
An Approach to Preserving Sufficient Correctness in Open Resource Coalitions

Orna Raz Mary Shaw
Institute for Software Research, International Institute for Software Research, International

School of Computer Science School of Computer Science
Carnegie Mellon University Carnegie Mellon University
Pittsburgh PA 15213 USA Pittsburgh PA 15213 USA

+1-412-268-1120 +1-412-268-2589
http://www.cs.cmu.edu/~ornar/ http://www.cs.cmu.edu/~shaw/

orna.raz@cs.cmu.edu mary.shaw@cs.cmu.edu

Abstract
Most software that most people use most of the time needs
only moderate assurance of fitness for its intended purpose.
Unlike high-assurance software, where the severe conse-
quences of failure justify substantial investment in
validation, everyday software is used in settings in which
occasional degraded service or even failure is tolerable.
Unlike high-assurance software, which has been the subject
of extensive scrutiny, everyday software has received only
meager attention concerning how good it must be, how to
decide whether a system is sufficiently correct, or how to
detect and remedy abnormalities. The need for such tech-
niques is particularly strong for software that takes the
form of open resource coalitions – loosely-coupled aggre-
gations of independent distributed resources. In this paper
we discuss the problem of determining fitness for purpose,
introduce a model for detecting abnormal behavior, and
describe some of the ways to deal with abnormalities when
they are detected.

Keywords
Medium-assurance software, everyday software, fitness for task,
fault tolerance, open resource coalitions, sufficient correctness,
software homeostasis, distributed component-based software

1 Introduction
Most software in everyday use is not “correct”, yet it sup-
ports a wide variety of useful work. We consider some of
the special problems that arise when software relies heavily
on external resources outside the control of the developer.
We present an approach to working with software that is
“sufficiently correct” – fit for its intended use. We focus on
ways to maintain sufficient correctness even when the
external resources change or malfunction.

Changing technology has enabled a new computing para-
digm based on coalitions of network-based resources. We

focus on this setting because, even more than most soft-
ware, these coalitions are subject to forces outside the
user’s control. The usual problems of software system
fragility are exacerbated in this setting: system reliability is
vulnerable to network and resource reliability and the like-
lihood of problems increases with the number of
independent resources, especially since they are managed
independently and used without commitment for support.

Previously we described open resource coalitions [19] and
introduced a framework for studying fitness to task
(sufficient correctness) and resilience to operating abnor-
malities (software homeostasis) [20]. Here we explore the
problem of achieving software homeostasis, with emphasis
on techniques for detecting abnormalities, or excursions
from normal operation. We introduce a model for system
degradation and the correspondence between user-visible
failures and underlying faults, and we propose an approach
to detecting abnormalities and remedying them.

2 Everyday software
We are interested in software that does not require high-
assurance guarantees, for example because interactive use
allows human oversight or the cost of failure is low. Such
everyday software needs only everyday assurances. This
widens our options for implementation and analysis tech-
niques. For example, everyday software might

• Include fallible information such as reviews, experience,
historical record and reputation in analyses.

• Deal with abnormalities by detection and repair rather
than prevention.

• Use imperfect parts.
Prior work has studied ways to handle inconsistencies dur-
ing system development (with the objective of eliminating
the inconsistencies before system release [7, 8, 17]), or in
execution (treating them as exceptional conditions [2] or
using requirement/design information [10]), or in specific
domains[6].. Here we are interested in constructing useful
software systems from components that are likely to be
fallible in operation and are outside our control. Our
approach is generally in the class that Nuseibeh calls
“amelioration” [17].

2.1 Open Resource Coalitions
The recent exponential expansion of the Internet, especially
through the access mechanism of the World-Wide Web,
enables a new set of architectural opportunities. The Inter-
net hosts a wide variety of resources: primary information,
communication mechanisms, real-time data feeds,
invokable applications, control that coordinates the use of
resources, and services such as secondary (processed)
information, simulation, editorial selection, or evaluation.

These resources are independently developed and inde-
pendently supported. Client software created by or for a
specific user can invoke these resources as components in a
software system. In stark contrast to traditional closed-shop
development, the development mode here is aggressively
open-shop, with constituent parts remaining under control
of their developers. Often, the client’s use of a resource is
not known to the resource; indeed, the client may rely on
incidental properties of resources that the proprietor of a
resource has made no commitment to supporting.

The resulting systems are vulnerable to unannounced
changes in the underlying services, so they are more appro-
priately regarded as coalitions than as systems. The selec-
tion and composition of resources is likely to be done
afresh for each task (or even dynamically during process-
ing), as resources appear, change and disappear. These
software assemblages are open resource coalitions [19].
They are open in a sense even broader than that of Das and
Fekete [5], who study systems in which components are
designed to operate in many different environments: their
setting requires active cooperation among the components
to achieve a distributed commit protocol.

Figure 1. Architecture of open resource coalitions

Figure 1 shows the typical architecture of an open resource
coalition. The user is served by a local client that invokes
resources over a network as well as local code to produce
results. A variety of invocation protocols may be involved.
For simplicity, we consider resources available over the
Internet via World Wide Web protocols. Issues of everyday
utility and fitness to task are particularly pertinent for these
coalitions, because the architecture is intrinsically vulner-
able to faults outside the developer's control. These prob-
lems are exacerbated when information from resources is
further processed, rather than simply viewed by a human.

2.2 Sufficient Correctness
As noted above, everyday software often behaves imper-
fectly, yet we manage to get useful work done. Two factors
affect our tolerance for abnormal behavior. First, we are
usually less concerned about abnormalities when we are
confident that we'll notice the problems and try again or fix
the problem. Second, we are usually less concerned about
abnormalities when their consequence is small. As Figure 2
suggests, these two factors establish a space in which we
can differentiate the significance of various abnormalities.

