Candidate
Modd Problemsin
Software Architecture

Mary Shaw, David Garlan, Robert Allen, Dan Klein,
John Ockerbloom, Curtis Scott, M arco Schumacher

The Software Architecture Group
Computer Science Department
Carnegie Méellon University
Pittsburgh PA 15213

Version 1.3: January 1995

Invitation: The software architecture community would benefit from sharing a set of standard example prob-
lems. These would improve our ability to work out ideas, exhibit techniques, and compare results. The Software
Architecture group at Carnegie Mellon has been assembling such acollection of problems. With this draft report
wewould like to open adiscussion about suitable problems: what characteristics they should have, what specific
problems would serve us well. To start that discussion, we present ten candidate problems and sketches of sev-
era distinct architectural approaches to two of them. We invite refinements and discussion of the problem list,

the solution sets, and the criteriafor choosing problems.

1 Introduction

| t iscommon for adiscipline, especially one that isjust
getting its wits about itself, to adopt some shared, well-
defined problems for teaching and study. Often known as
model systems or type problems, they provide away to
compare methods and results, work out new techniques on
standard examples, and set a minimum standard of capa-
bility for new participants. In time, a reasonable approach
to some of these problems becomes the price of admission
to get serious consideration of anew technique. Model
problems also provide a pre-debugged source of educa-
tional exercises.

Biology, for example, has

= Drosophila melanogaster (the fruit fly)
= Rattus rattus Norwegicus (the lab rat)
» Escherichia coli (the digestive bacterium)

Each of these is part of the common language of discourse
inthefield. Each provides afamiliar concreteinstance that
illustrates an important set of issues. This alows discus-
sionsto start from shared knowledge of the basic example
and proceed expeditiously to the result, theory, or tech-
nigue of current interest.

Closer to home, computer science has model problemsin
many areas. Familiar examples include

= Algorithms and Data Srructures: Sort, search, greatest
common divisor, prime integers, set, stack, queue

= Synchronization: Reader/writer, producer/consumer,
dining philosophers, cigarette smokers

= Programming Methodology: Eight queens, tower of
Hanoi

= Formal Secifications: Telegraph, lift (elevator, on the
west side of the Atlantic), library

= Combinatoric Optimization: Travelling salesman
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In this report, we propose several model problems for soft-
ware architecture, discuss the interesting design problems
they raise, and show how some of the work in this group
addresses each of them.

Our intention is to stimulate a discussion about these prob-
lems, potential additional problems, and the criteriafor
choosing problems and eval uating or comparing solutions.
To that end, thisis aliving document. We are distributing
it informally and encourage informal redistribution. We
have made it available via anonymous FTP. We include a
version number on the first page, and we do not plan any
kind of “permanent” publication anytime soon. We will
attempt to incorporate comments and suggestions, along
with short sketches of solutions. We are open to sugges-
tions about how longer solutions or comparison of alterna-
tive solutions should be handled.

Before moving on to the problems, we clarify what we
mean by software architecture [ GarlanShaw93, Shaw93;
see also Perry-Wolf92]. System design takes place at
many levels. It is useful to make precise distinctions
among those levels, for each level appropriately dealswith
different design concerns. Software design includes at
least the following:

= Architecture, where the design issues involve overall
association of system capability with components.

= Code, where the design issues involve algorithms and
data structures.

= Executable, where the design issues involve memory
maps, call stacks, and so forth.

Software architecture is concerned with design at the sys-
tem level. Certainly thisincludes system structure (or
topology), discriminations among different kinds of struc-
tures, and abstractions or generalizations about structures
and families of similar structures. It also includes identifi-
cation, specification, and analysis of the propertiesthat are
related to these structures, either because they influence
the selection of a structure or because they are conse-
guences of that structure.

At the architecture level, the components of interest are
modules and the interconnections among modules. Archi-
tectural styles guide the selection of kinds of components
and of the strategies for composing them. As aresult, the
kinds of components and interconnections can differ sub-
stantially between architectural styles. The properties of
interest include system structure, gross performance, com-

ponent consistency, and other aggregate properties such as
security and reliability.

Model problems for software architecture should help us
focus on specific architectural issues. Such issuesinclude

= Describing system organizations, and describing spe-
cific kinds of system organization (architectural styles)

= Distinguishing among templates, instances, and invo-
cations

= Distinguishing among different kinds of system organi-
zation -- not only structural differences, but the impli-
cations of those differences

= Selecting among different architectural alternatives

= Using different models concurrently, or at different
refinements of adesign; establishing consistency
among such different views

= Defining families of systems

= Defining families, or styles, of architecture

= Describing dynamic behavior of systems with fixed
structure and desribing dynamic changesin system
structure

» Measuring, evaluating, or testing properties of systems
such as overall performance, reliability, or security

= Measuring, evalutaing, or testing properties of designs
such as ease of extension or subsetting

Different problems may, of course, be selected in response
to different issues. We have not tried to make the problems
independent or orthogonal. It'sfine if they overlap, but as
the set is refined, each should include a description of the
specific issuesit helpsto clarify.

The remainder of the paper has three parts. First, it pre-
sents brief statements of all the problems. Second, it pre-
sents sketches of solutions based on different architectures
for two problems, Keyword in Context and Mobile Robot.
These examples focus on the choice of an overall architec-
ture for the problem; they identify several candidates
architectures and compare the merits of the alternatives.
They attempt to provide enough detail to compare designs
but not so much asto drown the reader. A companon paper
[Shaw94] provides an extended comparison of published
solutions for Cruise Control. Third, it gives an extended
specification of the Calendar Scheduler problem [vanLam-
sweerde92,93]. This specification comesto us much in the
manner of arequirement definition: it isthe result of an
exercise in the specification community.
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The problems are:

= Keyword in Context (KWIC): Given aset of lines, cre-
ate an alphabetized list of the rotations of those lines.

= Sea Buoy: Collect and transmit weather data both auto-
matically and on demand; alow preemption for emer-
gency services.

= Cruise Control: Maintain the speed of avehicle.

= Conference Refereeing: Solicit, referee, and select
papers for a conference.

= Mailing List Handler: Merge addressinformation from
multiple sources, eliminating duplicates and observing
reader preferences.

= Printer Spooler: Manage print jobs within a printer
network.

= Library: Automate traditional library tasks, such as
check-in and check-out of books.

= Automated Teller Machine (ATM): Provide the usual
banking functions with a remotely-located machine.

= Calendar Scheduler: Organize ameeting schedule.

= Compiler: Trandate source code for a programming
language to executable form.

= Mobile Robot: Design amobile robot capable of exe-
cuting tasks while monitoring the environment, e.g.,
avoiding obstacles.

1.1 Keyword In Context (KWIC)

From Parnas [Parnas72] we have a concise definition of
the Keyword in Context problem:.

The KWIC index system accepts an ordered set
of lines, each line is an ordered set of words,
and each word is an ordered set of characters.
Any line may be “circularly shifted” by repeat-
edly removing the first word and appending it at
the end of the line. The KWIC index system out-
puts a listing of all circular shifts of all lines in
alphabetical order.

1.1.1 History

Contextual indices have been used for many years. For
example, Biblical concordances have approximately this
form, except for the rotations. The usual source for the
problem as now known, however, is the Parnas definition.

In his paper of 1972, Parnas used the problem to contrast
different criteriafor decomposing a system into modules
[Parnas72]. He describes two solutions, one based on

functional decomposition with shared accessto data repre-
sentations, and a second based on a decomposition that
hides design decisions. The latter was used to promote
information hiding, a principle that underpins the use of
abstract data types and of object-oriented design. Sinceits
introduction, the problem has become well-known and is
widely used as ateaching device in software engineering.
Garlan, Kaiser, and Notkin also use the problem to illus-
trate modularization schemes based on data-driven tool
invocation [Garlan92]—sometimes referred to as reactive
integration.

While KWIC can be implemented as arelatively small
system it is not simply of pedagogical interest. Practical
instances of it are widely used by computer scientists. For
example, the “permuted” [sic] index for the Unix Man
pagesis essentially such a system.

