
 

1

 

 of 

 

32

 

Candidate
Model Problems in

 

Software Architecture

 

 Mary Shaw, David Garlan, Robert Allen, Dan Klein, 

 

John Ockerbloom, Curtis Scott, Marco Schumacher

 

The Software Architecture Group 
Computer Science Department

Carnegie Mellon University
Pittsburgh PA 15213

 

Version 1.3: January 1995

 

Invitation: 

 

The software architecture community would benefit from sharing a set of standard example prob-
lems. These would improve our ability to work out ideas, exhibit techniques, and compare results. The Software 
Architecture group at Carnegie Mellon has been assembling such a collection of problems. With this draft report 
we would like to open a discussion about suitable problems: what characteristics they should have, what specific 
problems would serve us well. To start that discussion, we present ten candidate problems and sketches of sev-
eral distinct architectural approaches to two of them. We invite refinements and discussion of the problem list, 
the solution sets, and the criteria for choosing problems.

 

1 Introduction

 

I

 

t is common for a discipline, especially one that is just 
getting its wits about itself, to adopt some shared, well-
defined problems for teaching and study. Often known as 

 

model systems

 

 or 

 

type problems

 

, they provide a way to 
compare methods and results, work out new techniques on 
standard examples, and set a minimum standard of capa-
bility for new participants. In time, a reasonable approach 
to some of these problems becomes the price of admission 
to get serious consideration of a new technique. Model 
problems also provide a pre-debugged source of educa-
tional exercises.

Biology, for example, has

 

■

 

Drosophila melanogaster

 

 (the fruit fly)

 

■

 

Rattus rattus Norwegicus

 

 (the lab rat)

 

■

 

Escherichia coli

 

 (the digestive bacterium)

 

Each of these is part of the common language of discourse 
in the field. Each provides a familiar concrete instance that 
illustrates an important set of issues. This allows discus-
sions to start from shared knowledge of the basic example 
and proceed expeditiously to the result, theory, or tech-
nique of current interest.

Closer to home, computer science has model problems in 
many areas. Familiar examples include

 

■

 

Algorithms and Data Structures:

 

 Sort, search, greatest 
common divisor, prime integers, set, stack, queue

 

■

 

Synchronization:

 

 Reader/writer, producer/consumer, 
dining philosophers, cigarette smokers

 

■

 

Programming Methodology:

 

 Eight queens, tower of 
Hanoi

 

■

 

Formal Specifications:

 

 Telegraph, lift (elevator, on the 
west side of the Atlantic), library

 

■

 

Combinatoric Optimization: 

 

Travelling salesman



 

Introduction

 

2

 

 of

 

 32

 

Candidate Model Problems in Software Architecture

 

In this report, we propose several model problems for soft-
ware architecture, discuss the interesting design problems 
they raise, and show how some of the work in this group 
addresses each of them. 

Our intention is to stimulate a discussion about these prob-
lems, potential additional problems, and the criteria for 
choosing problems and evaluating or comparing solutions. 
To that end, this is a living document. We are distributing 
it informally and encourage informal redistribution. We 
have made it available via anonymous FTP. We include a 
version number on the first page, and we do not plan any 
kind of “permanent” publication anytime soon. We will 
attempt to incorporate comments and suggestions, along 
with short sketches of solutions. We are open to sugges-
tions about how longer solutions or comparison of alterna-
tive solutions should be handled.

Before moving on to the problems, we clarify what we 
mean by

 

 software architecture

 

 [GarlanShaw93, Shaw93; 
see also Perry-Wolf92]. System design takes place at 
many levels. It is useful to make precise distinctions 
among those levels, for each level appropriately deals with 
different design concerns. Software design includes at 
least the following:

 

■

 

Architecture

 

, where the design issues involve overall 
association of system capability with components.

 

■

 

Code

 

, where the design issues involve algorithms and 
data structures.

 

■

 

Executable

 

, where the design issues involve memory 
maps, call stacks, and so forth. 

Software architecture is concerned with design at the sys-
tem level. Certainly this includes system structure (or 
topology), discriminations among different kinds of struc-
tures, and abstractions or generalizations about structures 
and families of similar structures. It also includes identifi-
cation, specification, and analysis of the properties that are 
related to these structures, either because they influence 
the selection of a structure or because they are conse-
quences of that structure.

At the architecture level, the components of interest are 
modules and the interconnections among modules. Archi-
tectural styles guide the selection of kinds of components 
and of the strategies for composing them. As a result, the 
kinds of components and interconnections can differ sub-
stantially between architectural styles. The properties of 
interest include system structure, gross performance, com-

 

ponent consistency, and other aggregate properties such as 
security and reliability. 

Model problems for software architecture should help us 
focus on specific architectural issues. Such issues include

 

■

 

Describing system organizations, and describing spe-
cific kinds of system organization (architectural styles)

 

■

 

Distinguishing among templates, instances, and invo-
cations

 

■

 

Distinguishing among different kinds of system organi-
zation -- not only structural differences, but the impli-
cations of those differences

 

■

 

Selecting among different architectural alternatives

 

■

 

Using different models concurrently, or at different 
refinements of a design; establishing consistency 
among such different views

 

■

 

Defining families of systems

 

■

 

Defining families, or styles, of architecture

 

■

 

Describing dynamic behavior of systems with fixed 
structure and desribing dynamic changes in system 
structure

 

■

 

Measuring, evaluating, or testing properties of systems 
such as overall performance, reliability, or security

 

■

 

Measuring, evalutaing, or testing properties of designs 
such as ease of extension or subsetting

Different problems may, of course, be selected in response 
to different issues. We have not tried to make the problems 
independent or orthogonal. It’s fine if they overlap, but as 
the set is refined, each should include a description of the 
specific issues it helps to clarify.

The remainder of the paper has three parts. First, it pre-
sents brief statements of all the problems. Second, it pre-
sents sketches of solutions based on different architectures 
for two problems, 

 

Keyword in Context

 

 and 

 

Mobile Robot

 

. 
These examples focus on the choice of an overall architec-
ture for the problem; they identify several candidates 
architectures and compare the merits of the alternatives. 
They attempt to provide enough detail to compare designs 
but not so much as to drown the reader. A companon paper 
[Shaw94] provides an extended comparison of published 
solutions for 

 

Cruise Control

 

. Third, it gives an extended 
specification of the Calendar Scheduler problem [vanLam-
sweerde92,93]. This specification comes to us much in the 
manner of a requirement definition: it is the result of an 
exercise in the specification community.



 

Introduction

 

Candidate Model Problems in Software Architecture

 

3

 

 of 

 

32

 

The problems are:

 

■

 

Keyword in Context (KWIC): 

 

Given a set of lines, cre-
ate an alphabetized list of the rotations of those lines.

 

■

 

Sea Buoy: 

 

Collect and transmit weather data both auto-
matically and on demand; allow preemption for emer-
gency services.

 

■

 

Cruise Control: 

 

Maintain the speed of a vehicle.

 

■

 

Conference Refereeing:

 

 Solicit, referee, and select 
papers for a conference.

 

■

 

Mailing List Handler:

 

 Merge address information from 
multiple sources, eliminating duplicates and observing 
reader preferences.

 

■

 

Printer Spooler:

 

 Manage print jobs within a printer 
network.

 

■

 

Library: 

 

Automate traditional library tasks, such as 
check-in and check-out of books. 

 

■

 

Automated Teller Machine (ATM):

 

 Provide the usual 
banking functions with a remotely-located machine.

 

■

 

Calendar Scheduler: 

 

Organize a meeting schedule.

 

■

 

Compiler:

 

 Translate source code for a programming 
language to executable form.

 

■

 

Mobile Robot:

 

 Design a mobile robot capable of exe-
cuting tasks while monitoring the environment, e.g., 
avoiding obstacles.

 

1.1 Keyword In Context (KWIC)

 

F

 

rom Parnas [Parnas72] we have a concise definition of 
the 

 

Keyword in Context

 

 problem:.

 

The KWIC index system accepts an ordered set 
of lines, each line is an ordered set of words, 
and each word is an ordered set of characters. 
Any line may be “circularly shifted” by repeat-
edly removing the first word and appending it at 
the end of the line. The KWIC index system out-
puts a listing of all circular shifts of all lines in 
alphabetical order.

 

1.1.1 History

 

Contextual indices have been used for many years. For 
example, Biblical concordances have approximately this 
form, except for the rotations. The usual source for the 
problem as now known, however, is the Parnas definition.

In his paper of 1972, Parnas used the problem to contrast 
different criteria for decomposing a system into modules 
[Parnas72]. He describes two solutions, one based on 

 

functional decomposition with shared access to data repre-
sentations, and a second based on a decomposition that 
hides design decisions. The latter was used to promote 
information hiding, a principle that underpins the use of 
abstract data types and of object-oriented design. Since its 
introduction, the problem has become well-known and is 
widely used as a teaching device in software engineering. 
Garlan, Kaiser, and Notkin also use the problem to illus-
trate modularization schemes based on data-driven tool 
invocation [Garlan92]—sometimes referred to as reactive 
integration.

While KWIC can be implemented as a relatively small 
system it is not simply of pedagogical interest. Practical 
instances of it are widely used by computer scientists. For 
example, the “permuted” [sic] index for the Unix Man 
pages is essentially such a system. 

We use the problem in a course on software architecture to 
give students experience with software development in 
different architectural styles [GarlanShaw94]. We give 
three separate assignments. Each starts with a simple 
KWIC indexer, for which we supply code, and asks for 
modifications. By providing an initial implementation, we 
give them an example of a small system in the style of 
interest and get them started in the right way. Each exer-
cise requires the modifications to be done in a way that 
preserves the style. As part of the assignments, students 
analyze the suitability of different styles for different vari-
ants on the basic problem.

 

1.1.2 Design Considerations

 

From the perspective of software architecture, the problem 
derives its appeal from the fact that it can be used to illus-
trate the effect of changes on software design. Parnas 
shows that different problem decompositions vary greatly 
in their ability to withstand design changes. Among the 
changes he considers are:

 

■

 

Changes in algorithm: For example, line shifting can 
be performed on each line as it is read from the input 
device, on all the lines after they are read, or on 
demand when the alphabetization requires a new set of 
shifted lines.

 

■

 

Changes in data representation: For example, lines can 
be stored in various ways. Similarly, circular shifts can 
be stored explicitly or implicitly (as index and offsets).