Figure 2. Region of everyday software

Everyday software lies in the shaded region of Figure 2.
For everyday assurance we ask the question, “Is it good
enough for the use I intend?” Moreover, we are interested
in gaining assurance about fallible systems built from
fallible parts. Improving the quality of the individual
resources is an interesting question, but a different one.

The intrinsic uncertainties of open resource coalitions,
especially network performance and independent manage-
ment of resources, make such coalitions inappropriate as an
architecture for the critical systems in the upper right
corner of the space. However, the shaded area of Figure 2
contains many examples for which responsible risk man-
agement may find the cost of gaining full confidence higher
than the cost of detecting and repairing failure. For such
systems, we are interested in sufficient correctness: whether
the system can be trusted to do what we intend to use it for,
and do it well enough for practical purposes. The result of
the analysis should be an envelope of allowable behavior
that is captured in the coalition’s credential [18] so that it
sets the standard for initial and ongoing validation.

In addition to simply asking whether useful results can be
obtained from imperfect systems, we investigate ways to
make component-based systems less fragile than their
individual constituent components.

3 Software Homeostasis
Homeostasis is the propensity of a system to
automatically restore its normal, or desired, or
equilibrium state when something occurs to upset or
disturb that state. Software homeostasis as a

software system property refers to the capacity for
monitoring system behavior and dynamically
modifying the system to repair abnormalities, or
deviations from expected behavior [20].

The user is interested in the results that the system delivers,
so our model addresses end-to-end behavior. For everyday
software, a user often doesn’t need exact results, but rather
expects results that lie in some envelope of normal opera-
tion. A user can also cope with some degree of degraded
operation, but if even that lower expectation is not realized,
the system is broken. We begin with a qualitative model to
develop intuition and discuss the problems associated with
making the model and state definitions more precise.

3.1 Normal and abnormal operation
The traditional model of a software system recognizes only
correct and incorrect behavior. The traditional model often
assumes that a specification of correct behavior actually
exists. Such a traditional system is not influenced by exter-
nal events, so if it ever breaks, it stays broken. Figure 3
illustrates the major states of such a system: It begins oper-
ating in normal state; during a given time interval it has
some probability PNB of breaking, and if it ever breaks it
remains broken. The longer the program runs, the more
likely it is to become (and remain) broken

Figure 3. Traditional model of software failure

More complex systems often have more complex criteria
for acceptable behavior, They are often specified only
incompletely or informally. In addition to the set of normal
behaviors, they may remain somewhat useful in a degraded
state. The degradation might, for example, involve per-
formance, precision, or even parts of the desired informa-
tion. In addition, real-world systems are often influenced by
external events. For example, distributed systems degrade
or break when network service is disrupted, and they often
return to normal service when the network problems are
repaired. Similarly, the independent resources that contrib-
ute to a coalition may experience service interruptions that
are repaired by the resources’ proprietors. Following Arora
and Kulkarni's model [1], we can consider introducing an
explicit state corresponding to degraded operation.

We are interested in these more realistic systems, which are
"biddable" in Jackson's sense [14]. Figure 4 shows relations
among the major states of these systems. They still break
during a given time interval with probability PNB, but they
also degrade with probability PND (and subsequently break,
of course, with probability PDB). In addition, system prob-
lems may be repaired through external events (spontane-
ously, from the standpoint of the system) that induce
transitions PBN, PBD, or PDN as shown in Figure 4.

Figure 4. Degradation and failure in ideal systems

Unfortunately, Figure 4 assumes not only precise specifi-
cations of normal and broken behavior, but also explicit
distinctions between normal and degraded behavior. For
everyday software it may be more useful to take the view
suggested by Figure 5. This view makes only soft distinc-
tions among the states, emphasizing instead that transitions
may degrade or improve performance and that there is a
sometimes-fuzzy distinction between working and broken.
It suggests adding transitions in all operating regions to
deter or repair deterioration. In doing so it sacrifices the
simplicity of the state model for analysis, but it also shows
that much of the apparent simplicity is artificial.

Figure 5. Degradation and failure in real systems

3.2 Achieving homeostasis
Adopting the view of everyday software in Figure 5 sets the
stage for adding healing mechanisms to systems. In the
shaded region of Figure 2, the cost of preventing failure
may be much greater than the cost of coping with degraded
service or even failure. The need for healing mechanisms is
particularly great for open resource coalitions, where the
usual fragility of software is compounded by the use of
remote resources without commitment for support.

To achieve homeostasis in practice we must: (a) establish
(even informally) the regions of normal, degraded, and
broken operation, (b) identify ways to detect or deter the
faults; (c) add mechanisms to the implementation that will
tend to restore or preserve normal operation.

Figure 6. Effects of homeostatic mechanisms

Adding mechanisms that monitor system behavior and take
remedial action as necessary has the effect of altering the
transition probabilities to better favor preserving or
restoring normal behavior, as suggested by the stronger
upward transitions in Figure 6. These mechanisms include
both deliberate repair and automatic housekeeping.

3.2.1 Defining acceptable regions of operation.
Preserving sufficient correctness in a system depends on
recognizing normal, degraded, and broken states. Ideally,
these states would be formally specified. Practically, how-
ever, this is unlikely: specifications are difficult and
expensive to develop, and they are intrinsically incomplete
[18]. They will rarely be justified for everyday systems.