We use the problem in a course on software architecture to
give students experience with software development in
different architectural styles[GarlanShaw94]. We give
three separate assignments. Each starts with asimple
KWIC indexer, for which we supply code, and asks for
modifications. By providing an initial implementation, we
give them an example of asmall system in the style of
interest and get them started in the right way. Each exer-
cise requires the modifications to be done in away that
preserves the style. As part of the assignments, students
analyze the suitability of different stylesfor different vari-
ants on the basic problem.

1.1.2 Design Considerations

From the perspective of software architecture, the problem
derivesits appeal from the fact that it can be used to illus-
trate the effect of changes on software design. Parnas
shows that different problem decompositions vary greatly
in their ability to withstand design changes. Among the
changes he considers are;

= Changesin algorithm: For example, line shifting can
be performed on each line asit is read from the input
device, on al the lines after they are read, or on
demand when the al phabeti zation requires a new set of
shifted lines.

= Changesin datarepresentation: For example, lines can
be stored in various ways. Similarly, circular shifts can
be stored explicitly or implicitly (asindex and offsets).

Candidate Model Problems in Software Architecture
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Garlan, Kaiser, and Notkin [Garlan92] extend Parnas’
analysis by including enhancements to system function.
For example:

= Havethe system eliminate circular shiftsthat start with
certain noise words (such as“a’, “an”, “and”, etc.).
= Make the system interactive, and allow the user to

delete lines from the lists.

Finally, it isworth considering differencesin architectural
solutions based on considerations of :

» Performance: Both space and time.
= Reuse: To what extent can the components serve as
reusable entities.

1.1.3 Solutions

In section 2.1 on page 6, we outline four architectural
designs for the KWIC system. All four are grounded in
published solutions. The first two are those considered in
Parnas’ origina article. The third solution is based on the
use of “reactive integration” and represents a variant on
the solution examined by Garlan, Kaiser, and Notkin. The
fourth is a pipeline solution inspired by the Unix index
utility.

1.1.4 Contributors

Two of the solutions are derived from [Parnas72]. Curtis
Scott and David Garlan provided the other two solutions
and arranged the presentation.

1.2 SeaBuoy

Sea buoys support navigation at sea. Here is the problem
statement from [Booch86]:

There exists a collection of free-floating buoys
that provide navigation and weather data to air
and ship traffic at sea. The buoys collect air and
water temperature, wind speed, and location
data through a variety of sensors. Each buoy
may have a different number of wind and tem-
perature sensors and may be modified to sup-
port other types of sensors in the future. Each
buoy is also equipped with a radio transmitter
(to broadcast weather and location information
as well as an SOS message) and a radio
receiver (to receive requests from passing ves-
sels. Some buoys are equipped with a red light,
which may be activated by a passing vessel dur-
ing sea-search operations. If a sailor is able to

reach the buoy, he or she may flip a switch on
the side of the buoy to initiate an SOS broad-
cast. Software for each buoy must:
= Mmaintain current wind, temperature, and
location information; wind speed readings
are taken every 30 seconds, temperature
readings every 10 seconds and location
every 10 seconds; wind and temperature
values are kept as a running average.

» broadcast current wind, temperature, and
location information every 60 seconds.

= broadcast wind, temperature, and location
information from the past 24 hours in
response to requests from passing vessels;
this takes priority over the periodic broad-
cast

» activate or deactivate the red light based
upon a request from a passing vessel.

= continuously broadcast an SOS signal after
a sailor engages the emergency switch;
this signal takes priority over all other
broadcasts and continues until reset by a
passing vessel.

1.2.1 History

Booch used the sea buoy example to illustrate object-ori-
ented development [Booch86]. He adapted his version
from a study by Boehm-Davis and Ross [Boehm84].

From an architectural standpoint, the interesting problem
liesin the different levels from which it can be analyzed.
As the next section illustrates, maintainability, real-time
factors, and hardware questions are all important consider-
ations.

1.2.2 Design Considerations

The problem statement defines a set of separate functions
with relatively little in common. They share the communi-
cations equipment and a number of current sensor read-
ings.

The software architecture must permit the integration of
these loosely coupled functions (requirement R1).

At the same time, it must respect their priorities and tim-
ing constraints (R2).

Clearly the system may be extended further by additional
functions (e.g., more sensors) or that the priorities and tim-
ing constraints may be modified. The architecture should
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therefore allow modifications to the overall system param-
eters (R3).

Finally, sea buoys must operate for long periods without
maintenance, and they are numerous enough for cost to be
amajor consideration. As aresult, the architecture should
provide hints for its implementation on the most basic
platform (R4).

1.2.3 Solutions

Booch provided an object-oriented solution in the same
paper as the problem statement [Booch86].

1.2.4 Contributors

Marco Schumacher organized the presentation and drafted
asolution (not included here).

1.3 CruiseControl

Cruise control has been used by a number of authorsto
illustrate software design methodologies. This problem
statement is derived from the one Booch used to describe
object-oriented programming [Booch86] and the one
Birchenough and Cameron later used to compare JSD to
OOD:

A cruise-control system exists to maintain the
speed of a car, even over varying terrain, when
turned on by the driver. When the brake is
applied, the system must relinquish speed con-
trol until told to resume. The system must also
steadily increase or decrease speed to reach a
new maintenance speed when directed to do so
by the ddriver. Below (Figure 1.5.1), we see the
block diagram of the hardware for such a sys-
tem. There are several inputs:

» System on/off: If on, denotes that the
cruise-control system should maintain the
car speed.

» Engine on/off: If on, denotes that the car
engine is turned on; the cruise-control sys-
tem is only active if the engine is on.

» Pulses from wheel: A pulse is sent for every
revolution of the wheel.

» Accelerator: Indication of how far the accel-
erator has been pressed.

» Brake: On when the brake is pressed; the
cruise-control system temporarily reverts to
manual control if the brake is pressed.

» Increase/Decrease Speed: Increase or
decrease the maintained speed; only appli-
cable if the cruise-control system is on.

» Resume: Resume the last maintained
speed; only applicable if the cruise-control
system is on.

» Clock: Timing pulse every millisecond.

There is one output from the system:
» Throttle: Digital value for the engineer throt-

tle setting.
System on/off
Y -
Engine on/off
-
Pulses from wheel
-
Accelerator
> Throttle
Brake
-
Increase/decrease speed
-
Resume speed
p >
Clock
-

Figure 1.3.1: Block Diagram for Cruise Control.

1.3.2 History

1.3.3 Design considerations

A cruise control system provides autonomous (but casu-
ally supervised) control of the speed of a motor vehicle
moving at highway speeds. For such a system, important
design considerations include

= Safety: Can the system fully control the vehicle, and
can it ensure that the vehicle will not enter an unsafe
state as a consequence of the control ?

= Smplicity of use: Can adriver with no prior experience
with the system use it correctly?

» Characteristics of real-time response: How rapidly
does the vehicle respond to control inputs?

s Other?
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1.3.4 Solutions

The most familiar presentation is probably Booch’'s use to
motivate object-oriented programming [Booch86]. Booch
adapted his version from Ward [Ward84]. Yin and Tanik
do an object-oriented solution to cruise control to demon-
strate reusability in Ada [YinTanik91]. Wasserman and
others also do an object-oriented design [Wasserman89].
Jones considers the testing problem for an Ada program
but is not explicit about the character of the software
[Jones9q].

Birchenough and Cameron compare the Jackson System
Development Method (JSD) to object-oriented design
using aformulation similar to Booch's [Birchenough-
Camerong9].

Smith and Gerhart use a dightly more elaborate forumula-
tionto illustrate the use of Statemate. The design is, of
course, based on states and activities [ SmithGerhart88].
Their problem statement is based on one used by Bracket
[Bracket87].