 

Introduction

 

4

 

 of

 

 32

 

Candidate Model Problems in Software Architecture

 

Garlan, Kaiser, and Notkin [Garlan92] extend Parnas’ 
analysis by including enhancements to system function. 
For example:

 

■

 

Have the system eliminate circular shifts that start with 
certain noise words (such as “a”, “an”, “and”, etc.).

 

■

 

Make the system interactive, and allow the user to 
delete lines from the lists.

 Finally, it is worth considering differences in architectural 
solutions based on considerations of:

 

■

 

 Performance: Both space and time.

 

■

 

 Reuse: To what extent can the components serve as 
reusable entities.

 

1.1.3 Solutions

 

In section 2.1 on page 6, we outline four architectural 
designs for the KWIC system. All four are grounded in 
published solutions. The first two are those considered in 
Parnas’ original article. The third solution is based on the 
use of “reactive integration” and represents a variant on 
the solution examined by Garlan, Kaiser, and Notkin. The 
fourth is a pipeline solution inspired by the Unix index 
utility.

 

1.1.4 Contributors

 

Two of the solutions are derived from [Parnas72]. Curtis 
Scott and David Garlan provided the other two solutions 
and arranged the presentation.

 

1.2 Sea Buoy

 

S

 

ea buoys support navigation at sea. Here is the problem 
statement from [Booch86]:

 

There exists a collection of free-floating buoys 
that provide navigation and weather data to air 
and ship traffic at sea. The buoys collect air and 
water temperature, wind speed, and location 
data through a variety of sensors. Each buoy 
may have a different number of wind and tem-
perature sensors and may be modified to sup-
port other types of sensors in the future. Each 
buoy is also equipped with a radio transmitter 
(to broadcast weather and location information 
as well as an SOS message) and a radio 
receiver (to receive requests from passing ves-
sels. Some buoys are equipped with a red light, 
which may be activated by a passing vessel dur-
ing sea-search operations. If a sailor is able to 

 

reach the buoy, he or she may flip a switch on 
the side of the buoy to initiate an SOS broad-
cast. Software for each buoy must:

 

■

 

maintain current wind, temperature, and 
location information; wind speed readings 
are taken every 30 seconds, temperature 
readings every 10 seconds and location 
every 10 seconds; wind and temperature 
values are kept as a running average.

 

■

 

broadcast current wind, temperature, and 
location information every 60 seconds.

 

■

 

broadcast wind, temperature, and location 
information from the past 24 hours in 
response to requests from passing vessels; 
this takes priority over the periodic broad-
cast

 

■

 

activate or deactivate the red light based 
upon a request from a passing vessel.

 

■

 

continuously broadcast an SOS signal after 
a sailor engages the emergency switch; 
this signal takes priority over all other 
broadcasts and continues until reset by a 
passing vessel.

 

1.2.1 History

 

Booch used the sea buoy example to illustrate object-ori-
ented development [Booch86]. He adapted his version 
from a study by Boehm-Davis and Ross [Boehm84].

From an architectural standpoint, the interesting problem 
lies in the different levels from which it can be analyzed. 
As the next section illustrates, maintainability, real-time 
factors, and hardware questions are all important consider-
ations.

 

1.2.2 Design Considerations

 

The problem statement defines a set of separate functions 
with relatively little in common. They share the communi-
cations equipment and a number of current sensor read-
ings.

The software architecture must permit the

 

 integration of 
these loosely coupled functions

 

 (requirement R1).

At the same time, it must 

 

respect their priorities and tim-
ing constraints

 

 (R2).

Clearly the system may be extended further by additional 
functions (e.g., more sensors) or that the priorities and tim-
ing constraints may be modified. The architecture should 



 

Introduction

 

Candidate Model Problems in Software Architecture

 

5

 

 of 

 

32

 

therefore 

 

allow modifications to the overall system param-
eters

 

 (R3).

Finally, sea buoys must operate for long periods without 
maintenance, and they are numerous enough for cost to be 
a major consideration. As a result, the architecture should 
provide 

 

hints for its implementation on the most basic 
platform

 

 (R4).

 

1.2.3 Solutions

 

Booch provided an object-oriented solution in the same 
paper as the problem statement [Booch86]. 

 

1.2.4 Contributors

 

Marco Schumacher organized the presentation and drafted 
a solution (not included here).

 

1.3 Cruise Control

 

C

 

ruise control has been used by a number of authors to 
illustrate software design methodologies. This problem 
statement is derived from the one Booch used to describe 
object-oriented programming [Booch86] and the one 
Birchenough and Cameron later used to compare JSD to 
OOD:

 

A cruise-control system exists to maintain the 
speed of a car, even over varying terrain, when 
turned on by the driver. When the brake is 
applied, the system must relinquish speed con-
trol until told to resume. The system must also 
steadily increase or decrease speed to reach a 
new maintenance speed when directed to do so 
by the ddriver. Below (Figure 1.5.1), we see the 
block diagram of the hardware for such a sys-
tem. There are several inputs:

 

■

 

System on/off:

 

 If on, denotes that the 
cruise-control system should maintain the 
car speed.

 

■

 

Engine on/off:

 

 If on, denotes that the car 
engine is turned on; the cruise-control sys-
tem is only active if the engine is on.

 

■

 

Pulses from wheel:

 

 A pulse is sent for every 
revolution of the wheel.

 

■

 

Accelerator:

 

 Indication of how far the accel-
erator has been pressed.

 

■

 

Brake:

 

 On when the brake is pressed; the 
cruise-control system temporarily reverts to 
manual control if the brake is pressed.

 

■

 

Increase/Decrease Speed:

 

 Increase or 
decrease the maintained speed; only appli-
cable if the cruise-control system is on.

 

■

 

Resume:

 

 Resume the last maintained 
speed; only applicable if the cruise-control 
system is on.

 

■

 

Clock:

 

 Timing pulse every millisecond.

There is one output from the system:

 

■

 

Throttle:

 

 Digital value for the engineer throt-
tle setting.

 

Figure  1.3.1:

 

Block Diagram for Cruise Control.

 

1.3.2 History

1.3.3 Design considerations

 

A cruise control system provides autonomous (but casu-
ally supervised) control of the speed of a motor vehicle 
moving at highway speeds. For such a system, important 
design considerations include

 

■

 

Safety:

 

 Can the system fully control the vehicle, and 
can it ensure that the vehicle will not enter an unsafe 
state as a consequence of the control?

 

■

 

Simplicity of use: 

 

Can a driver with no prior experience 
with the system use it correctly?

 

■

 

Characteristics of real-time response:

 

 How rapidly 
does the vehicle respond to control inputs?

 

■

 

Other?

System on/off

Engine on/off

Resume speed

Increase/decrease speed

Clock

Pulses from wheel

Brake

Accelerator
Throttle



 

Introduction

 

6

 

 of

 

 32

 

Candidate Model Problems in Software Architecture

 

1.3.4 Solutions

 

The most familiar presentation is probably Booch’s use to 
motivate object-oriented programming [Booch86]. Booch 
adapted his version from Ward [Ward84]. Yin and Tanik 
do an object-oriented solution to cruise control to demon-
strate reusability in Ada [YinTanik91]. Wasserman and 
others also do an object-oriented design [Wasserman89]. 
Jones considers the testing problem for an Ada program 
but is not explicit about the character of the software 
[Jones90].

Birchenough and Cameron compare the Jackson System 
Development Method (JSD) to object-oriented design 
using a formulation similar to Booch’s [Birchenough-
Cameron89].

Smith and Gerhart use a slightly more elaborate forumula-
tion to illustrate the use of Statemate. The design is, of 
course, based on states and activities [SmithGerhart88]. 
Their problem statement is based on one used by Bracket 
[Bracket87].

Ward and Keskar use cruise control as an example for 
comparing the Ward/Mellor and Boeing/Hatley Structured 
Methods techniques for modeling real-time systems. Both 
add time and control information to DeMarco Structured 
Analysis [WardKeskar87]. Gomaa also this example for 
studying real-time systems. He compares Structured 
Design and the NRL Software Cost Reduction methods 
[Gomaa89].

Higgins uses cruise control to show how Data Structured 
Systems Development can be extended for real-time [Hig-
gins87]; his architecture emphasized feedback control 
models. Shaw also bases a solution on feedback control, 
with other architectures used for subsystems [Shaw95].

Wang and Tanik develop a dataflow solution to illustrate 
Process Port Analysis and XYZ/E [WangTanik89].

Atlee and Gannon use cruise control as the basis of a spec-
ification study [AtleeGannon93].

 

1.3.5 Contributors

 

Mary Shaw organized the presentation and prepared one 
of the solutions. She also prepared a comparison of pub-
lished solutions [Shaw94].

 

1.4 Conference Refereeing

 

Professional conferences are held in order to announce and 
discuss new results. The core activity of organizing a con-
ference centers on selecting the papers to be presented. 
Usually this is done by making an open invitation calling 
for papers to be submitted, circulating the submitted 
papers to a (geographically distributed) panel of review-
ers, then selecting the best papers to appear on the pro-
gram. A system to automate conference refereeing should 
do the following:

 

1. The program committee announces “call for 
papers.”

2. Authors receive the call for papers and decide 
to will submit papers on their work.They write 
papers and send them to the program commit-
tee. A given paper may have several authors, 
but only one reply address.

3. The program committee registers the contrib-
uted papers upon receipt.

4. At a certain point in time the program commit-
tee distributes the papers among the panel of 
referees. Each paper is sent to three distinct ref-
erees, none of whom is an author of the paper.

5. The program committee continuously collects 
reports from the referees.

6. At a certain point in time the program commit-
tee selects papers for inclusion in the program 
andnotifies the authors about the selection. This 
may involve obtaining additional opinions from 
the referees.

7. The program committee advises the authors 
of the selection results.

 

1.4.1 History

 

This is a slight rewording and elaboration of the OOPSLA 
Conference Registration Problem proposed by Høydalsvik 
and Sindre at OOPSLA ‘93 [HøydalsvikSindre93]. They 
created it by simplifying an information system problem 
posed by Rumbaugh [Rumbaugh92].

 

1.4.2 Design Considerations

1.4.3 Solutions

 

 Høydalsvik and Sindre provide an object-oriented solu-
tion [HøydalsvikSindre93].