A more realistic option is to use information that we can
reasonably expect to be (or become) available. Fortunately,
the amount of information available increases through the
life of the system. It can come from many sources:

• Whatever specifications do exist, including

• information provided by self-describing resources
(e.g. XML)

• credentials provided by a third party covering
functionality, quality, etc.

These specifications will usually be incomplete, and
information may come in different formats and different
precisions for the various resources in a system.

• Semantic redundancy among resources (duplicate re-
sources, overlapping resources, or resources with differ-
ent treatment of comparable content) or within resources
(internal consistency, consistency of change over time)

• Historical information on individual resources, such as:

• data collected on the behavior of a resource as used
in a particular coalition (e.g., by the coalition)

• data collected on the wider behavior of a resource
(e.g., by its proprietor or a third party)

• Historical information on the coalition itself, including
interactions with the user about its fitness

Even if the original specifications are quite informal, usage
statistics can be collected and interpreted over time, thereby
refining the definitions of the states. We are investigating
statistical techniques, especially with user feedback, for this
approach. Techniques such as Ernst’s [9] for dynamically
detecting the de facto invariants are also promising.

We do not rely critically on a precise, explicit distinction
between normal and degraded operation. User under-
standing of everyday systems is largely informal, so we
must handle distinctions that are informal and often qualita-
tive [4]. Even so, partial information can be enough to im-
prove overall behavior. Further, many of the mechanisms
of interest serve both to preserve and to restore health.

3.2.2 Precision of transition estimates. The usual level
of specification in an everyday system does not support
high precision in failure estimates. This is especially true
for resource coalitions that depend on incompletely
specified external resources. However, even an
inexperienced developer can make qualitative, even rank-
ordered, estimates. It follows that analysis techniques must
be able to work with ordinal-scale data until enough infor-

mation is available to support ratio-scale analysis [3, 4, 11].
We can nevertheless consider the likelihood of transitions
that improve or degrade system behavior.

The probabilities of transitions in system behavior should
be composed from the probabilities of individual faults. As
more data becomes available, the individual estimates, as
well as the overall estimate, can be refined. An initial re-
finement would convert the estimates to be quantitative.
Further refinement would improve their accuracy. This
could be done through observations of the system’s behav-
ior (self-monitoring along with user-provided refinements,
due to better understanding of the system), or with infor-
mation and specifications provided by a third party.

With refined estimates, it seems plausible to predict overall
system behavior with a Markov model derived from the
state diagram of Figure 6. The initial model might simply
be an educated guess, and progressive improvement might
result from applying machine learning and inference tech-
niques (e.g. Bayesian methods or max likelihood).

3.2.3 Detecting abnormalities. Homeostasis can be
realized through a combination of ongoing maintenance
and explicit detection and repair of abnormalities. The
former is especially important when the operating regions
are defined informally. In any case, some abnormal cases
will be known explicitly. For these it is useful to detect
failures or impending failures. Such detection mechanisms
are a major focus of this paper, and we deal with them in
more detail in Section 5.

Following standard usage [15], a software failure is a result
that violates the specification or an unexpected software
behavior observed by the user. A software fault is the
identified or hypothesized cause of the software failure.

Our model of system health represents failures as seen by
the user. The actual mechanisms that restore or preserve
normal operation handle faults in the implementation. To
do this, we must (a) identify the types of faults that cause
transitions between system states; (b) establish mappings
between failures and faults, and (c) use multiple techniques
to detect faults. Section 5 elaborates on these points.

3.2.4 Restoring and preserving normal operation.
When abnormal (degraded or broken) behavior is detected,
the homeostatic mechanisms should operate to restore nor-
malcy if possible. Recovery mechanisms include:

• Find another route to the same data (e.g. mirroring)
• Use a format converter (e.g. for format problems)

• Retry (e.g. for connectivity problems)

• Use an alternate resource (e.g. with equivalent data)

• Compute the result another way (e.g. use several other
resources from which the result can be inferred)

If it is not possible to restore normal operation, the user
may continue work with degraded service, for example:

• Extrapolate from prior data (e.g. guess current tem-
perature based on a model of normal change together
with recent data)

• Accept degradation of service (e.g. reduce amount of
data, accept lower performance, update less frequently)

• Proceed without missing information (e.g. when trying
to find best price, proceed based on available bids)

In Figure 7 we classify faults according to their origin in
the system’s architecture. Such a classification is useful for
understanding what recovery mechanisms are applicable.
For example, a fault originated at the client cannot be
treated by alternating source (a server related recovery).

Recovery is achieved via a combination of automatic,
semiautomatic, and manual intervention. Automatic recov-
ery requires no user intervention. Semiautomatic interven-
tion consults the user for approval before taking suggested
actions. Examples include (a) the user may wish to preserve
the option to reject certain actions the system is capable of
automatically executing (such as installing plug-ins); (b)
the system may list several options for the user to choose
from. Manual intervention requires the user to think and
possibly to supply additional information or to take action.
Examples include (a) the system may issue a warning indi-
cating a possible problem, and the user may decide whether
this requires action; (b) the system may require additional
data or authorization from the user (e.g. to register with a
resource and authorize payment).

Many recovery techniques (plus housekeeping mechanisms
that run routinely instead of in response to faults) can also
be used during normal operation to prevent excursions from
that state. For example, if the system detects that the
content of a web page has recently changed radically and
that the new page contains a redirect, no failure will appear
to the user. Nevertheless, it is often prudent to update the
coalition's URL to the target of the redirect instead of
waiting until the redirect page expires and the link breaks
(thereby losing the redirect address).