Ward and Keskar use cruise control as an example for
comparing the Ward/Mellor and Boeing/Hatley Structured
M ethods techniques for modeling real-time systems. Both
add time and control information to DeMarco Structured
Analysis [WardK eskar87]. Gomaa also this example for
studying real-time systems. He compares Structured
Design and the NRL Software Cost Reduction methods
[Gomaa89].

Higgins uses cruise control to show how Data Structured
Systems Devel opment can be extended for real-time [Hig-
0ins87]; his architecture emphasized feedback control
models. Shaw also bases a solution on feedback control,
with other architectures used for subsystems [ Shaw95].

Wang and Tanik develop adataflow solution to illustrate
Process Port Analysis and XY Z/E [WangTanik89].

Atlee and Gannon use cruise control as the basis of a spec-
ification study [AtleeGannon93].

1.3.5 Contributors

Mary Shaw organized the presentation and prepared one
of the solutions. She also prepared a comparison of pub-
lished solutions [ Shaw94].

1.4 Conference Refereeing

Professional conferencesare held in order to announce and
discuss new results. The core activity of organizing a con-
ference centers on selecting the papers to be presented.
Usually thisis done by making an open invitation calling
for papers to be submitted, circulating the submitted
papers to a (geographically distributed) panel of review-
ers, then selecting the best papers to appear on the pro-
gram. A system to automate conference refereeing should
do the following:

1. The program committee announces “call for
papers.”

2. Authors receive the call for papers and decide
to will submit papers on their work.They write
papers and send them to the program commit-
tee. A given paper may have several authors,
but only one reply address.

3. The program committee registers the contrib-
uted papers upon receipt.

4. At a certain point in time the program commit-
tee distributes the papers among the panel of
referees. Each paper is sent to three distinct ref-
erees, none of whom is an author of the paper.

5. The program committee continuously collects
reports from the referees.

6. At a certain point in time the program commit-
tee selects papers for inclusion in the program
andnotifies the authors about the selection. This
may involve obtaining additional opinions from
the referees.

7. The program committee advises the authors
of the selection results.

1.4.1 History

Thisisasdlight rewording and elaboration of the OOPSLA
Conference Registration Problem proposed by Hgydalsvik
and Sindre at OOPSLA ‘93 [Haydal svikSindre93]. They
created it by simplifying an information system problem
posed by Rumbaugh [Rumbaugh92].

1.4.2 Design Considerations

1.4.3 Solutions

Haydal svik and Sindre provide an object-oriented solu-
tion [HeydalsvikSindre93].
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1.4.4 Contributors

Mary Shaw brought the problem statement in from OOP-
SLA.

1.5 Mailing List Handler

We are all plagued with multiple or unwanted copies of
catalogs and other mass mailings. These arise largely from
merging multiple mailing lists, clerical errorsin data col-
lection, and raw information generated by individualsin
different forms at different times. Ideally, amailing list
system would collect (even propagate) corrections, merge
variant forms, and recognize reader preferences about
receipt.

The Mailing List Handler accepts address
entries, corrections, and preferences to create
one or more mailing lists. It generates mailing
labels from the lists.

An address entry contains a name, mailing
address, and reader/supplier information. Cor-
rections include updates to individual address
entries and guidance about merging variants.
Preferences update the reader/supplier informa-
tion. A mailing list is a collection of address
entries plus perhaps control information.

Address entries may be original (collected from
raw sources such as reader requests), or they
may be derived from other mailing lists. Address
entries may also be received as external mailing
lists (not necessarily in the desired format). Cor-
rections may come from internal consistency
checks, post office correction procedures,
reader information, or other sources. Preference
information may come from readers, suppliers,
or other sources (e.g., suppression information
from Direct Marketing Association or USPS
objectionable-mail procedures).

The mailing list handler must maintain a set of
mailing lists. It should eliminate duplicate entries
and correct errors. When generating mailing
labels it must take reader/supplier information
into account.

1.5.1 History

This problem was proposed within the CMU group, so it
has as yet no history.

1.5.2 Design Considerations

Costs are prime drivers of mailing list handling. Coststo
consider include

= acquiring and using addresses

= eliminating duplicates

= sending duplicates

= Vviolating mandatory suppression orders

Mailing lists from other sources may safely be assumed to
be in an undesired format, incorrect, and incompl ete.

1.5.3 Solutions

1.5.4 Contributors

Mary Shaw developed the problem statement after an
extended discussion in the Software Architecture Reading
Group at CMU.

1.6 Printer Spooler

L ocal area networks provide services for their users.
Often the services are replicated for throughput, reliability,
or physical convenience. Access for these services can be
provided in a number of different ways that differ in such
details as where the queues reside, how explicitly each
user needs to specify the service, and the consequences of
local failures.

A network connects multiple computers and
printers. Each printer is driven by one of the
computers, provides service to the entire net-
work, and is equipped with multiple paper trays.
A program running on any computer may spec-
ify any paper tray on any printer for its print
requests.

1.6.1 History

This problem was proposed within the CMU group, so it
has as yet no history.

1.6.2 Design Considerations

Thismodel problem raises configuration and fault toler-
ance issues. Site administrators may disable the use of
paper trays for maintenance purposes. If a printer fails,
one may conceive that its pending requests are rerouted to
other printers and the originators notified of the destina-
tion change. It also raises issues of heterogeneity. Differ-
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ent printers may have different capabilities, such as large
paper, high resolution, or color. Further, some printers may
be located in private space and hence have specia status.

A software architecture appropriate for this network must,
at the least:

= Support the distribution of the print services.

= Allow the reconfiguration of both hardware and soft-
ware.

= Enable the fault tolerance permitted by the duplication
of the hardware.

1.6.3 Solutions

1.6.4 Contributors
Dan Klein devel oped the problem statement.

1.7 Library

The library problem has served the formal specification
community well [Wing88]. To use it as a software archi-
tecture problem, we'll focus on the possible structure of
solutions rather than the specification of functionality.

A library requires an information system that
provides the following on-line operations for
library users and staff:

1. Check out (or return) a copy of a book.

2. Get a list of books by a particular author or on
a particular subject.

3. Find out what books a particular borrower
currently has checked out (users can only
look up themselves).

4. Find out which borrower last checked out a
particular copy of a book (staff only).

5. Record the addition (or removal) of a copy of
a book to (from) the library (staff only).

The system must be able to search and update
the catalog quickly (to avoid long check-out
lines, and to make on-line book search a viable
alternative to card catalogs), and easily handle
updates and corrections by staff users to an
potentially large collection.

The system must also enforce the following
integrity constraints:

a. All copies in the library must be available for
checkout or be checked out.

b. No copy may be both available and checked
out at the same time.

c. Borrowers can’t have more than a predefined
number of books checked out at once.

d. Borrowers can’'t have more than one copy of
a given book checked out at once.

1.7.1 History

The existing history of this problem has been with the
specification community [Wing88].

On-line library systems like the one described above have
been envisioned since at least the 1960s, when the US
Library of Congress embarked on its MARC project. The
concise statement of the the problem aboveis due to Kem-
merer, who first published this problem as a specification
exercisein [Kemmerer 85]. A variant of Kemmerer’'s
problem statement was posed for the Fourth International
Workshop on Software Specification and Design in 1986,
and twelve of the published papers considered it. Wing
summarizes their specifications in [Wing 88]. The work-
shop specification made some changesfrom the specifica-
tion, such as limiting transaction 1 to staff users aswell.
(Presumably they would do it on the behalf of ordinary
borrowers.)

1.7.2 Design Considerations

Given the focus of this problem on searching and incre-
mentally updating information on individual booksin a
large, mostly static collection, the obvious architectural
choice for this problem is a database-oriented system.

Building on this premise, we can consider many interest-
ing design variations;

= How should the applicationsinteract with the data-
base? While some results must be produced in real-
time, some transactions could be bundled for batch
processing.

= How centralized should the system be? Both the data-
base and the applications could be distributed over
multiple machines.

= Doesthe type of the database influence the choice of
the software architecture? It is conceivable that object-
oriented database systems are biased towards different
implementations than relational databases.