 

Introduction

 

Candidate Model Problems in Software Architecture

 

7

 

 of 

 

32

 

1.4.4 Contributors

 

Mary Shaw brought the problem statement in from OOP-
SLA.

 

1.5 Mailing List Handler

 

We are all plagued with multiple or unwanted copies of 
catalogs and other mass mailings. These arise largely from 
merging multiple mailing lists, clerical errors in data col-
lection, and raw information generated by individuals in 
different forms at different times. Ideally, a mailing list 
system would collect (even propagate) corrections, merge 
variant forms, and recognize reader preferences about 
receipt.

 

The Mailing List Handler accepts address 
entries, corrections, and preferences to create 
one or more mailing lists. It generates mailing 
labels from the lists. 

 An address entry contains a name, mailing 
address, and reader/supplier information. Cor-
rections include updates to individual address 
entries and guidance about merging variants. 
Preferences update the reader/supplier informa-
tion. A mailing list is a collection of address 
entries plus perhaps control information.

 Address entries may be original (collected from 
raw sources such as reader requests), or they 
may be derived from other mailing lists. Address 
entries may also be received as external mailing 
lists (not necessarily in the desired format). Cor-
rections may come from internal consistency 
checks, post office correction procedures, 
reader information, or other sources. Preference 
information may come from readers, suppliers, 
or other sources (e.g., suppression information 
from Direct Marketing Association or USPS 
objectionable-mail procedures).

The mailing list handler must maintain a set of 
mailing lists. It should eliminate duplicate entries 
and correct errors. When generating mailing 
labels it must take reader/supplier information 
into account.

 

1.5.1 History

 

This problem was proposed within the CMU group, so it 
has as yet no history.

 

1.5.2 Design Considerations

 

Costs are prime drivers of mailing list handling. Costs to 
consider include 

 

■

 

acquiring and using addresses

 

■

 

eliminating duplicates

 

■

 

sending duplicates

 

■

 

violating mandatory suppression orders

Mailing lists from other sources may safely be assumed to 
be in an undesired format, incorrect, and incomplete.

 

1.5.3 Solutions

1.5.4 Contributors

 

Mary Shaw developed the problem statement after an 
extended discussion in the Software Architecture Reading 
Group at CMU.

 

1.6 Printer Spooler

 

L

 

ocal area networks provide services for their users. 
Often the services are replicated for throughput, reliability, 
or physical convenience. Access for these services can be 
provided in a number of different ways that differ in such 
details as where the queues reside, how explicitly each 
user needs to specify the service, and the consequences of 
local failures.

 

A network connects multiple computers and 
printers. Each printer is driven by one of the 
computers, provides service to the entire net-
work, and is equipped with multiple paper trays. 
A program running on any computer may spec-
ify any paper tray on any printer for its print 
requests. 

 

1.6.1 History

 

This problem was proposed within the CMU group, so it 
has as yet no history.

 

1.6.2 Design Considerations

 

This model problem raises configuration and fault toler-
ance issues. Site administrators may disable the use of 
paper trays for maintenance purposes. If a printer fails, 
one may conceive that its pending requests are rerouted to 
other printers and the originators notified of the destina-
tion change. It also raises issues of heterogeneity. Differ-



 

Introduction

 

8

 

 of

 

 32

 

Candidate Model Problems in Software Architecture

 

ent printers may have different capabilities, such as large 
paper, high resolution, or color. Further, some printers may 
be located in private space and hence have special status.

A software architecture appropriate for this network must, 
at the least:

 

■

 

Support the distribution of the print services.

 

■

 

Allow the reconfiguration of both hardware and soft-
ware.

 

■

 

Enable the fault tolerance permitted by the duplication 
of the hardware.

 

1.6.3 Solutions

1.6.4 Contributors

 

Dan Klein developed the problem statement.

 

1.7 Library

 

T

 

he library problem has served the formal specification 
community well [Wing88]. To use it as a software archi-
tecture problem, we’ll focus on the possible structure of 
solutions rather than the specification of functionality. 

 

A library requires an information system that 
provides the following on-line operations for 
library users and staff:

 

1. Check out (or return) a copy of a book.
2. Get a list of books by a particular author or on 

a particular subject. 

3. Find out what books a particular borrower 
currently has checked out (users can only 
look up themselves).

4. Find out which borrower last checked out a 
particular copy of a book (staff only).

5. Record the addition (or removal) of a copy of 
a book to (from) the library (staff only).

 

The system must be able to search and update 
the catalog quickly (to avoid long check-out 
lines, and to make on-line book search a viable 
alternative to card catalogs), and easily handle 
updates and corrections by staff users to an 
potentially large collection.

The system must also enforce the following 
integrity constraints:

 

 a. All copies in the library must be available for 
checkout or be checked out.

 

 b. No copy may be both available and checked 
out at the same time.

c. Borrowers can’t have more than a predefined 
number of books checked out at once.

d. Borrowers can’t have more than one copy of 
a given book checked out at once.

 

1.7.1 History

 

The existing history of this problem has been with the 
specification community [Wing88].

On-line library systems like the one described above have 
been envisioned since at least the 1960s, when the US 
Library of Congress embarked on its MARC project. The 
concise statement of the the problem above is due to Kem-
merer, who first published this problem as a specification 
exercise in [Kemmerer 85]. A variant of Kemmerer’s 
problem statement was posed for the Fourth International 
Workshop on Software Specification and Design in 1986, 
and twelve of the published papers considered it. Wing 
summarizes their specifications in [Wing 88]. The work-
shop specification made some changesfrom the specifica-
tion, such as limiting transaction 1 to staff users as well. 
(Presumably they would do it on the behalf of ordinary 
borrowers.)

 

1.7.2 Design Considerations

 

Given the focus of this problem on searching and incre-
mentally updating information on individual books in a 
large, mostly static collection, the obvious architectural 
choice for this problem is a database-oriented system. 

Building on this premise, we can consider many interest-
ing design variations:

 

■

 

How should the applications interact with the data-
base? While some results must be produced in real-
time, some transactions could be bundled for batch 
processing.

 

■

 

How centralized should the system be? Both the data-
base and the applications could be distributed over 
multiple machines.

 

■

 

Does the type of the database influence the choice of 
the software architecture? It is conceivable that object-
oriented database systems are biased towards different 
implementations than relational databases.

It would also be interesting to consider designs that do not 
localize circulation information in a database.



 

Introduction

 

Candidate Model Problems in Software Architecture

 

9

 

 of 

 

32

 

1.7.3 Solutions

1.7.4 Contributors

 

John Ockerbloom refined the problem statement and dis-
cussion.

 

1.8 Automated Teller Machine (ATM)

 

T

 

he ATM (Automated Teller Machine) problem has 
cropped up in several papers. Here is the problem as it was 
originally posed by Rumbaugh in his book on object-ori-
ented design [Rumbaugh91], as described in [Lubars92].

 

 Design the software system to support a com-
puterized banking network including both 
human cashiers and automatic teller machines 
(ATMs) to be shared by a consortium of banks. 
Each bank provides its own computer to main-
tain its own accounts and process transactions 
against them. Cashier stations are owned by 
individual banks and communicate directly with 
their own bank’s computers. Human cashiers 
enter account and transaction data. Automatic 
teller machines communicate with a central 
computer which clears transactions with the 
appropriate banks. An automatic teller machine 
accepts a cash card, interacts with the user, 
communicates with the central system to carry 
out the transaction, dispenses cash, and prints 
receipts. The system requires appropriate 
record keeping and security provisions. The 
system must handle concurrent accesses to the 
same account correctly. The banks will provide 
their own software for their own computers; you 
are to design the software for the ATMs and the 
network. The cost of the shared system will be 
apportioned to the banks according to the num-
ber of customers with cash cards.

 

The architecture in this case will have to address issues 
such as:

 

■

 

Where should the security mechanisms be located, in 
the ATMs or a central network controller? 

 

■

 

How should the presence of heterogeneous systems 
(each bank has its own software) be managed?

 

1.8.1 History

1.8.2 Design Considerations

1.8.3 Solutions

1.8.4 Contributors

 

1.9 Calendar Scheduler

 

C

 

alendar management is one of the beastly problems of 
computing. Many people have attacked it, but as yet no 
fully satisfactory solution has appeared. 

 

The calendar scheduler maintains consistent 
meeting schedules for a number of people. 
These schedules record at least the time, dura-
tion, and participants in each meeting. Some of 
the meetings may include people whose sched-
ules are not maintained by the calendar sched-
uler. Meetings may be added or dropped at any 
time (up to the moment when they occur), and 
participants to meetings can be added or 
removed. A meeting may be scheduled at any 
time which is convenient for all (or enough) of 
the meeting participants, except that some of 
the meetings may need to occur in a particular 
order. The scheduler may maintain information 
about the scheduling preferences of the people 
it serves.

 

1.9.1 History

 

This is a standing problem that is often “solved” badly. 
Existing products are able to record simple scheduling 
decisions and share databases, but they fall far short of 
being able to handle personal preferences.

This problem has, obviously, had paper and pencil solu-
tions as long as there have been paper and pencil, and 
there were undoubtedly other solutions to it before that. In 
the computer arena, there are individual calculator size 
machines to take the place of a calendar notebook (e.g. ...? 
there are a ton of these), as well as many scheduling pro-
grams on multi-user systems which are able to take over 
some of the time-selection and consistency checking task.

 «Describe current products and their shortcomings»

The problem has been used to focus discussion of require-
ments and specification. Axel van Lamsweerde provided 



 

Introduction

 

10

 

 of

 

 32

 

Candidate Model Problems in Software Architecture

 

the results of those discussions as an extended problem 
statement [vanLamsweerde92, vanLamsweerde93].

 

1.9.2 Design considerations

 

The challenge arises from two source: the multiparty, dis-
tributed, heterogeneous, asynchronous nature of calendars; 
and the need to accommodate personal preferences, some 
of which are either private or poorly articulated.

This problem may face considerable hardware and envi-
ronmental constraints. For example, personal electronic 
notebooks do not yet communicate freely, so it is not pos-
sible to assume that all calendars of interest will be either 
instantly or simultaneously accessible. 

Users’ expectations are also a factor in considering alter-
natives; it is probably not acceptable to completely 
reschedule everyone whenever a meeting is changed: there 
must be some stability as meetings are added and 
removed. This problem may be made arbitrarily more 
complex by considering what it means for a time to be 
“convenient” for a participant or group of participants. 
What kind of constraints may a user place on the allow-
able schedules? 

