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Abstract

A standarddemonstration problem in object-oriented programming is the design of an automobile cruise
control. This design exercise demonstrates object-oriented techniques well, but it does not ask whether the
object-oriented paradigm is the best one for thek. Here weexamine the alternative view that cruise
control is essentially a control problem. We presentea softwareorganization paradigm motivated by
process control loops.The control view leads us to an architecture that is dominatedabglysis of a
classical feedback loop rather than by the identification of discrete stateful componemsittasobjects.

The change in architectural model ca#itention to important questiorsbout the cruiseontrol taskthat

aren't addressed in an object-oriented design.

1. Design Idioms for Software Architectures

Explicit organization patterns, or idioms, increasinglydethe composition ofmodulesinto completesystems.

This stage of the design is usually called the architecture, and a number of common patterns are in general, though
quite informal, use [Garlan and Shaw 93]. One of these, the object-oriented architecture [Booch 86], is the subject
of much current attention. Although several architectural idioms have strong advocates, npasatidgn domi-

nates. The choice of an architecture should instead depend on the computational character of the application.

Here weexplore a softwarédiom based onprocess controloops. This systenorganization is notwidely
recognized in the software community; nevertheless it seems to capetawithin designsdominated by other
models. Unlikeobject-oriented ofunctional design, whictare characterized bthe kinds of components that
appeatr, control loop designs are characterized both by the kinds of componithes special relations thatust
hold among the components.

The paperfirst explains process control modelsdderives a software paradigfor control loop organizations.
Then it applies the result to a well-known problem, the design of a cruise control system. The diffeetress
the control-loop-based and the object-oriented designs reveal ref@wngths of the models for problemsthbis
kind. The control view clarifies the different roles played by various problem inputs; further, it helgssitpeer
recognize a safetgroblemand asystem limitation. Drawing on theknowledge of processontrol alsooffers
prospects for design guidance and quantitative analysis of system response characteristics.

1.1. Process control paradigms

Continuousprocesses ofmany kinds convetinput materials tgproductswith specific properties by performing
operations on the inputand onintermediate products.The values of measurable propertiessgétem state
(materials, equipmergettings, etc.pre callecthe variablesof the process. Process variabthat measure the
output materialsare calledthe controlled variablesof the process. The properties of timput materials,
intermediate productsand operationsare captured irother process variables. In particular, tmanipulated
variablesare associatedlith things thatcan bechanged bythe control system imrder to regulatethe process.
Process variablemust not beconfusedwith program variablesthis error canlead to disaster[Astréom and
Wittenmark 84, Leveson 86, Perry 84, Seborg et al 89].
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Process Control Definitions

Process variables:properties of the process that can be measured; several specific kigds are
often distinguished.Do not confuse process variables with program variables.

Controlled variable: process variable whose value the system is intended to control
Input variable: process variable that measures an input to the process

Manipulated variable: process variable whose value can be changed by the controll
Set point: the desired value for a controlled variable

Open loop system:system in whichinformation about processariables is not used
adjust the system.

Closed loop systemsystem in whichinformation about processgariables is used to -
nipulate a process variable to compensate for variations in process variab|gs and
operating conditions.

Feedback controkystem: the controlled variable is measured and the result is udgd to
manipulate one or more of the process variables

Feedforward control systemsome of the process variables are measureddistarbanc
are compensated for without waiting for changes in the controlled variable to be gsible.

The purpose of a control system is to maintpecifiedproperties of theutputs of theprocess at (sufficiently

near) given reference values called the set points. If the input materials are pure, if the pfolbeseimed, and

if the operationsare completely repeatabléhe procesgansimply run without surveillance. Suchpeocess is

called an open loop system. Figure 1 shows such a system, a hot-air furnace that uses a constant burner setting to
raise the temperature of the air that passes through. A similar furnace that uses a timer tobtumerthadf and

on at fixed intervals is also an open loop system.

