Core Design Rep

Architecture Design Rep.
Full

Java

API

……

…… …

AcmeStudioGUI

Armani Tool

Acme

Text

Stream

AcmeStudio Process

Integrating External Tools : UIs

�Visio-based Armani GUI
– Highly configurable COTS-based front-end

– Integrated using sophisticated COM-based intf.

– Workshops generated by “factory” in connector

Core Design Rep Process

Core Design Rep

Architecture DesignRep.
Visio-

Armani

Intf

……

…… …

Visio System

Workshop

Armani Tool

Interaction
Templates

reads

GUI

Factory

Conn.
Element

Workshops

Armani Tool
Edit

Element()

Visio-

Armani

COM Intf

Design Environment Conclusions

�Environment demonstrates feasibility of
configuring tools with design expertise

�Case studies will demonstrate utility...

�Environment leverages design language

�Support for both fine- and coarse-grained
customization was critical

Validation

� Introduction and motivation

�Capturing Architecture Design Expertise

�Customizing Design Environments

�Validation

�Wrapup

Thesis

�Claim 1:
– It is possible to capture software architecture

design expertise with a language and
mechanisms for expressing design vocabulary,
design rules, and architectural styles.

�Claim 2:
– This captured design expertise can be used to

rapidly and incrementally customize software
architecture design environments.

Experimental Structure

�Basic approach: proof by existence

�Step 1: task analysis
– Establish a baseline and find current bottlenecks

�Step 2: build multiple Armani environments
– Demonstrate breadth, power, and incrementality

�Step 3: external case studies
– Determine if others can use this technique

Step 1: Task Analysis Findings

�Current techniques require months or years
of effort to build a custom environment

�Currently, most development time and effort
is devoted to (re)building infrastructure

� If adaptability is not built in from the
beginning, evolving an environment can be
very difficult

Step 1: Task Analysis
Approximate Time Required (in Engineer/Days, Weeks, Months, or Years)

Best Case Average Case Worst Case

Task

Traditional Armani Traditional Armani Traditional Armani

(1) Domain
Analysis

Week Week Month Weeks Years
Months or

Years

(2) Schema
Capture

Days Hours Weeks Days Months Weeks

(3) Design,
implement, test
and deploy
environment

Months
Hours
or Days

Months or
Years

Days or
Weeks

Years Months

Cumulative time
to initial
deployment

Months Days Months or
Years

Weeks Years or
never

Months or
never

(4) Time required
for environment
updates and
modifications.

Hours or
Days

Minutes
Weeks or
Months

Hours Months Weeks

Step 2: Build Test Environments

�Demonstrate breadth, power, incrementality
– Breadth: build environments for diverse styles

– Power: add significant design expertise to the
environments

– Incrementality: adapt and extend environments

�Style selection
– All case studies based on published style specs

– At least one from each “Boxology” category

Step 2: Environments Built

Total Hours Types Design Rules Shapes
Base Style Specific Style of Effort Defined Defined Defined

Call and Return Base Driver-Subprogram 6.50 18 3 7

Driver-Subprogram w/DB 4.00 12 6 12

Data-Centric Naïve client-server 2.75 7 3 5

Repositories Three-Tier client-server 3.50 9 1 12

Hierarchical Layered 7.25 11 3 6

Data Flow Batch Sequential 9.25 29 3 14

Data Sharing Armani Design Envt. 4.50 (*) 39 3 *

Interacting
Processes C2 rebuild in Armani 8.00 39 7 5

Step 2: Driver-Subprogram Style
Driver-Subprogram Style

Category: Call and Return

Semantics Statistics

Primary component types:

- Driver

- Subprogram

- Subdriver

Primary connector type:

- Processing Request

Sample design rule:

- A system has exactly one

toplevel Driver component,

but may have multiple

Subdriver components.

New types defined: 18

Style-wide design rules: 3

Time to define: 3.5 hours

Lines of Armani code: 73

Environment Statistics

New shapes defined: 7

Customization time: 3 hours

Step 2: DB-Driver Subprogram Style
DB-Driver-Subprogram Style

Category: Call and Return

Semantics Statistics

Extended component types:

- Transaction Manager

- Database

- DB Access SubProgram

Extended connector types:

- DB Query Update

- Transaction Request

Sample design rule:

- A system has exactly one

Transaction Manager that must be

connected to all databases.

New types defined: 12

Additional design rules: 6

Time to define: 2.0 hours

Lines of Armani code: 63

Environment Statistics

New shapes defined: 12

Customization time: 2 hours

Step 3: External Case Studies
�Qualitative “external” case studies asked:

– Can other people use Armani effectively?

– Powerful design expertise capture capabilities?

– What aspects of Armani worked well?

– What worked poorly?

�Case study selection criteria
– Real architects or developers

– Solving a real problem

Step 3: External Case Studies
�Conducted four external case studies:

– SEI’s MetaS architectural style project
» Change impact and configuration consistency analysis

– UC Irvine C2-integration
» Run-time architecture evolution analysis

– Lockheed Martin/EDCS
» Built environment to model and analyze GTN

» Integrated performance analysis tool

– KeySoftware’s “DesignExpert” tool
» Developed analyses for reliability and fault-tolerance

Step 3: Case Study Observations

�Can other people use Armani effectively?
– Yes.

�Powerful design expertise capture?
– Yes.