It would also be interesting to consider designs that do not
localize circulation information in a database.
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1.7.3 Solutions

1.7.4 Contributors

John Ockerbloom refined the problem statement and dis-
cussion.

1.8 Automated Teller Machine (ATM)

TheATM (Automated Teller Machine) problem has
cropped up in several papers. Hereisthe problem asit was
originally posed by Rumbaugh in his book on object-ori-
ented design [Rumbaugh91], as described in [Lubars92].

Design the software system to support a com-
puterized banking network including both
human cashiers and automatic teller machines
(ATMs) to be shared by a consortium of banks.
Each bank provides its own computer to main-
tain its own accounts and process transactions
against them. Cashier stations are owned by
individual banks and communicate directly with
their own bank’s computers. Human cashiers
enter account and transaction data. Automatic
teller machines communicate with a central
computer which clears transactions with the
appropriate banks. An automatic teller machine
accepts a cash card, interacts with the user,
communicates with the central system to carry
out the transaction, dispenses cash, and prints
receipts. The system requires appropriate
record keeping and security provisions. The
system must handle concurrent accesses to the
same account correctly. The banks will provide
their own software for their own computers; you
are to design the software for the ATMs and the
network. The cost of the shared system will be
apportioned to the banks according to the num-
ber of customers with cash cards.

The architecture in this case will have to address issues
such as;

= Where should the security mechanisms be located, in
the ATMs or a central network controller?

= How should the presence of heterogeneous systems
(each bank has its own software) be managed?

1.8.1 History

1.8.2 Design Considerations

1.8.3 Solutions

1.8.4 Contributors

1.9 Calendar Scheduler

Cal endar management is one of the beastly problems of
computing. Many people have attacked it, but as yet no
fully satisfactory solution has appeared.

The calendar scheduler maintains consistent
meeting schedules for a number of people.
These schedules record at least the time, dura-
tion, and participants in each meeting. Some of
the meetings may include people whose sched-
ules are not maintained by the calendar sched-
uler. Meetings may be added or dropped at any
time (up to the moment when they occur), and
participants to meetings can be added or
removed. A meeting may be scheduled at any
time which is convenient for all (or enough) of
the meeting participants, except that some of
the meetings may need to occur in a particular
order. The scheduler may maintain information
about the scheduling preferences of the people
it serves.

1.9.1 History

Thisisastanding problem that is often “solved” badly.
Existing products are able to record simple scheduling
decisions and share databases, but they fall far short of
being able to handle personal preferences.

This problem has, obviously, had paper and pencil solu-
tions as long as there have been paper and pencil, and
there were undoubtedly other solutionsto it before that. In
the computer arena, there are individual calculator size
machines to take the place of acalendar notebook (e.g. ...?
there are aton of these), as well as many scheduling pro-
grams on multi-user systems which are able to take over
some of the time-selection and consistency checking task.

«Describe current products and their shortcomings»

The problem has been used to focus discussion of require-
ments and specification. Axel van Lamsweerde provided
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the results of those discussions as an extended problem
statement [vanLamsweerde92, vanLamsweerde93].

1.9.2 Design considerations

The challenge arises from two source: the multiparty, dis-
tributed, heterogeneous, asynchronous nature of calendars;
and the need to accommodate personal preferences, some
of which are either private or poorly articulated.

This problem may face considerable hardware and envi-
ronmental constraints. For example, personal electronic
notebooks do not yet communicate fregly, so it is not pos-
sible to assume that al calendars of interest will be either
instantly or simultaneously accessible.

Users' expectations are also afactor in considering alter-
natives; it is probably not acceptable to completely
reschedule everyone whenever ameeting is changed: there
must be some stability as meetings are added and
removed. This problem may be made arbitrarily more
complex by considering what it means for atime to be
“convenient” for a participant or group of participants.
What kind of constraints may a user place on the allow-
able schedules?

Some key considerations affecting the architecture are:

= Individual flexibility: How rich aset of individual pref-
erences can be expressed and accommodated?

= Heterogeneity: How well are different personal calen-
dar representations handled?

= Prioritiesand Conditions: How well can the system
resolve conflict when degrees of intensity about prefer-
ences can be provided?

» Easeof use: How easy isit for a person to define and
mani pulate a set of meetings to attend? How will the
information from multiple machines be consolidated?
How well are regular meetings handled? Can quorums
be defined?

= Optimality: If thereis aschedule, will the system find
it? Can the architecture support contingency strategies,
e.g., in the absence of complete information?

1.9.3 Solutions

1.9.4 Contributors

Raob Allen stated the simple problem and organized the
discussion. Axel van Lamsweerde provided the extended
specification to be found in the solution section.

1.10 Mobile Robot

Thi s problem focuses on embedded real -time systems.
These systems must deal with external sensors and actua-
tors, and they must respond in time commensurate with
the activities of the system in its environment.

Consider the following activities a mobile robot
typically has to accomplish:
= Acquiring the input provided by its sensors.
= Controlling the motion of its wheels and
other moveable parts,
= Planning its future path.

A number of factors complicate the tasks:
= Obstacles may block the robot’s path.
= The sensor input may be imperfect.
= The robot may run out of power.
= Mechanical limitations may restrict the

accuracy with which the robot moves.
= The robot may manipulate hazardous
materials.

= Unpredictable events may leave little time
for responding.

1.10.1 History

Over the years, the field of mobile robots has yielded
many architectural proposals. In the solutions we present
in section 2.2 on page 8, we will consider four proposals
ranging from the layered paradigm [Elfes87] to the black-
board structure [ Shafer86].

The richness of the field permits interesting comparisons
of the emphases different researchers have chosen for their
robotic projects and between the trade-offs the choices
entail. The next section surveys the factors to consider.

1.10.2 Design Considerations

We state the following requirements for the robot’s archi-
tecture.

R1: The architecture must accommodate deliberative and
reactive behavior. The robot has to coordinate the actions
it deliberately undertakes to achieve its designated objec-
tive (e.g., collect a sample of rocks) with the reactions
forced on it by the environment (e.g., avoid an obstacle).

R2: The architecture must allow for uncertainty. Never
will al the circumstances of the robot’s operation be fully
predictable. The architecture must provide the framework
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in which the robot can act even when faced with incom-
plete or unreliable information (e.g., contradictory sensor
readings).

R3: The architecture must account for the dangersinher-
ent in the robot’s operation and its environment. By incor-
porating consideration of fault tolerance (R3a), safety
(R3b), and performance (R3c) attributes, the architecture
must help in maintaining the integrity of the robot, its
operators, and its environment. Problems like reduced
power supply, dangerous vapors, or unexpectedly opening
doors should not spell disaster.

R4: The architecture must give the designer flexibility.
Application development for mobile robots frequently
requires experimentation and reconfiguration. Moreover,
changes in tasks may require regular modification.

The degree to which these requirements apply depends
both on the complexity of the work the robot is pro-
grammed to perform and the predictability of its environ-
ment. For instance, fault tolerance is paramount when the
robot is operating on another planet as part of a space mis-
sion; it is still important, but less crucial, when the robot
can be brought to a nearby maintenance facility.

1.10.3 Solutions

In section 2.2 on page 8, we examine four major architec-
turesthat have been implemented on robots. Theseinclude
Lozano's control loops, Elfes’ layered organization, Sim-
mons' task control architecture, and Shafer’s application
of blackboards. The requirements listed above guide the
evaluation of these alternatives.

1.10.4 Contributors

Marco Schumacher refined the problem and described the
solutions.

1.11 Compiler

Compi lers translate programming languages to machine
language. They also interact with other programming tools
such as interactive editors anddebuggers.

A compiler translates source code in a program-
ming language to object code that can be linked
with other object code and executed on a com-
puter.

1.11.1 History

Compilers are among the oldest well-understood non-triv-
ia software systems. The compiler is the example of
choice for the undergraduate course that introduces multi-
modul e software organizations, yet high-performance
incremental distributed compilers continue to offer design
challenges.