Return Air  —m=

Furnace Hot Air —

& |

Figure 1: Open loop temperature control

The open-loop assumptions are rarely valid for physical procesdbs lieal world. Moreoften, propertiesuch

as temperature, pressure and flow rates are monitored, and their valussdarecontrol the process bghanging

the settings ofpparatus such amlves, heatersndchillers. Such systemare called closetbop systems. A
home thermostat is a common example: the air temperature at the thermostat is measured, and théduunedce is
on andoff as necessary tmaintain thedesiredtemperatur€the set point). Figure 2 shows thddition of a
thermostat to convert Figure 1 to a closed-loop system.
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Figure 2: Closed loop temperature control

Gas valve control
Temperature-setting control
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There are two general forms of closed loop contfegéedbackcontrol, illustrated in Figure 3, adjusts tipeocess

based ormeasurements of theontrolled variable. Thémportant components of feedbackcontroller are the

process definition, the process variables (including designated input and controlled variables), a sensor to obtain the
controlled variable from the physical output, the set p(anget value for theontrolled variable)and acontrol
algorithm. Figure 2 corresponds to Figure 3 in the following ways:fliimacewith burner isthe process; the
thermostat is the controller; the return @mperature ighe inputvariable; thehot air temperature ighe con-

trolled variable; the thermostat setting is the set point; and the temperature sensor is the sensor.

Input Variables

Controller
Process -

Controlled
Variable

E——
Set Point

Manipulated
Variables

Figure 3: Feedback Control

Feedforwardcontrol, shown in Figure 2, anticipates futuztfects onthe controlled variable by measurirgher
process variables whose values may be ntionely; it adjusts the procesbased onthese variables. The
important components of a feedforward controllexressentially the same as foffeedbackcontroller except that
the sensor(s) obtain valuesioput orintermediatevariables. It is valuable when lags in the proaisay the
effect of control changes.

Input Variables

Y
Process >
—_— A. sto Controlled
Set Point Manipulated Variable
Variables

Controller
Figure 4: Feedforward Control

Theseare simplified models. They do naleal with complexities such as properties of sensors, transmission
delays,andcalibration issues. They ignore thesponse characteristics tife system such as gain, lag, and
hysteresis. They don't show how to combfeedforward and feedback @hoose which process variables to
manipulate. Chemical engineeripgovides excellent quantitative models for predictirgv processesvill react

to various control algorithms; indeed theme anumber ofstandardstrategies [Perrg4, Section 22]. These are
mentioned in Section 3.4, but detailed discussion is beyond the scope of this paper.

1.2. Software paradigm for process control

We usually think of software as algorithmic: we compute outfutexecutecontinuous systems) solely on the

basis of the inputs. This normeiodel doesnot allow for external perturbations; ifion-input values of a
computation change spontaneously, this is regarded as a hardware error. The normal software model corresponds to
an open loop system; in mosases it isentirely appropriate. However, when the operating conditions of a
software system are not completely predictable—especially when the software is operating a physical system—the
purely algorithmicmodel breaks down. Whethe execution of asoftware system isaffected by external
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disturbances—forces or events that are not directly visible to or controllable by the software—thisdisadion
that a control paradigm should be considered for the software architecture.

We cannow establish garadigmfor softwarethat controls continuous processes. The elements op#tiern
incorporatethe essential parts of a process corwop, andthe methodologyequiresexplicit identification of
these parts:

Computational elements:separate the process of interest from the control policy.
Process definitionincluding mechanisms for manipulating some process variables.

Control algorithmto decidehow to manipulate process variables, includinga@del forhow the
process variables reflect the true state.

Data elements:continuously updated process variables and sensors that collect them.

Process variablesncluding designated input, controllemhd manipulated variableand knowledge
of which can be sensed.

Set pointor reference value for controlled variable.
Sensorgo obtain values of process variables pertinent to control.
The control loop paradigmestablishes the relation thidite control algorithnmexercises surveillance:

it collects information about the actuahd intendedstates of the procesd tunes theprocess
variables to drive the actual state toward the intended state.

The two computational elemensgparatessues aboutesired functionality from issues about responses to
external disturbances. For a software system, we can bundle the @muttss process variablethat is we can

regard the process definition together with the process variables and sensors as a single subsystem whose input and
controlled variables are visible in the subsystem interface. cAi¢éhen bundlethe control algorithmandthe set

point as asecondsubsystem; thisontroller has continuouaccess to currentalues of the set poinand the

monitored variables; for a feedback system, this will be the controlled variable. There are two intdrattiees

these major systems: the controlteceivesvalues of process variables from the proces¥] the controller

supplies continuous guidance to the process about changes to the manipulated variables.