Some key considerations affecting the architecture are:

 

■

 

Individual flexibility:

 

 How rich a set of individual pref-
erences can be expressed and accommodated?

 

■

 

Heterogeneity:

 

 How well are different personal calen-
dar representations handled?

 

■

 

Priorities and Conditions:

 

 How well can the system 
resolve conflict when degrees of intensity about prefer-
ences can be provided?

 

■

 

Ease of use: 

 

How easy is it for a person to define and 
manipulate a set of meetings to attend? How will the 
information from multiple machines be consolidated? 
How well are regular meetings handled? Can quorums 
be defined?

 

■

 

Optimality:

 

 If there is a schedule, will the system find 
it? Can the architecture support contingency strategies, 
e.g., in the absence of complete information? 

 

1.9.3 Solutions

1.9.4 Contributors

 

Rob Allen stated the simple problem and organized the 
discussion. Axel van Lamsweerde provided the extended 
specification to be found in the solution section.

 

1.10 Mobile Robot

 

T

 

his problem focuses on embedded real-time systems. 
These systems must deal with external sensors and actua-
tors, and they must respond in time commensurate with 
the activities of the system in its environment.

 

Consider the following activities a mobile robot 
typically has to accomplish:

 

■

 

Acquiring the input provided by its sensors.

 

■

 

Controlling the motion of its wheels and 
other moveable parts,

 

■

 

Planning its future path.

A number of factors complicate the tasks:

 

■

 

Obstacles may block the robot’s path.

 

■

 

The sensor input may be imperfect.

 

■

 

The robot may run out of power.

 

■

 

Mechanical limitations may restrict the 
accuracy with which the robot moves.

 

■

 

The robot may manipulate hazardous 
materials.

 

■

 

Unpredictable events may leave little time 
for responding. 

 

1.10.1 History

 

Over the years, the field of mobile robots has yielded 
many architectural proposals. In the solutions we present 
in section 2.2 on page 8, we will consider four proposals 
ranging from the layered paradigm [Elfes87] to the black-
board structure [Shafer86]. 

The richness of the field permits interesting comparisons 
of the emphases different researchers have chosen for their 
robotic projects and between the trade-offs the choices 
entail. The next section surveys the factors to consider. 

 

1.10.2 Design Considerations

 

We state the following requirements for the robot’s archi-
tecture. 

R1: The architecture must 

 

accommodate deliberative and 
reactive behavior

 

. The robot has to coordinate the actions 
it deliberately undertakes to achieve its designated objec-
tive (e.g., collect a sample of rocks) with the reactions 
forced on it by the environment (e.g., avoid an obstacle). 

R2: The architecture must 

 

allow for uncertainty

 

. Never 
will all the circumstances of the robot’s operation be fully 
predictable. The architecture must provide the framework 



 

Solutions

 

Candidate Model Problems in Software Architecture

 

11

 

 of 

 

32

 

in which the robot can act even when faced with incom-
plete or unreliable information (e.g., contradictory sensor 
readings). 

R3: The architecture must 

 

account for the dangers

 

 inher-
ent in the robot’s operation and its environment. By incor-
porating consideration of fault tolerance (R3a), safety 
(R3b), and performance (R3c) attributes, the architecture 
must help in maintaining the integrity of the robot, its 
operators, and its environment. Problems like reduced 
power supply, dangerous vapors, or unexpectedly opening 
doors should not spell disaster. 

R4: The architecture must give the designer 

 

flexibility.

 

 
Application development for mobile robots frequently 
requires experimentation and reconfiguration. Moreover, 
changes in tasks may require regular modification. 

The degree to which these requirements apply depends 
both on the complexity of the work the robot is pro-
grammed to perform and the predictability of its environ-
ment. For instance, fault tolerance is paramount when the 
robot is operating on another planet as part of a space mis-
sion; it is still important, but less crucial, when the robot 
can be brought to a nearby maintenance facility.

 

1.10.3 Solutions

 

In section 2.2 on page 8

 

, 

 

we examine four major architec-
tures that have been implemented on robots. These include 
Lozano’s control loops, Elfes’ layered organization, Sim-
mons’ task control architecture, and Shafer’s application 
of blackboards. The requirements listed above guide the 
evaluation of these alternatives. 

 

1.10.4 Contributors

 

Marco Schumacher refined the problem and described the 
solutions.

 

1.11 Compiler

 

C

 

ompilers translate programming languages to machine 
language. They also interact with other programming tools 
such as interactive editors anddebuggers.

 

A compiler translates source code in a program-
ming language to object code that can be linked 
with other object code and executed on a com-
puter.

 

1.11.1 History

 

Compilers are among the oldest well-understood non-triv-
ial software systems. The compiler is the example of 
choice for the undergraduate course that introduces multi-
module software organizations, yet high-performance 
incremental distributed compilers continue to offer design 
challenges.

 

1.11.2 Design Considerations

 

Simple compilers can be class exercises. However, pro-
duction compilers must respond to concerns about perfor-
mance and usability. 

The architecture must 

 

respond to the usage profile of its 
environment

 

. For example, student compilers must support 
rapid turnaround of small programs but need not be much 
concerned with the quality of the code. For production 
compilers, however, code speed may be paramount.

The architecture must be compatible with its 

 

associated 
software development enviroment

 

. This might, for exam-
ple, be batch or interactive.

 

1.11.3 Solutions

 

Many compiler design textbooks present solutions. Ses-
hadri [Seshadri88] shows how to create a parallel version. 
Perry andWolf [PerryWolf92] and Garlan and Shaw [Gar-
lanShaw93] examine some of these solutions from an 
architectural standpoint.

 

1.11.4 Contributors

 

Alex Wolf, Dewayne Perry, and Bill Griswold pointed out 
that this collection would be deficient without a compiler 
example. 

 

2  Solutions 

 

W

 

e now present sample solutions for the first two model 
problems, KWIC and the Mobile Robot. In each case, the 
presentation begins with sketches of several alternative 
architectures. Each sketch describes the architecture and 
identifies some of its strengths and weaknesses. Then a 
summary section compares the merits of the alternatives, 
emphasizing the design considerations of the problem 
statement.



 

Solutions

 

12

 

 of

 

 32

 

Candidate Model Problems in Software Architecture

 

2.1 Solutions to KWIC

 

T

 

his section contains four solutions to the Key Word in 
Context (KWIC) architectural model problem. All four are 
grounded in published solutions. The first two are those 
considered in Parnas’ original article [Parnas72]. The third 
solution is based on the use of “reactive integration” and 
represents a variant on the solution examined by Garlan, 
Kaiser, and Notkin [Garlan92]. The fourth is a pipeline 
solution inspired by the Unix index utility [ref??].

 

2.1.1 Solution 1: Main program/subroutine with 
shared data.

 

The first solution decomposes the problem according to 
the four basic functions performed: input, shift, alphabet-
ize, and output. These computational components are 
coordinated as subroutines by a main program that 
sequences through them in turn. Data is communicated 
between the components through shared storage (“core 
storage”). Communication between the computational 
components and the shared data is an unconstrained read-
write protocol. This is made possible by the fact that the 
coordinating program guarantees sequential access to the 
data.

 

Figure  2.1.2:

 

Hierarchical Subroutine Architecture with 
Shared Data

 

In this solution, computations can share the same storage. 
This allow efficient data representation. The solution also 
has a certain intuitive appeal, since distinct computational 
aspects are isolated in different modules.

However, as Parnas argues, it has a number of serious 
drawbacks in terms of its ability to handle changes. In par-
ticular, a change in data storage format will affect almost 

Solution 1: From Parnas

Master
Control

Input

Input Medium

Characters

Circular Shift Alphabetizer Output

Index Alphabetized
 Index

Output
Medium

= System I/O
= Direct Memory Access
= Subprogram Call

 

all of the modules. Similarly changes in algorithm and 
enhancements to system function are not easily handled.

Finally, reuse is now well-supported because each module 
of the system is tied tightly to this particular application. 

 

2.1.3  Solution 2: Abstract data types.

 

The second solution decomposes the system into a similar 
set of five modules. However, in this case data is no longer 
directly shared by the computational components. Instead, 
each module provides an interface that permits other com-
ponents to access data only by invoking procedures in that 
interface.

 

Figure  2.1.4:

 

Abstract Data Type Architecture

 

This solution is composed of the same processing modules 
as the first. However, it has a number of advantages over 
the first solution when design changes are considered. In 
particular, both algorithms and data representations can be 
changed in individual modules without affecting others. 
Moreover, reuse is better supported than in the first solu-
tion because modules make fewer assumptions about the 
others with which they interact.

On the other hand, as discussed by Garlan, Kaiser, and 
Notkin, the solution is not particularly well suited to 
enhancements. The main problem is that to add new func-
tions to the system, the implementor must either modify 
the existing modules -- compromising their simplicity and 
integrity -- or add new modules that lead to performance 
penalties. (See [Garlan92] for a detailed discussion.)

 

2.1.5  Solution 3: Reactive integration.

 

The third solution uses a form of component integration 
based on shared data similar to the first solution. However, 
there are two important differences. First, the interface to 
the data is more abstract. Rather than exposing the storage 

    Solution 2: From Parnas

Master
Control

Input

Input Medium

Characters
Circular Shift

Alphabetic

Output

Output
Medium

= System I/O
= Subprogram Call

ch
ar

se
tc

ha
r

w
or

d ch
ar

se
tc

ha
r

w
or

d

se
tu

p

al
ph ith

Shifts



 

Solutions

 

Candidate Model Problems in Software Architecture

 

13

 

 of 

 

32

 

formats to the computing modules, data is accessed 
abstractly (for example, as a list or set). Second, computa-
tions are invoked implicitly as data is modified. For exam-
ple, the act of adding a new line to the line storage causes 
an event to be sent to the shift module. This allows it to 
produce circular shifts (in a separate abstract shared data 
store). This in turn causes the alphabetizer to be implicitly 
invoked so that it can alphabetize the lines. Additional dis-
cussion of this integration paradigm can be found else-
where [GarlanNotkin91].

 

Figure  2.1.6:

 

Reactive Architecture

 

This solution easily supports functional enhancements to 
the system: additional modules can be attached to the sys-
tem by registering them to be invoked on certain events. 
Because data is accessed abstractly, it also insulates com-
putations from changes in data representation. Reuse is 
also supported, since the implicitly invoked modules only 
rely on the existence of certain externally triggered events.