1.11.2 Design Considerations

Simple compilers can be class exercises. However, pro-
duction compilers must respond to concerns about perfor-
mance and usability.

The architecture must respond to the usage profile of its
environment. For example, student compilers must support
rapid turnaround of small programs but need not be much
concerned with the quality of the code. For production
compilers, however, code speed may be paramount.

The architecture must be compatible with its associated
software devel opment enviroment. This might, for exam-
ple, be batch or interactive.

1.11.3 Solutions

Many compiler design textbooks present solutions. Ses-
hadri [ Seshadri88] shows how to create a parallel version.
Perry andWolf [PerryWolf92] and Garlan and Shaw [Gar-
lanShaw93] examine some of these solutions from an
architectural standpoint.

1.11.4 Contributors

Alex Wolf, Dewayne Perry, and Bill Griswold pointed out
that this collection would be deficient without a compiler
example.

2 Solutions

We now present sample solutions for the first two model
problems, KWIC and the Mabile Robot. In each case, the
presentation begins with sketches of several alternative
architectures. Each sketch describes the architecture and
identifies some of its strengths and weaknesses. Then a
summary section compares the merits of the alternatives,
emphasizing the design considerations of the problem
Statement.
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2.1 Solutionsto KWIC

This section contains four solutionsto the Key Word in
Context (KWIC) architectural model problem. All four are
grounded in published solutions. The first two are those
considered in Parnas’ original article [Parnas72]. Thethird
solution is based on the use of “reactive integration” and
represents a variant on the solution examined by Garlan,
Kaiser, and Notkin [Garlan92]. The fourth is a pipeline
solution inspired by the Unix index utility [ref?7].

2.1.1 Solution 1: Main program/subroutine with
shared data.

The first solution decomposes the problem according to
the four basic functions performed: input, shift, a phabet-
ize, and output. These computational components are
coordinated as subroutines by a main program that
sequences through them in turn. Data is communicated
between the components through shared storage (“ core
storage”). Communication between the computational
components and the shared datais an unconstrained read-
write protocol. Thisis made possible by the fact that the
coordinating program guarantees sequential accessto the
data

Master
Control
Input Circular Shift| Alphabetizer| Output
: Output
Input Medium Me(!ijium
Alphabetizef
Characters Index |ndex

—— =systeml/O

—[= = Direct Memory Access

—&@ = Subprogram Call Solution 1: From Parnas

Figure 2.1.2: Hierarchical Subroutine Architecture with
Shared Data

In this solution, computations can share the same storage.
This allow efficient data representation. The solution also
has a certain intuitive appeal, since distinct computational
aspects are isolated in different modules.

However, as Parnas argues, it has a number of serious
drawbacks in terms of its ability to handle changes. In par-
ticular, a change in data storage format will affect almost

all of the modules. Similarly changes in algorithm and
enhancements to system function are not easily handled.

Finally, reuseis now well-supported because each module
of the system istied tightly to this particular application.

2.1.3 Solution 2: Abstract data types.

The second solution decomposes the system into a similar
set of five modules. However, in this case datais no longer
directly shared by the computational components. | nstead,
each module provides an interface that permits other com-
ponents to access data only by invoking proceduresin that
interface.

M aster
Control

Output

k=
T \| Alphabetid
Input Mediyn S|S |&|5| [ Shifts | Output
splz| \Eak QU
= Circular Shift
Eé:haracters 4r
System 1/0

— = Subprogram Call Solution 2: From Parnas

Figure 2.1.4: Abstract Data Type Architecture

This solution is composed of the same processing modules
asthefirst. However, it has a number of advantages over
the first solution when design changes are considered. In
particular, both algorithms and data representations can be
changed in individual modules without affecting others.
Moreover, reuse is better supported than in the first solu-
tion because modules make fewer assumptions about the
others with which they interact.

On the other hand, as discussed by Garlan, Kaiser, and
Notkin, the solution is not particularly well suited to
enhancements. The main problem is that to add new func-
tions to the system, the implementor must either modify
the existing modules -- compromising their simplicity and
integrity -- or add new modules that lead to performance
penalties. (See [Garlan92] for a detailed discussion.)

2.1.5 Solution 3: Reactive integration.

The third solution uses a form of component integration
based on shared data similar to thefirst solution. However,
there are two important differences. First, the interface to
the data is more abstract. Rather than exposing the storage
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formats to the computing modules, data is accessed
abstractly (for example, asalist or set). Second, computa-
tions are invoked implicitly as datais modified. For exam-
ple, the act of adding a new line to the line storage causes
an event to be sent to the shift module. Thisalowsit to
produce circular shifts (in a separate abstract shared data
store). Thisin turn causes the al phabetizer to be implicitly
invoked so that it can alphabetize the lines. Additional dis-
cussion of thisintegration paradigm can be found else-
where [GarlanNotkin91].

Master
Control
Input Circular Shift |Alphabetizer Output
i * ‘ * Output
Input Medium ,5; gl " Me(‘j)ium
2lgl= B T |
2T
Lines - °
Lines
—— =System|/O
——> =Implicit Invocation
—&» = Subprogram Call Modularization with Toolie

Figure 2.1.6: Reactive Architecture

This solution easily supports functional enhancementsto
the system: additional modules can be attached to the sys-
tem by registering them to be invoked on certain events.
Because data is accessed abstractly, it also insulates com-
putations from changes in data representation. Reuse is
also supported, since the implicitly invoked modules only
rely on the existence of certain externally triggered events.

However, the solution suffers from the fact that it can be
difficult to change the order of processing of the implicitly
invoked modules. Further, because invocations are data
driven, the most natural solutions using this kind of
decomposition tend to use more space than the previously
considered decompositions.

2.1.7 Solution 4: Dataflow.

The fourth solution uses a pipeline. A pipelineis com-
posed of a sequence of filters, connected by streams of
data. In this case there are four filters: input, shift, alpha-
betize, and output. Each filter processesits data, sending it

to the downstream filter. Control is distributed: each filter
can run whenever it has data on which to compute. Data

sharing between filtersis strictly limited to that transmit-

ted on pipes [AllenGarlan92].

Input Mediu*h—}
LP Alphabetizet——|

Input

i Circular Shift

Output
Output Mo
—— =System|/O
—p  =Pipe Pipeline Modularization

Figure 2.1.8: Dataflow Architecture

This solution has several nice properties. First, it supports
the intuitive flow of processing. Second, it supports reuse,
since each filter can function in isolation (provided
upstream filters produce data in the form it expects). New
functions are easily added to the system by inserting filters
at the appropriate point in the processing sequence.

On the other hand, it has a number of drawbacks. First, it
isvirtually impossible to modify the design to support an
interactive system. For example, in order to delete aline,
there would have to be some persistent shared storage,
violating a basic tenet of this approach. Second, the solu-
tion isinefficient in terms of its use of space, since each
filter must copy all of the datato its output ports.
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219 Summary

To arough approximation, the solutions can be compared
by tabulating their ability to address the design consider-
ationsitemized in the following table:

a

Integration

Abstract
Datatype
Reactive

Shared Dat

<+ | Dataflow

Changein Algorithm

|
+

Change in Data - +
Representation

1
+
+

Changein Function

+ +

Performance + - -
Reuse = + - +
Table 2.1.1. Strength and Weaknesses of KWIC

Architectures

2.2 Solutionsfor Mobile Robot

For sample solutions, we examine four major architec-
turesthat have been implemented on robots. These include
Lozano's control loops [Lozano90], Elfes’ layered organi-
zation [Elfes87], Simmons' task control architecture [Sim-
mons92], and Shafer’s application of blackboards
[Shafer86].

2.2.1 Solution 1: Control Loop
Figure 2.2.1 models the control loop paradigm.

Controller -
Active Component of Robot
Y
Actuators Sensors
feedback

action \

Figure 2.2.2: A Control Loop Architecture

Most industrial robots support minimal handling of unpre-
dictable events: thetasksarefully predefined (e.g, welding
certain automobile parts together), and the robot has no
responsibility with respect to its environment (it is rather
the environment that is responsible for not interfering with
the robot). The open loop paradigm applies naturally to
this situation: the robot initiates an action or series of
actions without bothering to check on their consequences
[Lozano90].