The result is a particular kind of dataflow architecture. The priroaayacteristic of dataflow architecturestiet
the components interact by providing data to each other, each component executirdatahgavailable. Most
dataflow architecturemvolve independenfoften concurrent) processesd pacing thatdepends orthe rates at
which theprocesses providdatafor eachother. The control looparadigmassumedurther that data related to
process variables is updated continuously.

Other, perhaps more familiar, members of dagaflowfamily are batch sequential processiagd pipe-and-filter
architectures. Both are largely linear: data enters the system and is processed progressively by a number of distinct
computations. In batch sequential architectures each phase runs to congpidtletiversthe result (historically

as a magnetic tape!) to the next. pipe-and-filter architectures, ahe otherhand,eachfilter processedts input

stream incrementally (in unix, by characters or lines) so the fitansoperate concurrently, ast in principle.

The control looparchitecturedescribechere differsfrom both by the commitment to dataflowloop and in the

intrinsic asymmetry of the control element from the process element.

It is appropriate to consider a control loop design when:
« the task involves continuing action, behavior, or state
» the software i@mbeddegthat is, it controls a physical system
< uncontrolled, or open loop, computatidoesnot suffice, usuallybecause of external perturbations
or imprecise knowledge of the external state

2. Cruise control

2.1. The cruise control problem

Disciplines often work out the details of their methods throtygle problemscommon examplegsed bymany
different people to compartheir modelsand methods [Shaw et al nd]Booch and others haveusedthe cruise
control problem to explore thelifferences between object-orienteénd functional (traditional procedural)
programming [Atlee and Gannon 91, Booch 86, Ward 84]. As given by Booch, this problem is:
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A cruise control system exists to maintain the speed of a car, even over varying terrain. In Figure 5 we see
the block diagram of the hardware for such a system.

System on/off

Increase/decrease speed

Resume speec

Clock

-
Engine on/off -
Pulses from wheel - '
Accelerator - Cruise

Control Throttle -

Brake

| System

P

>

-

Figure 5: Booch block diagram for cruise control
There are several inputs:

¢ System on/off If on, denotes that the cruise-control system should maintain the car
speed.

e Engine on/off If on, denotes that thear engine isturned on; the cruise-control
system is only active if the engine is on.

¢ Pulses from wheel A pulse is sent for every revolution of the wheel.

¢ Accelerator Indication of how far the accelerator has been pressed.

< Brake On when the brake is pressed; the cruise-control syseanporarily

reverts to manual control if the brake is pressed.

* Increase/Decrease SpeedlIncrease or decrease the maintained spewdy applicable if the
cruise-control system is on.

¢ Resume Resume thelast maintained speed; only applicable if tloeuise-
control system is on.

¢« Clock Timing pulse every millisecond.
There is one output from the system:
¢ Throttle Digital value for the engine throttle setting.

The problemdoesnot clearly state the rules foderiving the output from the set of inputsBooch provides a
certain amount of elaboration in the form adaaflow diagram,but some questions remaimanswered. In the
design below, missing details are supplied to match the apparent behavior of the cruise control on theaauthor's
Moreover, the inputs provide two kinds of information: whether the cruise control is active, and if so what speed it
should maintain.

The problem statement says the output is a value for the ethgatite setting. In classicgbrocess control the
corresponding signal would be a change in the throttle settingavbids calibratiorand weamproblems with the
sensors and engine. A more conventional cruise cammoirement wouldhus specify control of thecurrent
speedof the vehicle. Howevergurrent speedis not explicit in the problem statement, thougtildesappear
implicitly as “maintained speed” in the descriptions of some ofirtpats. If therequirementaddressesurrent
speed throttle setting remains an appropriate output from the control algorithm. To avoid unnecdesags
in the problem we assunaecurately calibratedigital controland achievethe effect of incremental signals by
retaining the previous throttle value in the controller.

The problem statement also specifies a millisecoinatk. In theobject-orientedsolution, theclock is used

only in combination with thevheel pulsesto determinghe current speed Presumably the process that
computes the speed will count the number of clock pulses between wheel pulses. A typical automobile tire has a
circumference ofibout 6 feet, so at 60 mph (&&ec) therewill be about 15wheel pulsesper second. The
problem is overspecified in this respect: a slower clock or one that delivered current time on demand with sufficient
precision would also work and would require less computing. Further, a single system clock is not required by the
problem, though it might be convenient for other reasons.
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These considerations lead to a restatement of the probighenever theystem is activejeterminethe desired
speed and control the engine throttle setting to maintain that speed.