However, the solution suffers from the fact that it can be 
difficult to change the order of processing of the implicitly 
invoked modules. Further, because invocations are data 
driven, the most natural solutions using this kind of 
decomposition tend to use more space than the previously 
considered decompositions.

 

2.1.7  Solution 4: Dataflow.

 

The fourth solution uses a pipeline. A pipeline is com-
posed of a sequence of filters, connected by streams of 
data. In this case there are four filters: input, shift, alpha-
betize, and output. Each filter processes its data, sending it 

Modularization with Toolies

Master
Control

Input

Input Medium

Circular Shift Alphabetizer Output

Output
Medium

= System I/O
= Implicit Invocation
= Subprogram Call

Lines

in
se

rt

de
le

te

ith

Lines

in
se

rt

de
le

te

ith

 

to the downstream filter. Control is distributed: each filter 
can run whenever it has data on which to compute. Data 
sharing between filters is strictly limited to that transmit-
ted on pipes [AllenGarlan92].

 

Figure  2.1.8:

 

Dataflow Architecture

 

This solution has several nice properties. First, it supports 
the intuitive flow of processing. Second, it supports reuse, 
since each filter can function in isolation (provided 
upstream filters produce data in the form it expects). New 
functions are easily added to the system by inserting filters 
at the appropriate point in the processing sequence.

On the other hand, it has a number of drawbacks. First, it 
is virtually impossible to modify the design to support an 
interactive system. For example, in order to delete a line, 
there would have to be some persistent shared storage, 
violating a basic tenet of this approach. Second, the solu-
tion is inefficient in terms of its use of space, since each 
filter must copy all of the data to its output ports.

Pipeline Modularization

Input Circular Shift

Alphabetizer Output Output
Medium

= System I/O

= Pipe

Input Medium



 

Solutions

 

14

 

 of

 

 32

 

Candidate Model Problems in Software Architecture

 

2.1.9  Summary

 

To a rough approximation, the solutions can be compared 
by tabulating their ability to address the design consider-
ations itemized in the following table:

 

Table  2.1.1.

 

Strength and Weaknesses of KWIC 
Architectures

 

2.2 Solutions for Mobile Robot 

 

F

 

or sample solutions, we examine four major architec-
tures that have been implemented on robots. These include 
Lozano’s control loops [Lozano90], Elfes’ layered organi-
zation [Elfes87], Simmons’ task control architecture [Sim-
mons92], and Shafer’s application of blackboards 
[Shafer86]. 

 

2.2.1 Solution 1: Control Loop

 

Figure 2.2.1 models the control loop paradigm. 

A
bs

tr
ac

t

R
ea

ct
iv

e

D
at

afl
ow

Sh
ar

ed
 D

at
a

D
at

at
yp

e

In
te

gr
at

io
n

Change in Algorithm

Change in Data
Representation

Change in Function

Performance

Reuse

- -
- -

-

-

-
-

+

+

+

+

+
+

+
+

+

-

-
+

 

Figure  2.2.2:

 

A Control Loop Architecture

 

Most industrial robots support minimal handling of unpre-
dictable events: the tasks are fully predefined (e.g, welding 
certain automobile parts together), and the robot has no 
responsibility with respect to its environment (it is rather 
the environment that is responsible for not interfering with 
the robot). The 

 

open loop 

 

paradigm applies naturally to 
this situation: the robot initiates an action or series of 
actions without bothering to check on their consequences 
[Lozano90].

Upgrading this paradigm to mobile robots involves adding 
feedback, thus producing a 

 

closed loop

 

 architecture. The 
controller initiates robot actions and monitors their conse-
quences, adjusting the future plans based on this return 
information. 

(R1) An advantage of the closed loop paradigm is its sim-
plicity: it captures the basic interaction between the robot 
and the outside. 

Its simplicity is also a drawback in the more unpredictable 
environments. One expert [Lozano90] comments on the 
fact that the feedback loop assumes that changes in the 
environment are linear and require linear reactions (e.g., 
like the control of pressure through the gradual opening 
and closing of a valve); robots, though, are mostly con-
fronted with disparate, discrete events that demand 
switches between very different behavior modes (e.g., 
between controlling manipulator motions and adjusting 
the base position, to avert loss of equilibrium). The model 

  Controller

Actuators    Sensors

action feedback

Environment

Active Component of Robot



 

Solutions

 

Candidate Model Problems in Software Architecture

 

15

 

 of 

 

32

 

does not provide any hints as to how different kinds of 
events may be managed.

For complex tasks, the control loop gives no leverage for 
decomposing the software into cooperating components. If 
the steps of sensing, planning, and acting have to be 
refined, other paradigms have to provide the nuances the 
control loop model lacks. 

(R2) For the resolution of uncertainty, the control loop 
paradigm is biased towards one method: reducing the 
unknowns through iteration; a trial-and-error process with 
action and reaction eliminates possibilities at each turn. If 
more subtle steps are needed, the architecture offers no 
framework for integrating these with the basic loop or for 
delegating them to separate entities. 

(R3) Fault tolerance and safety are supported by the closed 
loop paradigm in the sense that its simplicity makes dupli-
cation easy and reduces the chance of errors creeping into 
the system. 

(R4) The major components of a robot architecture (super-
visor, sensors, motors) are separated from each other and 
can be replaced independently. More refined tuning has to 
take place inside the modules, at a level of detail the archi-
tecture does not show. 

In summary, the closed loop paradigm seems most appro-
priate for simple robotic systems which have to handle 
only a small number of external events and whose tasks 
involve no complicated decomposition. 

 

2.2.3 Solution 2: Layered Architecture

 

Figure 2.2-2 shows Alberto Elfes’ definition of the ideal-
ized layered architecture [Elfes87] that influenced the 
design of the Dolphin sonar and navigation system, imple-
mented on the Terregator and Neptune mobile robots 
[Champeny93, Podnar84]. 

 

Figure  2.2.4:

 

A Layered Architecture

 

At level 1, the lowest level, reside the robot control rou-
tines (motors, joints,...). 

Levels 2 and 3 deal with the input from the real world. 
They perform sensor interpretation (the analysis of the 
data from one sensor) and sensor integration (the com-
bined analysis of different sensor inputs).

Level 4 is concerned with maintaining the robot’s model 
of the world. 

Level 5 manages the navigation of the robot.

The next two levels, 6 and 7, schedule and plan the robot’s 
actions. Dealing with problems and replanning is also part 
of the level-7 responsibilities.

The top level provides the user interface and overall super-
visory functions.

Supervisor

Global Planning

Control 

Navigation 

Real-World Modelling

Sensor Integration

Sensor Interpretation

Robot Control 

Environment 



 

Solutions

 

16

 

 of

 

 32

 

Candidate Model Problems in Software Architecture

 

(R1) Elfes’ model sidesteps some of the problems encoun-
tered with the control loop by defining more components 
to which the required tasks can be delegated. Being spe-
cialized to autonomous robots, it points to the concerns 
that have to be addressed (e.g., sensor integration). Fur-
thermore, it defines abstraction levels (e.g, robot control 
vs. navigation) to guide the design. 

While it organizes well the components needed to coordi-
nate the robot’s operation, the layered architecture does 
not fit the actual data and control flow patterns. The layers 
suggest that services and requests are passed between 
adjacent components. In reality, as Elfes readily admits, 
the information exchange is less straightforward. For 
instance, data necessitating fast reaction may have to be 
sent directly from the sensors to the problem handling 
agent at level 7, and the corresponding commands may 
have to skip levels to reach the motors in time. 

Another imprecision in the model is that it does not sepa-
rate the two abstraction hierarchies that actually exist in 
the architecture: 

 

■

 

The data hierarchy with raw sensor input (level 1), 
interpreted and integrated results (2 and 3), and finally 
the world model (4).

 

■

 

The control hierarchy with motor control (level 1), 
navigation (5), scheduling (6), planning (7), and user-
level control (8). 

The NASREM architecture mentioned in the conclusion is 
more precise in this respect. 

(R2) The existence of abstraction layers addresses the 
need for managing uncertainty: what is uncertain at the 
lowest level may become clear with the added knowledge 
available in the higher layers. For instance, the context 
embodied in the world model can provide the clues to dis-
ambiguate conflicting sensor data. 

(R3) Fault tolerance and passive safety (when you strive 

 

not

 

 do something) are served by the abstraction mecha-
nism too. Data and commands are analyzed from different 
perspectives. It is possible to incorporate many checks and 
balances into the system. 

As already mentioned, performance and active safety 
(when you have to do something rather than avoid doing 
something) may require that the communication pattern be 
short-circuited. 

 

(R4) The fudged dependencies are an obstacle to easy 
replacement and addition of components. The fragile rela-
tionships between the layers can become more difficult to 
decipher with each change. 

In summary, the abstraction levels defined by the layered 
architecture provide what constitutes the goal for software 
architectures in general: a framework for organizing the 
components. It achieves this objective by being precise 
about the role of the different layers. 

The major drawback of the model is that it breaks down 
when it is taken to the greater level of detail demanded by 
an actual implementation. The communications patterns in 
a robot do most probably not follow the very orderly 
scheme implied by the architecture. 

 

2.2.5 Solution 3: Implicit Invocation

 

Figure 2.2.3 summarizes the Task Control Architecture 
(TCA) [Simmons92] which uses implicit invocation. It 
was applied, among others, to the Ambler robot [Sim-
mons90].

 

Figure  2.2.6:

 

An Implicit Invocation Architecture

 

TCA is not only an architecture; it also provides a sophis-
ticated tool box for building robots: a library of communi-
cation and control routines that implement the TCA 
philosophy. The following discussion focuses on task trees 
and the implicit invocation features. For a complete over-
view, see the references.

Task 

Task 

Task 

Task 

Task 

message 

dispatched
message

wiretap

Ether

exception



 

Solutions

 

Candidate Model Problems in Software Architecture

 

17

 

 of 

 

32

 

The TCA architecture is based on hierarchies of tasks, the 
task trees. Figure 2.2.4 shows a sample task tree. Parent 
tasks initiate child tasks. The software designer can define 
temporal dependencies between pairs of tasks. An exam-
ple temporal constraint is: “A must complete before B 
starts.” These features permit the specification of selective 
concurrency. 

TCA’s routines include many operations on task trees for 
dynamically reconfigure them at run-time. 