4 Our case study: noncritical health support
The IWSSD case study sketches a teleservices and remote
medical care system (TRMCS) [13]. This study emphasizes
high-assurance services, including reliability of a distrib-
uted system, privacy, etc. There are important differences
between the underlying design objectives of the case study
and the underlying objectives of our work in preserving
sufficient correctness in open resource coalitions:

• The case study emphasizes safety-critical assurances,
but our interest is in everyday assurances for everyday
problems.

• The case study assumes that a system will be developed
with closed-shop methods, then installed for the user as
a turnkey package. Our interest, however, is in enabling
developers to create systems from existing resources

that serve their own particular needs.
We share other assumptions of the case study, and our vari-
ant retains these characteristics: the distributed character of
the system, the need for data fusion, and the existence of
some requirements for performance and availability

Since we are interested in a significantly different point in
the design space, we discuss a variant of the case study. In
place of the critical-response scenario, we consider support
for an individual with a combination of stable chronic
conditions and a personal interest in health and fitness. We
sketch a distributed system that will provide this individual
with information, advice, reminders, and loosely-coupled
monitoring by a medical support office. Details of this
adapted case study appear in the Appendix.

5 Detecting abnormalities
We present an approach for detecting degraded or broken
operation. The approach involves classifying faults, map-
ping between faults and failures, detecting faults with a
variety of techniques and making tradeoffs. To illustrate
this approach, the Appendix walks through detection
scenarios in our variant of the case study.

5.1 Fault classification
The user’s view of the system, and hence the operating
regions, is expressed in terms of visible failures (or their
absence). Those failures will be consequences of specific
faults in the system implementation. Figure 7 shows places
in the resource coalition architecture where faults can
occur. We classify faults primarily according to their origin
in the system: client, network server, or resource.

Figure 7. Sources of faults that create failure

The system failure space can be divided into levels,
producing the following hierarchy:

• Connectivity: "Can I get any data at all"?

• Syntax (structure and format): "Can I parse the data?"

• Semantic: "Does the data make sense?"
Network faults cause connectivity level failures (Figure 7).
Client faults cause syntax or semantic failures. Server faults
cause mainly connectivity failures, whereas resource faults
cause syntax or semantic failures.

Faults do not always cause failures. Frequently, however,
they degrade the overall health of the system (Figure 5).
Since this gradual slide can eventually lead to failure, it is
often appropriate to repair even faults that did not lead to
visible degradation or failure.

5.2 Fault-failure mapping
To implement mechanisms for failure prevention and
recovery, we must establish a correspondence between the
user-level failures and the faults that arise in the imple-
mentation. Tables 1 and 2 give examples of such mappings.

Failure

 Fault

Pe
rf

or
m

an
ce

: s
lo

w
co

nn
ec

tio
n

ER
R

 fa
ile

d
D

N
S

lo
ok

up

ER
R

50
3

se
rv

ic
e

un
av

ai
la

bl
e

ER
R

 h
os

t
un

kn
ow

n,
 u

na
bl

e
to

 lo
ca

te
 h

os
t

ER
R

 fi
le

 c
on

ta
in

s
no

 d
at

a
ER

R
 c

on
ne

ct
io

n.
re

fu
se

d

DNS down X X X
Proxy down X X
Server down X X
Server not running
HTTP

X X X X

Network problems,
Insufficient bandwidth

X X X

Server overloaded X X X

Table 1. Connectivity failure – fault mapping

The mapping between faults and failures is not unique.
Indeed, a failure may be caused by a combination of faults.
Fortunately, we only need to identify the underlying fault
precisely enough to initiate recovery. The same recovery
measures may apply to multiple faults, so fine discrimina-
tion between faults is often not necessary. For example, if
unreasonable output values are detected, it is possible to
map the problem to one of several groups of possible
causes (data consistency, interaction, redirection, addition,
removal, semantic, format, structure). The class of data
consistency failures (changes in basis for reporting or in the
underlying data scheme) could be handled by accepting
degradation of service (accuracy in this case) or by
switching to a semantically redundant resource.

Some failures can be detected easily. These include per-
formance problems and failures announced by explicit error
messages (e.g., HTTP protocol-level errors). Other failures,
especially semantic failures and some format and structure
related failures, may be very hard to detect. To do so may
require continuous monitoring of a resource’s behavior,
possibly along with monitoring semantically redundant
resources. Semantic failures, in particular, are often defined
in application-dependent terms.

Statistical techniques such as machine learning techniques
can reveal trends and discrepancies. Initial experiments
indicate that information retrieval techniques (word
frequencies and document distance metrics) are useful for
detecting unexpected content. User feedback is required for
improving the definition of the normal behavior envelope,
especially for semantics. This would improve accuracy, and
lessen the amount of user intervention for failures.

Failure

 Fault

U
nr

ea
so

na
bl

e
ou

tp
ut

 v
al

ue
s

U
nr

ea
so

na
bl

e
ou

tp
ut

 ty
pe

s

C
om

bi
na

tio
n

(v
al

ue
s

an
d

ty
pe

s)
So

m
e

ou
tp

ut
 v

al
ue

 th
at

 s
ho

ul
d

be
up

da
te

d
st

ay
s

fix
ed

al
l

ou
tp

ut
 v

al
ue

s
th

at
 s

ho
ul

d
be

up
da

te
d

st
ay

 fi
xe

d
pr

og
ra

m

br
ea

ks

(h
an

g,

ab
or

t,
cr

as
h)

ER
R

40
0

ba
d

re
qu

es
t

ER
R

40
1

 u
na

ut
ho

riz
ed

ER
R

 c
on

ne
ct

io
n

re
fu

se
d

by
 h

os
t

ER
R

40
4

pa
ge

 n
ot

 fo
un

d
ER

R
 b

ad
 fi

le
 re

qu
es

t
ER

R
 m

is
si

ng
 p

lu
g

in
Pa

rt
s o

f p
ag

e
no

t d
is

pl
ay

ed

Data not updated at all X
Some dynamic data not
updated

X

Basis for reporting
changed, e.g. counting
rules)

X X X X

Underlying data scheme
changed.