2.2. Object view of cruise control

Booch structures an object-oriented decomposition of the syataimdobjects that exist in the taslescription.
This yields a decomposition whose elemeotsrespond tamportant quantitiesand physical entities in the
system. The resulippears inFigure 6, wherethe blobs representobjects and the directed lines represent
dependencies among objects. Although the target speed did not appear explicitly in the problem statibeent, it
appear in Figure 6 as “Desired Speed”.

Wheel

Driver Current

Desired

Engine

Figure 6: Booch's object-oriented design for cruise control

2.3. Process control view of cruise control

Section 1.2 suggests the selection of a control lambitecture whenhe software isembedded in ghysical
system that involves continuing behavior, especially when the system is subgedernual perturbationsThese
conditions hold in the case of cruise control: the system is supposadiritain constanspeed in arautomobile
despite variations in terrain, vehicle load, air resistance, fuel quality, etaevBtop acontrol looparchitecture
for this system, we begin by identifying the essential system elements as described in Section 1.2:

Computational elements

< Process definition: Since the cruise control software is driving a mechanical device (the engine), the
details are not relevant. For our purposes, the process receivestle settingandturns thecar's
wheels. There may in fact be more computers involved, for example in controlling the fuel-injection
system. From the standpoint of the cruise corguisystemhowever, the process takes a throttle
setting as input and controls the speed of the vehicle.

e Control algorithm: This algorithmmodels thecurrent speed based onthe wheel pulses
compares it to theesired speedandchangedhe throttle setting. Thelock input is needed to
modelcurrent speedbased orintervalsbhetweenwheel pulses Since the problemequires an
exactthrottle setting rather than a change, the curtbmbttle setting must benaintained by the
control algorithm. The policy decision about how muclchangethe throttle setting for a given
discrepancy betweeturrent speedandcurrent speedis localized in the control algorithm.

Data elements
« Controlled variable: For the cruise control, this is tleerrent speedof the vehicle.
¢ Manipulated variable: For the cruise control, this is thierottle setting.

e Set point: The desired speed is set and modified by the accelerator input and the
increase/decrease speeddput, respectively. Several other inputs help control whethecrtlise
control is currently controlling thear: System on/off, engine on/off, brake, andresume
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These interactresumerestores automatic control, but only if the entire system isTareseinputs
are provided by the human driver (the operator, in process terms).

e Sensor for controlled variableFor cruise control, theurrentstate is thecurrent speed which is
modeled on datfrom a sensor thatlelivers wheel pulses using theclock. However, see
discussion below about the accuracy of this model.

The restated control task wasyheneverthe system is activdeterminethe desired speed arabntrol theengine
throttle setting to maintain that speed.” Note that onlycilngent speedoutput, thewheel pulsesinput, and
the throttle manipulated variablare usedutside the sepoint and active/inactive determination. Thisads
immediately to two subproblems: tierfacewith the driver, concernedwith “wheneverthe system isactive
determine the desired speed” @hd control loop,concernedvith “control the engine throttle setting to maintain
that speed.”

The latter is the actual control problem; we'll examinérét. Figure 7 shows a suitabbrchitecture for the
control system. The first task is toodelthe current speedfrom the wheel pulses the designer should
validate this model carefully. The model could fail if the wheels spin; this could affect control in two ways. If the
wheel pulsesare being taken from drive wheelandthe wheel isspinning, thecruise controlould keep the
wheel spinning (at constant speed) even if the vehicle stops moving. Even worsejhiééhigulsesarebeing

taken from a non-drive wheahdthe drive wheelsare spinning, thecontrollerwill be misled tobelieve that the
currentspeed istoo slowandwill continually increasethe throttle setting. Thedesignershould alsoconsider
whetherthe controller has full control authorityver the process. In thease ofcruise control, theonly
manipulated variable is thérottle ; the brake is not available. As a result, if the automobile is codsstey

than the desired speed, the controller is powerless to slow it down.