Upgrading this paradigm to mobile robots involves adding
feedback, thus producing a closed loop architecture. The
controller initiates robot actions and monitors their conse-
guences, adjusting the future plans based on this return
information.

(R1) An advantage of the closed loop paradigm isitssim-
plicity: it captures the basic interaction between the robot
and the outside.

Itssimplicity is also adrawback in the more unpredictable
environments. One expert [Lozano90] comments on the
fact that the feedback loop assumes that changesin the
environment are linear and require linear reactions (e.g.,
like the control of pressure through the gradual opening
and closing of avalve); robots, though, are mostly con-
fronted with disparate, discrete events that demand
switches between very different behavior modes (e.g.,
between controlling manipulator motions and adjusting
the base position, to avert loss of equilibrium). The model
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does not provide any hints as to how different kinds of
events may be managed.

For complex tasks, the control loop gives no leverage for
decomposing the software into cooperating components. If
the steps of sensing, planning, and acting have to be
refined, other paradigms have to provide the nuances the
control loop model lacks.

(R2) For the resolution of uncertainty, the control loop
paradigm is biased towards one method: reducing the
unknowns through iteration; atrial-and-error process with
action and reaction eliminates possibilities at each turn. If
more subtle steps are needed, the architecture offers no
framework for integrating these with the basic loop or for
delegating them to separate entities.

(R3) Fault tolerance and safety are supported by the closed
loop paradigm in the sense that its simplicity makes dupli-
cation easy and reduces the chance of errors creeping into
the system.

(R4) The magjor components of arobot architecture (super-
visor, sensors, motors) are separated from each other and
can be replaced independently. More refined tuning has to
take place inside the modules, at alevel of detail the archi-
tecture does not show.

In summary, the closed loop paradigm seems most appro-
priate for simple robotic systems which have to handle
only asmall number of external events and whose tasks
involve no complicated decomposition.

2.2.3 Solution 2: Layered Architecture

Figure 2.2-2 shows Alberto Elfes definition of the ideal-
ized layered architecture [Elfes87] that influenced the
design of the Dolphin sonar and navigation system, imple-
mented on the Terregator and Neptune mobile robots
[Champeny93, Podnar84].

Supervisor

Global Planning

Control
< Navigation

Real-World Modelling

Sensor Integration

Sensor Interpretation

Robot Control

Figure 2.2.4: A lLayered Architecture

At level 1, the lowest level, reside the robot control rou-
tines (motors, joints,...).

Levels 2 and 3 deal with the input from the real world.
They perform sensor interpretation (the analysis of the
data from one sensor) and sensor integration (the com-
bined analysis of different sensor inputs).

Level 4 is concerned with maintaining the robot’s model
of theworld.

Level 5 manages the navigation of the robot.

The next two levels, 6 and 7, schedule and plan the robot’s
actions. Dealing with problems and replanning is also part
of the level-7 responsibilities.

Thetop level providesthe user interface and overall super-
visory functions.
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(R1) Elfes model sidesteps some of the problems encoun-
tered with the control loop by defining more components
to which the required tasks can be delegated. Being spe-
cialized to autonomous robots, it points to the concerns
that have to be addressed (e.g., sensor integration). Fur-
thermore, it defines abstraction levels (e.g, robot control
vs. navigation) to guide the design.

Whileit organizes well the components needed to coordi-
nate the robot’s operation, the layered architecture does
not fit the actual data and control flow patterns. The layers
suggest that services and requests are passed between
adjacent components. In reality, as Elfes readily admits,
the information exchange is less straightforward. For
instance, data necessitating fast reaction may have to be
sent directly from the sensors to the problem handling
agent at level 7, and the corresponding commands may
have to skip levels to reach the motorsin time.

Another imprecision in the model isthat it does not sepa-
rate the two abstraction hierarchies that actually exist in
the architecture:

= Thedata hierarchy with raw sensor input (level 1),
interpreted and integrated results (2 and 3), and finaly
the world model (4).

= The control hierarchy with motor control (level 1),
navigation (5), scheduling (6), planning (7), and user-
level control (8).

The NASREM architecture mentioned in the conclusionis
more precise in this respect.

(R2) The existence of abstraction layers addresses the
need for managing uncertainty: what is uncertain at the
lowest level may become clear with the added knowledge
available in the higher layers. For instance, the context
embodied in the world model can provide the cluesto dis-
ambiguate conflicting sensor data.

(R3) Fault tolerance and passive safety (when you strive
not do something) are served by the abstraction mecha-
nism too. Data and commands are analyzed from different
perspectives. It is possible to incorporate many checks and
balances into the system.

As already mentioned, performance and active saf ety
(when you have to do something rather than avoid doing
something) may require that the communication pattern be
short-circuited.

(R4) The fudged dependencies are an obstacle to easy
replacement and addition of components. The fragile rela-
tionships between the layers can become more difficult to
decipher with each change.

In summary, the abstraction levels defined by the layered
architecture provide what constitutes the goal for software
architecturesin general: aframework for organizing the
components. It achieves this objective by being precise
about the role of the different layers.

The major drawback of the model isthat it breaks down
when it istaken to the greater level of detail demanded by
an actual implementation. The communications patternsin
arobot do most probably not follow the very orderly
scheme implied by the architecture.

2.2.5 Solution 3: Implicit Invocation

Figure 2.2.3 summarizes the Task Control Architecture
(TCA) [Simmons92] which usesimplicit invocation. It
was applied, among others, to the Ambler robot [Sim-
monsQ0].

Task

Task

exception

Figure 2.2.6: An Implicit Invocation Architecture

TCA isnot only an architecture; it also provides a sophis-
ticated tool box for building robots: alibrary of communi-
cation and control routines that implement the TCA
philosophy. The following discussion focuses on task trees
and the implicit invocation features. For a complete over-
view, see the references.
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The TCA architectureis based on hierarchies of tasks, the
task trees. Figure 2.2.4 shows a sample task tree. Parent
tasksinitiate child tasks. The software designer can define
temporal dependencies between pairs of tasks. An exam-
ple temporal constraint is: “A must complete before B
starts.” These features permit the specification of selective
concurrency.

TCA's routines include many operations on task trees for
dynamically reconfigure them at run-time.

goto
position

move
forward

Figure 2.2.7: ATask Tree

In TCA, tasks communicate by sending messages to a cen-
tral server, which redirects the messages to tasks that have
registered to handle them. This scheme, where the sender
does not need to know the receiver, is the basic character-
istic of implicit invocation.

Three more implicit invocation mechanisms are part of
TCA'sfeatures:

= Exceptions: Certain conditions cause the execution of
an associated exception handler. Exceptions override
the currently executing task in the subtler that causes
the exception. They quickly change the processing
mode of the robot and are thus better suited for manag-
ing spontaneous events (such as a dangerous changein
terrain) than the feedback loop or the long communica
tion paths of the pure layered architecture.
Exception handlers have at their disposal all the opera-
tions for manipulating the task trees: e.g., they can
abort or retry tasks.

=  Wiretapping: Messages can be intercepted by routines
superimposed on an existing architecture, i.e., task tree.

For instance, a safety check procedure can use this fea-
ture to validate all outgoing motion commands.

= Monitors: Monitors read information and execute
some action if the data fulfill a certain criterion. An
example from the TCA manual is the battery check: if
the battery level falls below a given level, the actions
necessary for recharging it are invoked. This feature
offers a convenient way of dealing with fault tolerance
issues by setting aside agents to supervise the system.

(R1) Task trees on one hand, and exceptions, wiretapping,
and monitors on the other permit a clear-cut separation of
action (the nominal behavior embodied in the task trees)
and reaction (the behavior dictated by extraneous events
and circumstances).

TCA aso distinguishesitself from the previous paradigms
by incorporating concurrent agentsin its model. In TCA it
is evident that multiple actions can proceed at the same
time, more or lessindependently. The other two models do
not show the presence of concurrency.