X X X X

Interaction required (e.g.
need to login)

X X X X X X X

Redirection X X X X
Addition (e.g. provide
more services)

X X X X

Removal (e.g. provide
less services)

X X X X

Semantic of all fields
changed (e.g. different
service)

X X X X X X

Format of data changed
(same content)

X X X X

Html structure change,
appearance the same (e.g.
CSS)

X X X X

Html structure change,
appearance change

X X X X X X

Missing plug in X X
Browser doesn’t support
feature

X X

Table 2. Semantic and syntax failure – fault mapping

5.3 Fault detection
The client’s objective is end-to-end delivered service.
Faults can defeat this objective in many ways, and there are
correspondingly many ways to detect and repair faults.
Point solutions to many problems of connectivity and syn-
tax exist now, but the semantic level is largely unexplored.

Some examples of faults, means for detecting them, and
remedies are:

• A server is overloaded. This is detected by performance
problems at the client that are unique to that server.
Switching to a mirror site may solve this problem

• The client is missing a plug-in. This is detected by a
browser error message or a dialog offering to download
a plug-in. The problem is solved by installing the plug-
in, possibly after requesting user approval, or by
deciding to accept degraded service without the plug-in

• Local connection to the network is lost. This is detected
by inability to get data from any server. In some
facilities, a facility staff handles network problems; in
these cases the client should usually keep retrying until
the server is up again. In other facilities, network
connectivity is the responsibility of individual users; in
these cases manual intervention may be needed.

Detection techniques are diverse, not only due to the diver-
sity of faults, but also due to the diversity in the sources of
information available for determining the normal and
degraded states. For example, some detection techniques,
especially at the structure/format and semantic levels, may
be based on monitoring. Monitoring is done based on the
available information, yielding the following flavors:

• Monitoring for adherence to explicit specifications (e.g.,
server availability [21])

• Monitoring semantically redundant resources to detect
when one behaves significantly differently from the
others (e.g. it gives a nutrition value that is much lower
than the other resources give)

• Tracking a single resource against its prior history (e.g.
notice what parts of the data historically change, and
make sure new data is changed accordingly; monitor
response time of a server and notice degradation)

The applicability of detection techniques and their accuracy
depend on the fault type and the information available. The
research challenge is to find a framework for integrating
individual point solutions and to add solutions where there
currently are none, especially at the semantic level.

5.4 Design, synergy and tradeoffs
Detection techniques differ in type (the kinds of faults they
can detect), effectiveness (the likelihood they will detect a
fault), requirements (e.g., cooperation of servers, avail-
ability of similar resource) and cost/performance.

Using the techniques in isolation will yield scattered and
incomplete results. More comprehensive detection requires
coordination among techniques. In addition to coordination
for coverage this must take into account cost-benefit
tradeoffs. For example, one technique for detecting a
semantic fault might be effective but costly (e.g., large data
and bandwidth) whereas another might be less effective,
but also less costly. The choice would depend on the user's
perception of the incremental benefit of the former.

Using a combination of techniques based on several infor-
mation sources may enable detection of problems that each
of the techniques alone is unable to detect. These can be
new classes of problems, or finer granularity in detection

within some class of problems. Combining techniques may
have additional benefits, if information is accumulated over
time. It seems promising to apply statistical techniques to
accumulated data to find patterns that typically precede
faults. This could be especially helpful in detecting
semantic and syntax abnormalities as they occur.

Combining and integrating results from different tech-
niques and information sources requires careful attention.
Different techniques may conflict with each other, and the
entire suite of possible techniques is likely to be overkill in
any specific application. Users should be able to select the
parts that are relevant to their problems. They should also
be able to determine the cost or effectiveness of detection.

It follows that for appropriate cost-effective detection, we
need to take into account cost-benefit tradeoffs, perform-
ance overhead, effectiveness of combining techniques, ad-
vantage of information accumulated from several detectors,
and from several sources of information, and conflicts
arising from combining techniques

6 Discussion
We have described work in progress, including a model and
preliminary design for adding homeostasis to interactive
software systems, particularly open resource coalitions. We
now sketch our plans for developing these ideas.

6.1 Quality of Semantic Service
We see a potential for making statistical guaranties to the
client. To do that, we would need to model the quality of
the overall service delivered to it. Models exist at the
connectivity level for Quality of Service (QoS), usually
related to network resources availability. We envision a
model for Quality of Semantic Service (QoSS) , to enable
guarantees at the upper levels. Both detection and recovery
involve tradeoffs, so dimensions along which statistical
guarantees can be made remain to be defined.

6.2 Fault tolerance and Markov models
To show that a system's overall health is better with
homeostatic support than without, it seems feasible to adapt
fault-tolerance models and to use Markov models. Huang et
al [12] argue that the most important dimensions of fault
tolerance, from the user’s point of view, are availability and
data consistency of the application. The emphasis on each
dimension varies in accordance with the nature of the
application. They observe that most applications have mod-
est degrees of requirements along these dimensions, but the
trend is to (cost effectively) increase those degrees. They
put the application software layer on top of the hardware
and operating/database system layers. Then they use an
end-to-end argument to claim fault tolerance is needed at
the application level.
To adapt this model from closed applications to our open
model, we place the semantic level on top of the connec-
tivity and syntax levels. The important dimensions become

connectivity and semantic consistency. We can place a
system without homeostasis along these dimensions and
check to see whether the added mechanisms contribute
towards higher semantic consistency with an acceptable
increase in performance overhead. If we can create a
Markov model for our system (e.g., based on [16]), we can
also verify that the limiting probability of being in the
broken state decreases.