 

Figure  2.2.7:

 

A Task Tree

 

In TCA, tasks communicate by sending messages to a cen-
tral server, which redirects the messages to tasks that have 
registered to handle them. This scheme, where the sender 
does not need to know the receiver, is the basic character-
istic of implicit invocation.

Three more implicit invocation mechanisms are part of 
TCA’s features:

 

■

 

Exceptions:

 

 Certain conditions cause the execution of 
an associated exception handler. Exceptions override 
the currently executing task in the subtler that causes 
the exception. They quickly change the processing 
mode of the robot and are thus better suited for manag-
ing spontaneous events (such as a dangerous change in 
terrain) than the feedback loop or the long communica-
tion paths of the pure layered architecture. 

Exception handlers have at their disposal all the opera-
tions for manipulating the task trees: e.g., they can 
abort or retry tasks. 

 

■

 

Wiretapping:

 

 Messages can be intercepted by routines 
superimposed on an existing architecture, i.e., task tree. 

gather
rock

  go to 
position

lift rockgrab rock 

move left   move 
 forward

 

For instance, a safety check procedure can use this fea-
ture to validate all outgoing motion commands. 

 

■

 

Monitors:

 

 Monitors read information and execute 
some action if the data fulfill a certain criterion. An 
example from the TCA manual is the battery check: if 
the battery level falls below a given level, the actions 
necessary for recharging it are invoked. This feature 
offers a convenient way of dealing with fault tolerance 
issues by setting aside agents to supervise the system. 

(R1) Task trees on one hand, and exceptions, wiretapping, 
and monitors on the other permit a clear-cut separation of 
action (the nominal behavior embodied in the task trees) 
and reaction (the behavior dictated by extraneous events 
and circumstances). 

TCA also distinguishes itself from the previous paradigms 
by incorporating concurrent agents in its model. In TCA it 
is evident that multiple actions can proceed at the same 
time, more or less independently. The other two models do 
not show the presence of concurrency. 

The amount of concurrency is limited by the capabilities 
of the central server. In general, its reliance on a central 
control point may be a weak point of TCA. 

(R2) How TCA addresses uncertainty is less clear. If 
imponderables exist, a tentative task tree can be built, to 
be adapted by the exception handlers when the assump-
tions it is based on turn out to be erroneous. 

(R3) As illustrated by the examples above, the TCA 
exception, wiretapping, and monitoring features take into 
account the needs for performance, safety and fault toler-
ance.

Fault tolerance by redundancy is achieved when multiple 
handlers register for the same signal; if one of them 
becomes unavailable, TCA can still provide the service by 
routing the request to another. Performance also benefits 
since multiple occurrences of the same request can be han-
dled concurrently by multiple handlers. 

(R4) The use of implicit invocation makes incremental 
development and replacement of components straightfor-
ward: it is often sufficient to register new handlers, excep-
tions, wiretaps or monitors with the central server; no 
existing component feels the impact. 

In summary, TCA offers a comprehensive set of features 
for coordinating the tasks of a robot while respecting the 



 

Solutions

 

18

 

 of

 

 32

 

Candidate Model Problems in Software Architecture

 

quality and ease of development requirements. The rich-
ness of the scheme makes it most appropriate for more 
complex robot projects. 

 

2.2.8 Solution 4: Blackboard Architecture

 

Figure 2.2.5 describes a blackboard architecture for 
mobile robots. This paradigm was used in the NAVLAB 
project, as part of the CODGER system [Shafer86]. 

 

Figure  2.2.9:

 

A Blackboard Architecture

 

The “whiteboard” architecture, as it is named in [Sha-
fer86], works with abstractions reminiscent of those 
encountered in the layered architecture. The components 
of CODGER are: 

 

■

 

The “captain”, the overall supervisor.

 

■

 

The “map navigator”, the high level path planner.

 

■

 

The “lookout”, a module that monitors the environ-
ment for landmarks.

 

■

 

The “pilot”, the low level path planner and motor con-
troller.

 

■

 

The perception subsystem, the modules that accept the 
raw input from multiple sensors and integrate it into a 
coherent interpretation.

(R1) The components (including the modules inside the 
perception subsystem) communicate via the characteristic 
central database of the blackboard systems. Modules indi-
cate their interest in certain types of information. The data-

    Blackboard

Perception subsystem 

lookout 

captain map navigator

pilot 

 

base returns them such data either immediately or when 
some other module inserts them into the database. 

For instance, the lookout may watch for certain geo-
graphic features; the database informs it when the percep-
tion subsystem stores images matching the description. 

One difficulty with the CODGER architecture is that all 
control flow has to be coerced to fit the database mecha-
nism, even under circumstances where direct interaction 
between components would be more natural. 

(R2) The blackboard is also the means for resolving con-
flicts or uncertainties in the robot’s world view. For 
instance, the lookout’s landmark detections provide a real-
ity check for the distance estimation by dead-reckoning, 
both stored in the database. The modules responsible for 
the uncertainty resolution register with the database to 
obtain the necessary data. 

The main example of this activity is 

 

sensor fusion

 

, per-
formed by the perception subsystem to reconcile the input 
from its diverse sensors. 

(R3) The communication via the database is similar to the 
communication via TCA’s central message server. The 
exception mechanism, wiretapping and monitoring - guar-
antors of reaction speed, safety, and reliability - can be 
implemented in CODGER by defining separate modules 
that watch the database for the tell-tale signs of unex-
pected occurrences or the beginnings of troublesome situa-
tions. TCA’s safety mechanism of double-checking 
messages through wiretaps cannot be fully duplicated 
because it may be too late to prevent an action once it 
manifests itself in the database. (TCA holds the message 
while the wiretap processes it.)

(R4) As with TCA, the blackboard architecture offers sup-
port for concurrency and decouples senders from receiv-
ers, thus gaining flexibility for maintenance. 

In summary, the blackboard architecture is capable of 
modeling the cooperation of tasks, both for coordination 
and uncertainty resolution in a very flexible manner, 
thanks to an implicit invocation mechanism based on the 
contents of the database. These features are only slightly 
less powerful than TCA’s equivalent capabilities.

 

2.2.10 Conclusion

 

We have seen four architectures, of which two (layered 
architecture and blackboard) are very specific and give 



 

Fuller Definitions of Problems

 

Candidate Model Problems in Software Architecture

 

19

 

 of 

 

32

 

precise indications as to the components expected in a 
robot. The other two (control loop and implicit invocation) 
define no functional components and concentrate on the 
mechanisms.

Specificity is helpful for getting a grasp on the basic 
abstractions and tasks involved in an autonomous robot. It 
would be interesting to research the value of a TCA archi-
tecture (which is the most powerful in its mechanisms) 
combined with a functional decomposition of robot tasks 
(planning, sensor integration, ...).

Other hybrid architectures have been proposed. The 
NASA/NBS Standard Reference Model for Telerobots 
(NASREM) [Lumia90] can be seen as a combination of 
the control loop and the layered architectures (Figure 
2.2.6).

 

Figure  2.2.11:

 

The NASREM Architecture 

 

The layers from top to bottom are defined by the time 
frame in which they perform their tasks. Seen from this 
perspective, the architecture is a hierarchy of control loops 
with increasingly tighter response time constraints. 

The layers from left to right represent the functional 
abstractions.

 Sensing    World 
 Modeling

        Task
  Decomposition 

     environment 

 

To conclude, table 2.2.1 summarizes the strengths and 
weaknesses of the reviewed software architectures.

 

Table  2.2.1.

 

Strengths and Weaknesses of Robot 
Architectures

 

3 Fuller Definitions of Problems

 

3.1 Extended Definition of Meeting 

 

Scheduler

 

Axel van Lamsweerde provides an extended specification 
of the meeting scheduling problem from October 1992 
[vanLamsweerde92] and an extension to cover conflict 
resolution from November 1993 [vanLamsweerde93]. 

We include it in this document because it shows how prob-
lem complexity emerges as you consider the problem 
statement in more detail, and because the original source is 
relatively inaccessible to this commumnity. Because of its 
length it is set up as a separate section rather than being 
included in the short introductions. Think of this section as 
a solution imported from a requirements/specification 
exercise.

For more information about the preliminary definition, 
contact 

 

Axel van Lamsweerde, Robert Darimont and Philippe 
Massonet

 

Control
 Loop

Layers
Impl. 
Invoc.

Black
Board

Task
 Coordination 

 

+- - ++ +

 

Dealing with 
Uncertainty

 

- +- +- +

 

Fault 
Tolerance

 

+- +- ++ +

 

Safety

 

+- +- ++ +

 

Performance

 

+- +- ++ +

 

Flexibility 

 

+- - + +



 

Fuller Definitions of Problems

 

20

 

 of

 

 32

 

Candidate Model Problems in Software Architecture

 

UCL - Unite d'Informatique 
B-1348 Louvain-la-Neuve (Belgium)
 avl@info.ucl.ac.be

 

For more information about the extension for conflict res-
olution, contace

 

Axel van Lamsweerde, Charles Christoph and Phil-
ippe Massonet 
University of Louvain, 
Unite d'informatique, 
B-1348 Louvain-la-Neuve (Belgium)

 

3.1.1 The Meeting Scheduler System: 
Preliminary Definition

 

3.1.1.1 Foreword

 

This preliminary description is deliberately intended to be 
sketchy and unprecise.  Acquisition, formalization and val-
idation processes are needed to complete it and lift the 
many shadow areas.

A number of features of the Meeting Scheduler System 
were inspired from various experiences in organizing 
meetings (faculty meetings, ESPRIT project meetings, 
Program Committee meetings, etc.) and from various dis-
cussions with Steve Fickas' group at the University of Ore-
gon.

 

3.1.1.2 Scheduling Meetings: Domain Theory

 

Meetings are typically arranged in the following way. A 

 

meeting initiator

 

 asks all potential meeting attendees for 
the following  information based on their personal agenda:

 

■

 

a set of dates on which they cannot attend the meeting 
(hereafter referred as 

 

exclusion set

 

);

 

■

 

a set of dates on which they would prefer the meeting 
to take place (hereafter referred as 

 

preference set

 

).

A 

 

meeting date

 

 is defined by a pair (calendar date, time 
period). The exclusion and preference sets are contained in 
some time interval  prescribed by the meeting initiator 
(hereafter referred as 

 

date range

 

).