The amount of concurrency islimited by the capabilities
of the central server. In general, its reliance on a central
control point may be aweak point of TCA.

(R2) How TCA addresses uncertainty isless clear. If
imponderables exist, atentative task tree can be built, to
be adapted by the exception handlers when the assump-
tionsit is based on turn out to be erroneous.

(R3) Asillustrated by the examples above, the TCA
exception, wiretapping, and monitoring features take into
account the needs for performance, safety and fault toler-
ance.

Fault tolerance by redundancy is achieved when multiple
handlers register for the same signal; if one of them
becomes unavailable, TCA can still provide the service by
routing the request to another. Performance also benefits
since multiple occurrences of the same request can be han-
dled concurrently by multiple handlers.

(R4) The use of implicit invocation makes incremental
development and replacement of components straightfor-
ward: it is often sufficient to register new handlers, excep-
tions, wiretaps or monitors with the central server; no
existing component feels the impact.

In summary, TCA offers acomprehensive set of features
for coordinating the tasks of arobot while respecting the
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quality and ease of development requirements. The rich-
ness of the scheme makes it most appropriate for more
complex robot projects.

2.2.8 Solution 4: Blackboard Architecture

Figure 2.2.5 describes a blackboard architecture for
mobile robots. This paradigm was used in the NAVLAB
project, as part of the CODGER system [ Shafer86].

captain map navigator
lookout \ / pilot
Blackboard

LR

Perception subsystem

Figure 2.2.9: ABlackboard Architecture

The “whiteboard” architecture, asit is named in [Sha-
fer86], works with abstractions reminiscent of those
encountered in the layered architecture. The components
of CODGER are:

= The"captain”, the overall supervisor.

= The"map navigator”, the high level path planner.

= The“lookout”, amodule that monitors the environ-
ment for landmarks.

= The“pilot”, the low level path planner and motor con-
troller.

= The perception subsystem, the modules that accept the
raw input from multiple sensors and integrate it into a
coherent interpretation.

(R1) The components (including the modules inside the

perception subsystem) communicate via the characteristic
central database of the blackboard systems. Modules indi-
cate their interest in certain types of information. The data-

base returns them such data either immediately or when
some other module inserts them into the database.

For instance, the lookout may watch for certain geo-
graphic features; the database informs it when the percep-
tion subsystem stores images matching the description.

One difficulty with the CODGER architecture is that al
control flow hasto be coerced to fit the database mecha-
nism, even under circumstances where direct interaction
between components would be more natural.

(R2) The blackboard is a so the means for resolving con-
flicts or uncertaintiesin the robot’s world view. For
instance, the lookout’s landmark detections provide areal-
ity check for the distance estimation by dead-reckoning,
both stored in the database. The modules responsible for
the uncertainty resolution register with the database to
obtain the necessary data.

The main example of this activity is sensor fusion, per-
formed by the perception subsystem to reconcile the input
from its diverse sensors.

(R3) The communication via the database is similar to the
communication via TCA’s central message server. The
exception mechanism, wiretapping and monitoring - guar-
antors of reaction speed, safety, and reliability - can be
implemented in CODGER by defining separate modules
that watch the database for the tell-tale signs of unex-
pected occurrences or the beginnings of troublesome situa-
tions. TCA’s safety mechanism of double-checking
messages through wiretaps cannot be fully duplicated
because it may be too late to prevent an action once it
manifestsitself in the database. (TCA holds the message
while the wiretap processesit.)

(R4) Aswith TCA, the blackboard architecture offers sup-
port for concurrency and decouples senders from receiv-
ers, thus gaining flexibility for maintenance.

In summary, the blackboard architecture is capable of
modeling the cooperation of tasks, both for coordination
and uncertainty resolution in avery flexible manner,
thanks to an implicit invocation mechanism based on the
contents of the database. These features are only slightly
less powerful than TCA’s equivalent capabilities.

2.2.10 Conclusion

We have seen four architectures, of which two (layered
architecture and blackboard) are very specific and give
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precise indications as to the components expected in a
robot. The other two (control loop and implicit invocation)
define no functional components and concentrate on the
mechanisms.

Specificity is helpful for getting a grasp on the basic
abstractions and tasks involved in an autonomous robot. It
would beinteresting to research the value of a TCA archi-
tecture (which is the most powerful in its mechanisms)
combined with a functional decomposition of robot tasks
(planning, sensor integration, ...).

Other hybrid architectures have been proposed. The
NASA/NBS Standard Reference Model for Telerobots
(NASREM) [Lumia90] can be seen as a combination of
the control loop and the layered architectures (Figure
2.2.6).

World Task
Modeling Decomposition

Sensing

- | -

Figure 2.2.11: The NASREM Architecture

The layers from top to bottom are defined by the time
frame in which they perform their tasks. Seen from this
perspective, the architectureisahierarchy of control loops
with increasingly tighter response time constraints.

The layers from left to right represent the functional
abstractions.

To conclude, table 2.2.1 summarizes the strengths and
weaknesses of the reviewed software architectures.

Control Impl Black
Loop Layers Invoc. Board
Task +- - ++ +
Coordination
Dealing with - +- +- +
Uncertainty
Fault +- +- ++ +
Tolerance
Safety +- +- ++ +
Performance +- +- ++ +
Flexibility +- - + +
Table 2.2.1. Strengths and Weaknesses of Robot

Architectures

3 Fuller Definitions of Problems

3.1 Extended Definition of M eeting
Scheduler

Axel van Lamsweerde provides an extended specification
of the meeting scheduling problem from October 1992
[vanLamsweerde92] and an extension to cover conflict
resolution from November 1993 [vanLamsweerde93].

We include it in this document because it shows how prob-
lem complexity emerges as you consider the problem
statement in more detail, and because the original sourceis
relatively inaccessible to this commumnity. Because of its
length it is set up as a separate section rather than being
included in the short introductions. Think of this section as
a solution imported from a requirements/specification
exercise.

For more information about the preliminary definition,
contact

Axel van Lamsweerde, Robert Darimont and Philippe
M assonet
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UCL - Unite d'Informatique
B-1348 Louvain-la-Neuve (Belgium)
avl@info.ucl.ac.be

For more information about the extension for conflict res-
olution, contace

Axel van Lamsweerde, Charles Christoph and Phil-

ippe Massonet

University of Louvain,

Unite d'informatique,

B-1348 Louvain-la-Neuve (Belgium)

3.1.1 The Meeting Scheduler System:
Preliminary Definition

3.1.1.1 Foreword

This preliminary description is deliberately intended to be
sketchy and unprecise. Acquisition, formalization and val-
idation processes are needed to complete it and lift the
many shadow aress.

A number of features of the Meeting Scheduler System
were inspired from various experiences in organizing
meetings (faculty meetings, ESPRIT project meetings,
Program Committee meetings, etc.) and from various dis-
cussions with Steve Fickas' group at the University of Ore-
gon.

3.1.1.2 Scheduling Meetings: Domain Theory

Meetings are typically arranged in the following way. A
meeting initiator asks all potential meeting attendees for
the following information based on their personal agenda:

= aset of dates on which they cannot attend the meeting
(hereafter referred as exclusion set);

= aset of dates on which they would prefer the meeting
to take place (hereafter referred as preference set).

A meeting dateis defined by apair (calendar date, time
period). The exclusion and preference setsare contained in
sometimeinterval prescribed by the meeting initiator
(hereafter referred as date range).

Theinitiator also asks active participants to provide any
special equipment requirements on the meeting location
(e.0., overhead-projector, workstation, network connec-
tion, telephones, etc.); he/she may also ask important par-
ticipants to state preferences about the meeting location.

The proposed meeting date should belong to the stated
date range and to none of the exclusion sets; furthermore it
should ideally belong to as many preference sets as possi-
ble. A date conflict occurs when no such date can be
found. A conflict is strong when no date can be found
within the date range and outside all exclusion sets; it is
weak when dates can be found within the date range and
outside al exclusion sets, but no date can be found at the
intersection of all preference sets. Conflicts can be
resolved in severa ways.