6.3 Validation plans
To evaluate our model and an implementation we must
show that the added homeostatic mechanisms improve the
system’s overall health. This entails

• Showing effectiveness of detection mechanisms, in-
cluding adaptive techniques for refining specifications.

• Showing effectiveness of the individual prevention and
repair mechanisms.

• Showing that the framework makes suitable provisions
for coordinating multiple mechanisms, including cost-
effectiveness tradeoffs.

• Estimating costs of detection and repair in benchmark
scenarios.

• Estimating benefits of preventing system failures and
comparing those to the costs of detection and repair.

6.4 Applicability to high assurance software
It's tempting to think that the homeostasis model applies to
high-assurance software as well as everyday software.
After all, adding monitoring to prevent excursion from
normal operation is a reasonable safety feature. We suspect
that the model does apply in a general way, but that doing
so will require different treatment of details. For example,
the states of interest are almost certainly different: the high
assurance case surely requires more precise specifications
of acceptable states. Our model assumes that the developer
has no control over individual components – high assurance
applications require guarantees about these parts and about
the protocols that invoke different parts. Finally, most high-
assurance techniques assume closed-shop development, and
hence control over all the components.

Acknowledgements
This research is supported by the School of Computer Science at
Carnegie Mellon University. We thank Phil Koopman and Shawn
Butler for their advice and support.

References
1. Anish Arora and Sandeep Kulkarni. Component based design

of multitolerant systems. IEEE Tr. Software Engineering, vol
24, no 1, Jan 1998, pp. 63-78.

2. Robert Balzer. Tolerating Inconsistency. Proc. ICSE-13: 13th

Int'l Conf on Software Engineering, May 1991, pp. 158-165.
3. L. Briand, K. El-Emam, and S. Morasca. On the Application

of Measurement Theory in Software Engineering. Empirical
Software Engineering. vol 1, no 1, 1996.

4. Shawn Butler, Somesh Jha, and Mary Shaw. When Good

Models Meet Bad Data: Applying Quantitative Economic
Models to Qualitative Engineering Judgments. 2nd Workshop
on Economics-Driven Software Engineering Research
(EDSER-2), May 2000.

5. R. Das and A. Fekete. Modular Reasoning about Open Sys-
tems: A Case Study of Distributed Commit. Proc. 7th Int’l
Workshop on Software Specification and Design (IWSSD-7),
Dec 1993, pp. 30-39.

6. C. Dellarocas and Mark Klein. An Experimental Evaluation of
Domain-Independent Fault Handling Services in Open Multi-
Agent Systems. Proc ICMAS-2000, The Int'l Conference on
Multi-Agent Systems, 2000.

7. Steve Easterbrook. Learning from Inconsistency. Proc 8th Int’l
Workshop on Software Specification and Design (IWSSD-8),
Mar 1996, pp. 136-140.

8. Steve Easterbrook et al. V&V Through Inconsistency Track-
ing and Analysis. Proc 9th Intl Workshop on Software Specifi-
cation and Design (IWSSD-9), Apr 1998, pp.43-49.

9. Michael D. Ernst et al. "Dynamically Discovering Likely
Program Invariants to Support Program Evolution". Proc.
ICSE '99: 21st Int'l Conf on Software Engineering, 1999, pp.
213-224.

10. M.S. Feather et al. Reconciling System Requirements and
Runtime behavior. Proc 9th Intl Workshop on Software Speci-
fication and Design (IWSSD-9), Apr 1998, pp.50-59.

11. Norman E. Fenton and Shari Lawrence Pfleeger. Software
Metrics: A Rigorous & Practical Approach, International
Thomson Computer Press, 1997.

12. Yennun Huang and Chandra Kintala. Software Fault Toler-
ance in the Application Layer. In Michael R. Lyu (ed), Soft-
ware Fault Tolerance, Wiley 1995, Ch 10.

13. Paola Inverardi and Henry Muccini. IWSSD10 Case Study,
Teleservices and Medical Care System. In this volume.

14. Michael Jackson. Software Requirements & Specifications,
Addison-Wesley, 1995.

15. Michael R. Lyu. Handbook of Software Reliability Engineer-
ing. IEEE Computer Society Press and McGraw-Hill, 1996.

16. M.T. Mainini. Reliability Evaluation. Ch 10 of M. Kersekn, F.
Sagleitti, eds, Software Fault Tolerance: Achievement and As-
sessment Strategies . ESPRIT, Springer-Verlag 1992.

17. Bashar Nuseibeh. To Be and Not to Be: On Managing Incon-
sistency in Software Development. Proc 8th Int’l Workshop on
Software Specification and Design (IWSSD-8), Mar 1996,
pp.164-169.

18. Mary Shaw. Truth vs Knowledge: The Difference Between
What a Component Does and What We Know It Does. Proc.
8th Int'l Workshop on Software Specification and Design, Mar
1996

19. Mary Shaw. "Architectural Requirements for Computing with
Coalitions of Resources". Position paper for 1st Working IFIP
Conf on Software Architecture, 1999.

20. Mary Shaw. "Sufficient Correctness and Homeostasis in Open
Resource Coalitions: How Much Can You Trust Your Soft-
ware System?" 4th Int’l Software Architecture Workshop
(ISAW-4), May 2000.