The initiator also asks 

 

active participants

 

 to provide any 
special  equipment requirements on the meeting location 
(e.g., overhead-projector, workstation, network connec-
tion, telephones, etc.); he/she may also ask 

 

important

 

 par-
ticipants to state preferences about the meeting location.

 

The proposed meeting date should belong to the stated 
date range and to none of the exclusion sets; furthermore it 
should ideally belong to as many preference sets as possi-
ble. A 

 

date conflict

 

 occurs when no such date can be 
found. A conflict is strong when no date can be found 
within the date range and outside all exclusion sets; it is 
weak when dates can be found within the date range and 
outside all exclusion sets, but no date can be found at the 
intersection of all preference sets. Conflicts can be 
resolved in several ways:

 

■

 

the initiator extends the date range; 

 

■

 

some participants remove some dates from their exclu-
sion set;

 

■

 

some participants withdraw from the meeting; 

 

■

 

some participants add some new dates to their prefer-
ence set.

A meeting room must be available at the selected meeting 
date. It should meet the equipment requirements; further-
more it should ideally belong to one of the locations pre-
ferred by as many important participants as possible. A 
new round of negotiation may be required when no such 
room can be found.

The meeting initiator can be one of the participants or 
some representative (e.g., a secretary). 

 

3.1.1.3 System Requirements

 

The purpose of the 

 

meeting scheduler system

 

 is to support 
the organization of meetings - that is, to determine, for 
each meeting request, a meeting 

 

date

 

 and 

 

location

 

 so that 
most of the intended participants will effectively partici-
pate.  The meeting date and location should thus be as con-
venient as possible to all participants. Information about 
the meeting should also be made available as early as pos-
sible to all potential participants. The intended system 
should considerably reduce the amount of overhead usu-
ally incurred in organizing meetings where potential 
attendees are distributed over many different places.  On 
another hand, the system should reflect as closely as possi-
ble the way meetings are typically managed (see the 
domain theory above).

The system should assist users in the following activities.

 

■

 

Plan meetings under the constraints expressed by par-
ticipants

 

■

 

Replan a meeting dynamically to support as much flex-
ibility as possible. On one hand, participants should be 



 

Fuller Definitions of Problems

 

Candidate Model Problems in Software Architecture

 

21

 

 of 

 

32

 

allowed to modify their exlusion set, preference set 
and/or preferred location 

 

before

 

 a meeting date/loca-
tion is proposed. On the other hand, it should be possi-
ble to take some external constraints into account 

 

after

 

 
a date and location have been proposed - e.g., due to 
the need to accommodate a more important meeting. 
The original meeting date or location may then need to 
be changed; sometimes the meeting may even be can-
celled. In all cases some bound on replanning should 
be set up.

 

■

 

Support conflict resolution according to resolution pol-
icies stated by the client.

 

■

 

Manage all the interactions among participants 
required during the organization of the meeting  - to 
communicate requests, to get replies even from partici-
pants not reacting promptly, to support the negotiation 
and conflict resolution processes, to make participants 
aware of what's going on during the planning process, 
to keep participants informed about schedules and their 
changes, to make them confident about the reliability 
of the communications, etc.

 

■

 

Keep the amount of interaction among participants 
(e.g., number and length of messages, amount of nego-
tiation required) as small as possible. 

The meeting scheduler system must in general handle sev-
eral meeting requests 

 

in parallel

 

. Meeting requests can be 
competing by overlapping in time or space. Concurrency 
must thus be managed. 

The following aspects should also be taken into account. 

 

■

 

The system should accomodate decentralized requests; 
any authorized user should be able to request a meeting 
independently of his whereabouts.

 

■

 

Physical constraints may not be broken - e.g., a person 
may not be at two different places at the same time, a 
meeting room may not be alloc 

 

■

 

The system should provide an appropriate level of per-
formance, for example:

 

■

 

the elapsed time between the submission of a 
meeting request and the determination of the cor-
responding meeting date/location should be as 
small as possible;

 

■

 

the elapsed time between the determination of a 
meeting date/location and the communication of 
this information to all participants concerned 
should be as small as possible;

 

■

 

a lower bound should be fixed between the time at 
which  the meeting date is determined and the time 
at which the meeting is actually taking place.

 

■

 

Privacy rules should be enforced; a non-privileged par-
ticipant should not be aware of constraints stated by 
other participants.

 

■

 

The system should be usable by non-experts.

 

■

 

The system should be customizable to professional as 
well as private meetings. These two modes of use are 
characterized by different restrictions on the time peri-
ods that may be allocated (e.g., meetings during office 
hours, private activities during leisure time).

 

■

 

The system should be flexible enough to accommodate 
evolving data - e.g., the sets of concerned participants 
may be varying, the address at which a participant can 
be reached may be varying, etc.

 

■

 

The system should be easily extendable to accommo-
date the following typical variations:

 

■

 

handling of explicit status and priorities among 
participants;

 

■

 

handling of explicit priorities among dates in pref-
erence sets;

 

■

 

handling of explicit dependencies between meet-
ing date and meeting location;

 

■

 

participation through delegation - a participant 
may ask another person to represent him/her at the 
meeting;

 

■

 

partial attendance - a participant can only attend 
part of the meeting;

 

■

 

variations in date formats, address formats, inter-
face language, etc.

 

■

 

partial reuse in other contexts -e.g., to help estab-
lish course schedules.

 

This ends the problem description. The following extends 
the system

 

3.1.2 Extending the Meeting Scheduler System 
to Support Conflict Resolution

 

3.1.2.1 Foreword

 

This note aims at suggesting a useful extension to the 
Meeting Scheduler System. The objective is to incorporate 
knowledge about participant status and about various 
kinds of priorities among participants and meetings.

 

3.1.2.2 Finding Best Meetings and Resolving 
Conflicts

 

Context

 

 



 

Fuller Definitions of Problems

 

22

 

 of

 

 32

 

Candidate Model Problems in Software Architecture

 

The purpose of the Meeting Scheduler System is to sup-
port the organization of meetings--that is, to determine, for 
each meeting request, a meeting date, location and equip-
ment so that the expected participants can attend, the 
meeting date and location are most convenient to impor-
tant participants, etc. The Meeting Scheduler System 
should also minimize the overhead usually incurred in 
organizing meetings.

When there is no common date within all preference sets 
or no common date outside all exclusion sets, the Meeting 
Scheduler System will not be able to find a date which is 
perfectly suitable to everybody. It is then necessary to 
negotiate a solution to resolve conflicts. This may be done 
in several ways (see preliminary description above). 

Clients and analysts came to the conclusion that knowl-
edge about participant status and about priorities among 
users and meetings should help in resolving conflicts by 
determining a "best" way to resolve a conflict. Even when 
there is no conflict, the participant status may be useful in 
determining a "best" meeting date and location.

 

 

Status and priorities

 

The following notions should be incorporated in the pro-
posed extension. They capture the hierarchical importance 
of participants, the importance for a participant to attend a 
particular meeting relatively to other participants or to 
other meetings, and the ease with which a participant can 
make a particular date interval free. These various notions 
will be used in the conflict resolution process.

 

Participant Status

 

The participant 

 

status

 

 captures the hierarchical importance 
of a  participant with respect to others independently of 
any specific meetings he is expected to participate in.

The participant 

 

status

 

 might be used, e.g., to determine a 
"best" compromise on date and location whenever several 
ones are possible. 

The participant 

 

status

 

 is typically determined by some 
super user.

For instance, in the context of scheduling Faculty meet-
ings the Departement Head would have a higher 

 

status

 

 
than normal professors. The latter would have a higher 

 

status

 

 than student representatives.

 

 

Participant Importance

 

The participant 

 

importance

 

 captures the importance for a 
specific person to attend a particular meeting 

 

relatively to 
other participants

 

.

Participant 

 

importances

 

 are  typicaly determined by the 
meeting initiator.

For instance, the meeting chairman and secretary must be 
present; they have the highest participant 

 

importance

 

. In a 
project meeting where specific tasks are discussed, the 
task leaders would have a higher participant 

 

importance

 

 
than normal project members and a lower importance than 
the meeting chair, the task speakers or the project review-
ers.

 

 

Meeting Significance

 

The meeting 

 

significance

 

 represents the importance for a 
specific person to attend a particular meeting 

 

relatively to 
other meetings or meeting requests

 

.

Meeting 

 

significances

 

 are  typically determined by the par-
ticipants concerned.

For instance, participants to a specific task in a research 
project would assign a greater significance to a project 
meeting where their task will be discussed.

This information must be kept confidential.

 

Participant Flexibility

 

The participant 

 

flexibility

 

 is intended to indicate how eas-
ily a user can make a particular date interval free to allow 
meetings to be scheduled within that interval. Dates in 
exclusion sets and/or preference sets can thus be weighted 
accordingly.

 The participant 

 

flexibility

 

 is typically determined by the 
participants concerned.

 For instance, professors cannot move lecture periods eas-
ily; their participant 

 

flexibility

 

 for the corresponding date 
intervals should be low. A date interval which is not in the 
exclusion set of a participant should have a high {\it flexi-
bility} for that participant.

This information must be kept confidential.

 

Using Knowledge about Status and Priorities

 

The following tactics illustrate some typical uses of the 
various kinds of priorities suggested above.



 

Administrative Matters

 

Candidate Model Problems in Software Architecture

 

23

 

 of 

 

32

 

■

 

Best meeting dates and locations should be determined 
by considering participants with higher participant 

 

sta-

tus

 

 first

 

■

 

If no date can be found to organize a meeting, the 
Meeting Scheduler System could propose a person 
having low participant {\it importance} to withdraw 
from the meeting.

 

■

 

If no date can be found to organize a meeting, the 
Meeting Scheduler System could propose a participant 
to cancel (or to withdraw from) another meeting hav-
ing a lower meeting {\it significance}. 

 

■

 

A meeting date within some exclusion set (or outside 
some preference set) coud be considered if the corre-
sponding participant has a high {\it flexibility} for it.