– Case studies spanned broad variety of expertise

– Case study tools solved real design problems

Step 3: Case Study Observations

�What aspects of Armani worked well?
– Core concepts are flexible and powerful

– Design representation and checking
infrastructure more valuable than GUI

�What did not work so well?
– Declarative design language requires

reorientation of thought process

– Building complex analysis and generation
tooling still requires significant effort

Wrapup

� Introduction and motivation

�Capturing Architecture Design Expertise

�Customizing Design Environments

�Validation

�Wrapup

Contributions

�A techniquefor rapidly developing custom
software architecture design environments

�A design languagethat captures both design
expertise and architectural instances

�A reference architecturefor highly
configurable design environments

�A set of case studiesthat illustrate how to
use the technique, language, and
environment effectively

Related Work

�Aesop and Acme

�Architecture Description Languages (ADLs)

�Configurable programming environments
– esp. Gandalf and The Synthesizer Generator

�Design patterns

�Formal specification languages (esp. PVS)

�Constraint-based prog. tools and languages

�DSSA

Future Work

�Generalized reconfiguration strategies

� Integration with full lifecycle processes

�Guidance in selecting styles and expertise

�Discovering new uses for the tools

Conclusions

�The Armani approach to capturing design
expertise and incrementally configuring
design environments works.

�The Armani conceptual framework can
capture a significant range of interesting
architectural design expertise.

�Predicate types are a useful abstraction for
capturing and composing design expertise

The End

Robert T. Monroe

Carnegie Mellon University

Predicate Composition

Type FastT = {
Prop. latency = …
Prop. throughput = ...
Invariant latency < …
Invariant throughput >…

}

Type DatabaseT = {
Prop. schema = …
Prop. transRate = …
Prop. multiThreaded = ...

}

Type TransactionalT = {
Prop. transProtocol = …
Prop. rollbackPolicy = ...
Invariant (transProtocol

!= “”)
}

Type FastTransDatabaseT = {
Prop. schema = …
Prop. transRate = …
Prop. multiThreaded = …
Prop. latency = …
Prop. transProtocol = ...
...

}

subtypes

Standard Customization Process

�Load design expertise captured with
Armani design language into generic envt.

�Create custom icons to represent new
design elements (optional)

�Modify expertise as needed

�Repeat

Linked Tool
Interface

Connector
Workshop

Component
Workshop

Core Java Representation

Armani Design
Representation

Compo
nent

Visio - System Workshop

Conne
ctor

...

COM
Methods

"Linked"
Armani

Tool
(or intf)

Type
Manager/

Constraint
Checker

IDispatch

Type Workshop

Java-Based
Workshops

"Pure-Java" Design
Representation

Java VM

EditMe()

UpdateMe()

EditMe()
UpdateMe()

EditM
e()

UpdateMe()

COM
Methods

Armani
Parser

Armani
Exporter

Textual
Armani

Description

Creates

Reads

W
ri

te
s

R
ea

d
s

GUI InterfaceClass

E
x
p
e
r

tise

Obsolesced slide...

�Tools manipulate Armani designs through a
programmatic API. (In or out of Java VM)

Armani Environment Architecture

Linked Tool
Interface

Connector
Workshop

Component
Workshop

Core Java
Representation

Armani Design
Representation

Compo
nent

Conne
ctor

...

COM
Methods

"Linked"
Armani

Tool
(or intf)

Type
Manager/

Constraint
Checker

IDispatch

Type Workshop

Java-Based
Workshops

"Pure-Java" Design
Representation

Java VM

EditMe()

UpdateMe()

EditMe()
UpdateMe(

)

EditM
e()

UpdateMe()

COM
Method

s

Armani
Parser

Armani
Exporter

Textual
Armani

Description

Creates

Reads

W
ri

te
s

R
ea

d
s

GUI InterfaceClass

E
x
p
e
r

tise

Visio - System Workshop

Generic Armani Environment

�The generic Armani environment provides:
– API for manipulating design representation

– Parser and unparser for design language

– GUI

– Design checker

– Tool integration framework

Customizing Visualizations

�Different types of vocabulary elements
require different visualizations

�Visio,™ used as the generic GUI front end,
handles visualization specialization

�GUI Front-end is just another tool
– It can be exchanged for a different front-end

– Visualizations are highly independent of
underlying semantic representation

Customizing Visualizations

� Challenge: Visualization semantics don’t work
compose like architectural semantics

� Solution:
– Associate visualizations with “templates” or “macros”

instead of types.

Inheritance
Model

Blocking
CompT

DB

BlockingDB vis?

Blocking
CompT

DB

BlockingDB

Macro
Model

Task Analysis - State of Practice

Approximate Time RequiredTask

Best Case Average Case Worst Case

(1) Domain Analysis Week Month(s) Year(s)

(2) Schema Capture Days Weeks Months

(3) Design,
implement, test and
deploy environment

Month(s) Months or Years
Years or until project

cancellation

Cumulative time to
initial deployment

Months Months or Years Years or until
project cancellation

(4) Time required for
environment updates
and modifications.

Hours or Days Months Months

Creating a Design Environment

�Creating a custom environment requires ...

– Domain analysis

– Create schema for designs and design expertise

– Design, implement, test, and deploy envt.

– Modify and evolve environment as needed

Integrating External Tools : UIs

�Armani UI implemented as external tool

�Three integration connector types provided:
– Direct Java API call for Java-based tools that

run in the same process space as the Armani
core infrastructure

– Acme text stream for Acme-compliant tools

– Custom COM interfaces for arbitrary external
tool integration.

» Builds tool-specific, semantically rich, interfaces on
top of the generic Armani Java interfaces