21. D. Slama, J. Garbis, and P. Russell. Enterprise CORBA. Pren-
tice Hall, 1999, Ch 16.

Appendix:
A resource coalition for noncritical health care
For reasons described in Section 4, our intended domain
differs from the premises of the case study in assumptions
about degree of assurance to be provided and in locus of
control of software development. We therefore sketch
different requirements before presenting a solution.

A.1 Domain: helping individuals marshal useful
resources

As discussed in Section 4, individual users have access to a
wealth of on-line resources, but they lack means of
combining these resources in useful ways and of
determining whether a coalition they construct is fit for its
intended purpose and whether it will remain fit. Issues of
initial construction and assurance are discussed elsewhere
[18,20] and are the subject of other research. Here we
consider the "will remain so" part of the problem.

The following scenario illustrates an everyday system that
requires everyday assurances:

Pat has a combination of stable chronic medical
conditions (e.g., diabetes) and a personal interest in
health and fitness. Pat's interest in fitness is
motivated in part by a desire to manage the medical
conditions through diet and exercise rather than
medication. Pat has an "exercise buddy", Lou; they
schedule joint exercise outings. Pat reports medical
status and a diet and exercise summary daily to a
service that provides long-term monitoring, advice,
and alerts if Pat's condition becomes unstable. Pat
also orders medical supplies on-line; the
prescriptions must periodically be renewed by the
medical service. Pat wants to be notified -- very
selectively -- of pertinent news, and he would like
access to a support network. These resources must be
integrated so that information needed by one
resource is provided automatically when it's
available. Pat needs to be able to access this
integrated support at home, at work, and while
traveling. To achieve this Pat builds an open
resource coalition. This is not a high assurance
system --- since Pat’s condition is stable the coalition
needs to supply medium assurances. A temporary
failure is tolerable, provided the system resumes
normal (or possibly degraded) operation in a timely
manner, as required for Pat’s medical monitoring.

We assume that the user has the means to access all the
networked resources, use them under program control,
acquire the locally-running software, and compose the
elements into a tasteful and functional whole. This example
explores what additional mechanisms can be introduced in
the coalition to monitor system health.

An online version of this example, with live links, is avail-

able at http://levers.compose.cs.cmu.edu/orca/ex/iwssd.htm

A.2 Available resources
To serve Pat's needs -- and Pat's shared needs with Lou --
we select from resources available on the World Wide Web
(WWW) in May 2000 and add speculative resources to
round out the design. Table A1 gives a sampling of these
resources.

Kind of
resource

Existing resources Speculative
resources

Information
resources

Nutritional and fitness
reference [24];
Reference material for
medical conditions;
Weather [25]and other
information [26]
affecting outdoor
exercise;
Personalized news feed
[27], personally filtered
news feed [28];

Barcode reader to
read food
packaging, together
with information
resource that
retrieves nutritional
information given
barcode information

Scheduling
resources

Personal calendar [29,
30]; Shared calendar
[31, 32];

Computation
resources

Exercise and diet log
Calculators [33];
Nutrition Analysis Tool
[34]; Diet Analysis
Tool [35];

Monitoring
resources

Proprietary medical
monitoring and
notification service

Local code Diabetic Daily Log [36] Feed diet log
information to
medical monitoring
Schedule exercise
based on calendar
and weather

Table A1. Available resources

A.3 System Requirements
A.3.1 Functional requirements

• Data logging: Allow Pat to record diet, exercise, and
medical status information, either manually or by
various sensors

• Medical monitoring : Medical center review of data logs,
returning advice and automatically reordering medical
supplies

• Exercise buddy coordination: Shared calendar, coupled
to forecast weather conditions

A.3.2 Performance and reliability requirements

• Timing: No special requirements; everyday web
performance will suffice

• Availability: Minor service interruptions tolerable, but

connectivity must be good enough for status monitoring.
Delay even as long as several hours in communications
with the medical center are tolerable, but delivery must
be guaranteed.

• Data persistence: Exercise, diet, and medication logs
must be reliable in recording and preserving information
and in delivering it when requested.

Figure A1. Use case scenario for noncritical health care

A.3.3 Privacy and security requirements

• Medical review center: Communication must be
reasonably secure. The level of sensitivity is that of
personal medical data and transmission of medical
prescriptions.

• Other resources: Resources should be pre-selected to
have acceptable privacy policies. At present, the avail-
able resources don't even provide secure connections --
but the information exchanged with these resources is
only mildly sensitive.

A.3.4 Level of automation requirements

The purpose of this coalition is to organize a set of
related information flows. As much recording as
possible should be automated, though it's not possible to
automate all of it. Most of the work of moving infor-
mation from one place or format to another should be
automated. Actual decisions must, of course, remain in
the hands of the user.

A.4 Use case
Figure A1 illustrates one use case of the scenario described
above. Here we imagine how the coalition might work; in
the next section, we discuss ways the coalition might
achieve homeostasis.

Pat and Lou want to go canoeing whenever weather and
river level permit. Pat builds a coalition to coordinate the
services of the indicated resources. Except for the medical
review service, some form of the resources currently (May
2000) exists at the locations indicated. The resources are
depicted with snippets from their WWW interfaces. The
user interface of the actual coalition must, of course, be
much more consistent and better integrated.