 

4 Administrative Matters

 

4.1 Acknowledgments

 

T

 

his work has been funded variously by the Department 
of Defense Advanced Research Project Agency under 
grants MDA972-92-J-1002 and F33615-93-1-1330, by the 
National Science Foundation Grants CCR-9109469 and 
CCR-9112880, by a grant from Siemens Corporate Rese-
aerch, and by the Carnegie Mellon University School of 
Computer Science and Software Engineering Institute 
(which is a Federally Funded Resarch and Development 
Center sponsored by the US Department of Defense and 
operated by Carnegie Mellon University under Contract 
F19628-90-C-0003). The views and conclusions contained 
in this document are those of the authors and should not be 
interpreted as representing the official policies, either 
expressed or implied, of any of the above organizations (or 
any others -- how can an organization have an opinion?). 
The US government has a royalty-free government pur-
pose license to use, duplicate, or disclose the work. Not 
only that, we encourage the rest of you to do the same -- 
just give us credit.

We thank Ralph Johnson of the University of Illinois at 
Urbana-Champaign and Bill Griswold of the University of 
California at San Diego for their comments.

 

4.2 Bibliography

 

[AllenGarlan 92] Robert Allen and David Garlan. A 
Formal Approach to Software Archi-
tectures. 

 

Proceedings of the 1992 IFIP 
Congress

 

, September 1992. 

[AtleeGannon93] Joanne M. Atlee and John Gannon. 
State-Based Model Checking of 
Event-Driven System Requirements. 

 

IEEE Transactions on Software Engi-
neering

 

, vol 19, no 1, Jan 1993, pp.24-
40.

[BirchenoughCameron89]JSD and Object-Oriented 
Design. In John R. Cameron (ed), 

 

JSP 
and JSD: The Jackson Approach to 
Software Development

 

, IEEE Press 
1989, pp.293-304.

[Boehm84] D. Boehm-Davis and L. Ross. 

 

Approaches to Structuring the Soft-
ware Development Process.

 

 General 
Electric Company Report GEC/DIS/
TR-84-B1V-1, October 1984, p.14.

[Booch86] Grady Booch. Object-Oriented Devel-
opment. 

 

IEEE Transactions on Soft-
ware Engineering

 

, vol. 12, no. 2, 
February 1986, pp. 211-221.

[Bracket87]

[Champeny93] Lee Champeny-Bares, Syd Copper-
smith, and Kevin Dowling. 

 

The Terre-
gator Mobile Robot

 

. Technical Report 
CMU-RI-TR-93-03, Robotics Insti-
tute, Carnegie Mellon University, 
Pittsburgh, PA, 1993. 

[Elfes87] Alberto Elfes. Sonar-Based Real-
World Mapping and Navigation. 

 

IEEE 
Journal of Robotics and Automation

 

, 
no.3, 1987, pp. 249-265.

[Garlan92] David Garlan, Gail E. Kaiser, and 
David Notkin. Using Tools to Com-
pose Systems

 

.

 

 

 

IEEE Computer

 

, vol.25, 
no.6, June 1992. 

[GarlanNotkin91] David Garlan and David Notkin. For-
malizing Design Spaces: Implicit 
Invocation Mechanisms. 

 

VDM ‘91: 



 

Administrative Matters

 

24

 

 of

 

 32

 

Candidate Model Problems in Software Architecture

 

Formal Software Development Meth-
ods

 

, 1991, pp. 31-44.

[GarlanShaw93] David Garlan and Mary Shaw. An 
Introduction to Software Architecture. 
In V. Ambriola and G. Tiortora (ed), 

 

Advances in Software Engineering and 
Knowledge Engineering

 

, World Scien-
tific Publishing, 1993, pp.1-39.

[GarlanShaw94] David Garlan and Mary Shaw. Soft-
ware Development Assignments for a 
Software ARchitecture Course. 

 

Proc 
ICSE-16 Workshop on Software Engi-
neering Education

 

, to appear 1994.

[Gomaa89] Hassan Gomaa. Structuring Criteria 
for Real Time System Design. 

 

Proc 
11th International Conference on Soft-
ware Engineering

 

, 1989, pp.290-301.

[Higgins87] David A. Higgins. Specifying Real-
Time/Embedded Systems using Feed-
back/Control Models. 

 

Proc SMC XII: 
Twelfth Structured Methods Confer-
ence

 

, 1987, pp.127-147.

[HøydalsvikSindre93] Geir Magne Høydalsvik and Gut-
torm Sindre. On the Purpose of 
Object-Oriented Analysis. 

 

Proc OOP-
SLA’93

 

, 1993, pp. 240-255.

[Jones90] Do-While Jones. Software Testing. 

 

Ada-Info column, Journal of Pascal, 
Ada, and Modula-2

 

, vol 9, no 2, 
March-April 1990, pp.53-64.

[Kemmerer85]

 

Oops, citation missing

 

.

[Lozano90] Tomás Lozano-Pérez. Preface to 

 

Autonomous Robot Vehicles

 

. L. J. Cox 
and G.T. Wilfong, eds. Springer Ver-
lag, New York, NY, 1990. 

[Lubars92] M. Lubars, G. Meredith, C. Potts, and 
C. Richter. Object-Oriented Analysis 
for Evolving Systems

 

.

 

 

 

Proceedings of 
ICSE

 

, May 1992. 

[Lumia90] R. Lumia, J. Fiala, and A. Wavering. 
The NASREM Robot Control System 
and Testbed. 

 

International Journal of 
Robotics and Automation

 

, no.5, 1990, 
pp. 20-26.

 

[Parnas72] D. L. Parnas. On the Criteria To Be 
Used in Decomposing Systems into 
Modules. 

 

Communications of the 
ACM

 

, vol.15, no.12, December 1972, 
pp. 1053-1058.

[PerryWolf92] Dewayne E. Perry and Alexander L. 
Wolf. Foundations for the Study of 
Software Architecture. 

 

ACM Sigsoft 
Software Engineering Notes

 

, vol 7, no 
4, October 1992, pp.40-52.

[Podnar84] Gregg Podnar, Kevin Dowling, and 
Mike Blackwell. 

 

A Functional Vehicle 
for Autonomous Mobile Robot 
Research

 

. Robotics Institute, Carn-
egie Mellon University, Pittsburgh, 
PA, 1984. 

[Rumbaugh91] J. Rumbaugh, M. Blaha, W. Premer-
lani, F. Eddy, and W. Lorensen, 

 

Object-Oriented Modeling and 
Design

 

. Prentice Hall, 1991.

[Rumbaugh92] James Rumbaugh. Designing Bugs 
and Dueling Methodologies. 

 

Journal 
of Object-Oriented Programming

 

, Jan 
1992.

[Seshadri88] V. Seshadri et al. Semantic analysis in 
a concurrent compiler. 

 

Proc. ACM 
SIGPLAN ’88 Conference on Pro-
gramming Language Design and 
Implementation

 

, ACM SIGPLAN 
Notices 1988.

[Shafer86] Steven A. Shafer, Anthony Stentz, and 
Charles E. Thorpe. An Architecture for 
Sensor Fusion in a Mobile Robot. 

 

Pro-
ceedings of the IEEE International 
Conference on Robotics and Automa-
tion

 

, San Francisco, CA, April 7-10, 
1986, pp. 2002-2011. 

[Shaw93] Mary Shaw. 

 

Software Architecture for 
Shared Information Systems.

 

 Techni-
cal Report CMU/SEI-93-TR-3, Soft-
ware Engineering Institute, Carnegie 
Mellon University, Pittsburgh, PA, 
1993.



 

Administrative Matters

 

Candidate Model Problems in Software Architecture

 

25

 

 of 

 

32

 

[Shaw94] Mary Shaw. 

 

Making Choices: A Com-
parison of Styles for Software Archi-
tectures

 

. Unpublished manuscript.

[Shaw95] Mary Shaw. Beyond Objects: A Soft-
ware Design Paradign Based on Pro-
cess Control. 

 

ACM SIgsoft Software 
Engineering Notes

 

, to appear January 
1995.

[Simmons90] Reid Simmons. 

 

Concurrent Planning 
and Execution for a Walking Robot

 

. 
Technical Report CMU-RI-90-16. 
Robotics Institute, Carnegie Mellon 
University, Pittsburgh, PA, 1990.

[Simmons92] Reid Simmons. Concurrent Planning 
and Execution for Autonomous 
Robots. 

 

IEEE Control Systems

 

, no. 1, 
1992, pp.46-50. 

[SmithGerhart88] Sharon L. Smith and Susan L. Gerhart. 
STATEMATE and Cruise Control: A 
Case

 

2

 

 Study. 

 

Proc COMPSAC88: 
Twelfth Annuan International Com-
puter Software and Applications Con-
ference

 

, 1988, pp.49-56.

[vanLamsweerde92] Axel van Lamsweerde, R. Darimont 
and Philippe Massonet. 

 

The Meeting 
Scheduler System: Preliminary Defini-
tion

 

.  University of Louvain, Unit\'e 
d'informatique, B-1348 Louvain-la-
Neuve (Belgium), October 1992.

[vanLamsweerde92] Axel van Lamsweerde, Charles 
Christoph, and Philippe Massonet. 

 

Extending the Meeting Scheduler Sys-
tem to Support Conflict Resolution

 

.  
University of Louvain, Unit\'e d'infor-
matique, B-1348 Louvain-la-Neuve 
(Belgium), November 1993.

[WangTanik89] Jianbai Wang and Murat M. Tanik. 
Describing Real Time Systems Using 
PPA and XYZ/E. 

 

Proc. 22nd Annual 
Hawaii International Conference on 
System Sciences, Vol II: Software 
Track

 

, Jan 1989.

[WardKeskar87] Paul. T. Ward and Dinesh A. Keskar. A 
Comparison of the Ward/Mellor and 
Boeing/Hatley Real-Time Methods. 

 

Proc SMC XII: Twelfth Structured 
Methods Conference

 

, 1987, pp.356-
366.

[Wasserman89] Pircher, Robert J. Muller. An Object-
Oriented Structured Design Method 
for Code Generation. 

 

ACM Sigsoft 
Software Engineering Notes

 

 vol 14, no 
1, Jan 1989, pp.32-55.

[Ward84] P. Ward. Class exercise used at the 
Rocky Mountain Institute for Software 
Engineering, Aspen CO, 1984. 

[Wing88] Jeannette Wing. A Study of 12 Specifi-
cations of the Library Problem. 

 

IEEE 
Software

 

, July 1988, pp. 66-76. 

[YinTanik91] W.P. Yin and M.M. Tanik. Reusability 
in the real-time use of Ada. 

 

Interna-
tional Journal of Computer Applica-
tions in Technology

 

, vol 4, no 2, 1991, 
pp.71-78.