= theinitiator extends the date range;

= Some participants remove some dates from their exclu-
sion set;

= some participants withdraw from the meeting;

= Some participants add some new dates to their prefer-
ence set.

A meeting room must be available at the selected meeting
date. It should meet the equipment requirements; further-
more it should ideally belong to one of the locations pre-
ferred by as many important participants as possible. A
new round of negotiation may be required when no such
room can be found.

The meeting initiator can be one of the participants or
some representative (e.g., a secretary).

3.1.1.3 System Requirements

The purpose of the meeting scheduler systemisto support
the organization of meetings - that is, to determine, for
each meeting request, a meeting date and location so that
most of the intended participants will effectively partici-
pate. The meeting date and location should thus be as con-
venient as possible to all participants. Information about
the meeting should also be made available as early as pos-
sibleto all potentia participants. The intended system
should considerably reduce the amount of overhead usu-
ally incurred in organizing meetings where potential
attendees are distributed over many different places. On
another hand, the system should reflect as closely as possi-
ble the way meetings are typically managed (see the
domain theory above).

The system should assist usersin the following activities.

= Plan meetings under the constraints expressed by par-
ticipants

= Replan ameeting dynamically to support as much flex-
ibility as possible. On one hand, participants should be
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allowed to modify their exlusion set, preference set
and/or preferred location before a meeting date/loca-
tion is proposed. On the other hand, it should be possi-
ble to take some external constraints into account after
adate and location have been proposed - e.g., dueto
the need to accommodate a more important meeting.
The original meeting date or location may then need to
be changed; sometimes the meeting may even be can-
celled. In al cases some bound on replanning should
be set up.

= Support conflict resolution according to resolution pol-
icies stated by the client.

= Manage al the interactions among participants
required during the organization of the meeting - to
communicate requests, to get replies even from partici-
pants not reacting promptly, to support the negotiation
and conflict resolution processes, to make participants
aware of what's going on during the planning process,
to keep participantsinformed about schedules and their
changes, to make them confident about the reliability
of the communications, etc.

= Keep the amount of interaction among participants
(e.g., number and length of messages, amount of nego-
tiation required) as small as possible.

The meeting scheduler system must in general handle sev-
eral meeting requestsin parallel. Meeting requests can be
competing by overlapping in time or space. Concurrency
must thus be managed.

The following aspects should a so be taken into account.

= The system should accomodate decentralized requests;
any authorized user should be able to request ameeting
independently of his whereabouts.

= Physical constraints may not be broken - e.g., a person
may not be at two different places at the sametime, a
meeting room may not be alloc

= The system should provide an appropriate level of per-
formance, for example:

= the elapsed time between the submission of a
meeting request and the determination of the cor-

responding meeting date/location should be as
small as possible;

» the elapsed time between the determination of a
meeting date/l ocation and the communication of
thisinformation to all participants concerned
should be as small as possible;

= alower bound should be fixed between the time at
which the meeting dateisdetermined and thetime
at which the meeting is actually taking place.

= Privacy rules should be enforced; a non-privileged par-
ticipant should not be aware of constraints stated by
other participants.
= The system should be usable by non-experts.
= The system should be customizable to professional as
well as private meetings. These two modes of use are
characterized by different restrictions on the time peri-
ods that may be allocated (e.g., meetings during office
hours, private activities during leisure time).
= The system should be flexible enough to accommodate
evolving data - e.g., the sets of concerned participants
may be varying, the address at which a participant can
be reached may be varying, etc.
= The system should be easily extendable to accommo-
date the following typical variations:
= handling of explicit status and priorities among
participants;
= handling of explicit priorities among datesin pref-
erence sets;

= handling of explicit dependencies between meet-
ing date and meeting location;

m participation through delegation - a participant
may ask another person to represent him/her at the
meeting;

= partial attendance - a participant can only attend
part of the meeting;

m variationsin date formats, address formats, inter-
face language, etc.

m partia reusein other contexts -e.g., to help estab-
lish course schedules.

This ends the problem description. The following extends
the system

3.1.2 Extending the Meeting Scheduler System
to Support Conflict Resolution

3.1.2.1 Foreword

This note aims at suggesting a useful extension to the
Meeting Scheduler System. The objectiveisto incorporate
knowledge about participant status and about various
kinds of priorities among participants and meetings.

3.1.2.2 Finding Best Meetings and Resolving
Conflicts

Context
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The purpose of the Meeting Scheduler System is to sup-
port the organi zation of meetings--that is, to determine, for
each meeting request, a meeting date, location and equip-
ment so that the expected participants can attend, the
meeting date and location are most convenient to impor-
tant participants, etc. The Meeting Scheduler System
should also minimize the overhead usually incurred in
organizing meetings.

When there is no common date within all preference sets
or no common date outside all exclusion sets, the Meeting
Scheduler System will not be ableto find a date which is
perfectly suitable to everybody. It isthen necessary to
negotiate a solution to resolve conflicts. This may be done
in several ways (see preliminary description above).

Clients and analysts came to the conclusion that knowl-
edge about participant status and about priorities among
users and meetings should help in resolving conflicts by
determining a "best" way to resolve a conflict. Even when
thereis no conflict, the participant status may be useful in
determining a "best" meeting date and location.

Satus and priorities

The following notions should be incorporated in the pro-
posed extension. They capture the hierarchical importance
of participants, the importance for a participant to attend a
particular meeting relatively to other participants or to
other meetings, and the ease with which a participant can
make a particular date interval free. These various notions
will be used in the conflict resolution process.

Participant Status

The participant status captures the hierarchical importance
of a participant with respect to others independently of
any specific meetings he is expected to participatein.

The participant status might be used, e.g., to determine a
"best" compromise on date and location whenever severa
ones are possible.

The participant status is typically determined by some
super user.

For instance, in the context of scheduling Faculty meet-
ings the Departement Head would have a higher status

than normal professors. The latter would have ahigher

status than student representatives.

Participant Importance

The participant importance captures the importance for a
specific person to attend a particular meeting relatively to
other participants.

Participant importances are typicaly determined by the
meeting initiator.

For instance, the meeting chairman and secretary must be
present; they have the highest participant importance. In a
project meeting where specific tasks are discussed, the
task leaders would have a higher participant importance
than normal project members and alower importance than
the meeting chair, the task speakers or the project review-
ers.

Meeting Sgnificance

The meeting significance represents the importance for a
specific person to attend a particular meeting relatively to
other meetings or meeting requests.

Meeting significances are typically determined by the par-
ticipants concerned.

For instance, participants to a specific task in aresearch
project would assign a greater significance to a project
meeting where their task will be discussed.

This information must be kept confidential.
Participant Flexibility

The participant flexibility isintended to indicate how eas-
ily auser can make aparticular date interval freeto allow
meetings to be scheduled within that interval. Datesin
exclusion sets and/or preference sets can thus be weighted
accordingly.

The participant flexibility istypically determined by the
participants concerned.

For instance, professors cannot move lecture periods eas-
ily; their participant flexibility for the corresponding date
intervals should be low. A dateinterval which isnot in the
exclusion set of a participant should have a high {\it flexi-
bility} for that participant.

This information must be kept confidential.
Using Knowledge about Satus and Priorities

The following tactics illustrate some typical uses of the
various kinds of priorities suggested above.
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= Best meeting dates and | ocations should be determined
by considering participants with higher participant sta-
tus first

= |If no date can be found to organize a meeting, the
Meeting Scheduler System could propose a person
having low participant {\it importance} to withdraw
from the meeting.

= |f no date can be found to organize a meeting, the
Meeting Scheduler System could propose a participant
to cancel (or to withdraw from) another meeting hav-
ing alower meeting {\it significance}.

= A meeting date within some exclusion set (or outside
some preference set) coud be considered if the corre-
sponding participant has a high {\it flexibility} for it.

4 Administrative Matters
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