In this use case, the coalition monitors weather [25] and
river [26] conditions. Here it notices that conditions are
right for a canoe trip. It proposes a schedule to Pat and Lou,
notifying them via their shared calendar/planner [31]. Pat
and Lou both confirm this activity, so the coalition
schedules the trip, again in the shared calendar/planner.
After the trip, Pat provides details of the trip, and the
coalition records it in Pat’s diet/exercise log [33]. Pat also
enters nutritional information in the diet/exercise log every
day or two. Twice a week, the coalition sends summary
information for medical review. This use case does not
include replies from the medical review. Pat is personally
involved in only three steps: (1) accepting the proposed
trip, (2) providing details on the trip, and (3) recording
what he ate. The first is an essential human oversight
function. The latter two reflect current lack of technology
to collect the data. It's easy to see, though, that a wireless
barcode scanner for food labels and a resource that
converted the bar code to nutritional information could be
added to the coalition.

A.5 Healing scenarios
Looking at the system’s architecture, as depicted in Figure
7, we identify many potential faults that can cause failures
at the connectivity, syntax or semantic levels. For each of
the failure levels, we present one scenario of failures in the
operation of the use case coalition, detection of these
failures and recovery from the underlying faults. In
addition, we present scenarios of background maintenance
that is independent of any detection process.

A.5.1 Connectivity level

• Fault: The server running the weather resource might be
overloaded. This might result in a standard HTTP error
message, or in performance degradation – a very slow
connection.

• Detection: The coalition can detect HTTP error message
by using an existing third party service [23]. It can de-
tect performance problems by monitoring the rate at
which data is received and noticing significant slow-
down. The coalition can examine several of its resources
to distinguish between network problems and server
problems. If connection problems exist with all of the
coalition's resources, then this is identified as a network
problem. Otherwise it is identified as a server problem.
Notice that the fault here can be transient or permanent.
Furthermore, degradation in the connection might be an
indicator that the server is about to go down.

• Recovery: Accumulated data may be useful here. If the
weather server currently being used frequently
experiences load problems, it might be wise to use a
mirror, or switch to a different weather resource. This is
also the appropriate recovery if the problem is
permanent. Although this strategy is reasonable for
stateless transactions like weather, switching calendar
services requires additional mechanism to keep current
data in both the main and the backup calendar formats.
If the connection is slow and likely to be transient, there
are several options: accept the degradation, use cached
data, temporarily switch to a mirror site, or use a differ-
ent resource. In the meanwhile, retry the original re-
source periodically and switch back when it is up again.

A.5.2 Syntax level

• Fault: The river level resource might change the format
of its data from text to postscript. This might result in
local code being unable to parse this data, issuing an
error message. (It might also output unreasonable
values, turning the failure into a semantic level failure.)

• Detection: The coalition is unable to extract data
("scrape the screen"), so the river level monitoring
portion of the site breaks.

• Recovery: Use an existing file format conversion tool
[22].

A.5.3 Semantic level

• Fault: The nutrition calculator resource (used for foods
consumed) might change its underlying data scheme.
This might result in incorrect nutrition value for
particular foods.

• Detection: This data inconsistency problem can be
detected in several ways, each relying on different
available information. (1) Using data gathered on the
behavior of the resource performing previous
calculations, the coalition might compare the current
result to previous results and notice a divergence. (2)
Monitoring semantically redundant resources, all
calculating the same nutrition values, the coalition can
compare their outputs. A problem is indicated when the
output of the main calculator is significantly different
from the others. (3) If semantic specifications are
available, monitoring the data may reveal that the results
are not within the specified range.

• Recovery: This may be only a change in accuracy or
perhaps a correction of a previous problem – the user
must decide whether this is a real problem. If this is in-
deed a problem, but only accuracy is hindered, degrada-
tion in accuracy of calculation may be acceptable. It
may be possible to extrapolate from prior data.
Switching to a different resource is another option.

A.5.4 Detection-free recovery

Homeostasis may be achieved not only through detecting
specific problems and recovering, but also by performing
maintenance and repair activities regularly. This can take
place at all levels; we present one for connectivity and one
for semantics.

The system may observe that Pat often consults the weather
and river levels in the morning, whether or not the coalition
suggested a trip. To protect against unavailability of this
information because of connectivity failure, the coalition

retrieves and caches this information several times a day. If
live information is not available when Pat requests it, the
coalition can deliver slightly stale information. This slightly
degraded performance is usually acceptable.

Pat's accumulated exercise and nutrition information would
be very time-consuming to re-create, and Pat cannot afford
full backups of his home system. The coalition identifies
the information that can't be derived from other data and
does regular backups of that selected information. The
coalition might even make the backups at a remote site.

Appendix References
22. Typed Object Model (TOM) Server,

http://wheel.compose.cs.cmu.edu:8001/cgi-
bin/browse/objweb

23. Spyonit Site Monitor Service,
http://www.spyonit.com/Add?_spyid=sitemonitor

24. The Merck Manual of Diagnosis and Therapy,
http://www.merck.com/pubs/mmanual/sections.htm

25. Weather information, http://www.uswx.com/us/wx/PA/021/
26. River level, http://wmw.lrp.usace.army.mil/current/yc.html
27. Infobeat, personalized news feed, http://www.infobeat.com/
28. Spyonit, http://www.spyonit.com/Home
29. Yahoo, personal calendar, http://calendar.yahoo.com/
30. Excite, personal calendar,

http://reg.excite.com/mps/login?pname=planner&pstr=Excite
+Planner&brand=xcit&targeturl=http%3A%2F%2Fplanner.ex
cite.com%2F

31. Franklin planner online,, http://www.planner.com/
32. Super calendar, http://www.supercalendar.com/
33. DietWatch,, http://www.dietwatch.com/
34. Nat tools for good health, http://www.nat.uiuc.edu/
35. Diet analysis web page, http://dawp.anet.com/
36. Diabetic daily log, http://members.aol.com/kennzo/tddl.htm