The controller alsgeceivestwo inputs from the set point computation: thetive/inactive toggle, which
indicates whether the controller is in charge ofttivettle, and thedesired speedwhich only needs to bealid
when the vehicle is under automatic control. All this information shouleither state or continuouslypdated
data, so all lines in thdiagram represerdataflow. The controller is implemented as a continuously-evaluating
function that matches theataflow character afhe inputsand outputs. Several implementationare possible,
including variations on simple on/off control, proportional contasid more sophisticated discipline€=ach of
these has parametethat controls howguickly and tightly the controltracks the sepoint; analysis ofthese
characteristics is discussed in Section 3.4. As noted above, the engine is of little lireteresimight very well

be implemented as an object or as a collection of objects.

Active/lnactive

Toggle
Controller
Throttle Engine Wheel Rotation -
— Setting
Desired
Speed

Pulses From Wheel
Figure 7: Control Architecture for Cruise Control

The set point calculation divides naturally into two paf@$determining whether anot the automatic system is
active—in control of the throttland (b) determining thelesired speedfor use by the controller in automatic
mode.

Some of the inputs in the original probledefinition capturestate 6ystem on/off, engine on/off,
accelerator, brake) and others capture eventsheel pulses increase/decreasespeed resume clock).
We will treatacceleratoras state, specifically ascantinuously-updategalue. However, the determination of
whether the automatic cruise control is actively controlling the caleaner ifeverything itdepends on is of the
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same kind. We wilthereforeuse transitiondetweenstates forsystem on/off, engine on/off, andbrake.
For simplicity we assume brake application is atomic so other eaentsdockedvhen thebrake ison. A more
detailed analysis of the system states would relax this assumption [Atlee and Gannon 91].

The active/inactive toggle is triggered by a variety of events, so a state tradsesign isnatural. It's shown in
Figure 8. The system is completely offieneverthe engine is off. Otherwisherearethree inactiveand one
active states. In the first inactive state no set point has been established. In the other two, the prexdous set
must berememberedWhenthe driver accelerates to a speed gre#tten the set point, the manuatcelerator
controls the throttle through directlinkage (note that this is the only use of theceleratoposition in this
design,and it relies on relativeeffect rathethan absolute position); when tidever uses thebrake the control
system is inactivated until the resume signal is sent. athive/inactive toggle input of the control system

is set to active exactly when this state machine is in state Active.

Inactive
f fast

Accel + Set Point

Engine Off System Off Brake

All states K Inactive

All states except OFF slow

Accel | Set Point

Figure 8: State Machine for Activation

Determining thedesired speeds simpler, since it does not require state other tharcuhent value otlesired
speed(the set point). Any time the system is off, the set poininidefined. Any time thesystem onsignal

is given (including when the system is already on) the set point is set twrtieatspeed as modeled hyheel
pulses The driver also has a control that increases or decreases the set point by a set amount. ddmsbdoo,
invoked at any timddefine arithmetic onundefinedvalues to yieldundefinedvalues). Figure 9 summarizes the
events involved in determining the gmbint. Note that thigprocessrequires access tthe clock inorder to
estimate the current speed based on the pulses from the wheel.

Event Effect on desired speed

Engine off, system off Set to “undefined”

System on Set to current speed as estimated from wheel pulses
Increase speed Increment desired speed by constant

Decrease speed Decrement desired speed by constant

Figure 9: Event Table for Determining Set Point

We can now (Figure 10) compose the control architecture, the state machine for actwdtibe,event table for
determining the sgboint into anentire system. Althoughhere is noneedfor the controlunit and set point
determination to use the same clock, we do smittimize changes tdhe original problem statement. Then,
sincecurrent speedis used in two components, it would be reasonable for the next elaborationdefsitpe to
encapsulate that model in a reusable object; this would encapsulate the clock.

All of the objects in Booch's design (Figure 6) have clear roles in the resulting system. It is ezdgehable to

look forward to a design strategy in whitthke control looparchitecture is usefbr the system as a whoed a

number of other architectures, including objects and state machines, are used in the elaborations of the elements of
the control loop architecture.
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The shift from an object-oriented view to a control view of the cruise control architecture raised a nudaseyrof
questions that had previously been slighted: The separation of process from control concerns led toheiqgglicit
of the control discipline. The limitations of the controbdelalso became cleaiincluding possiblénaccuracies
in the currentspeedmodel andincomplete control at higspeed. The dataflow character othe model showed
irregularities in the way thénput was specified, for examplemixture of stateand event inputsand the
inappropriateness of absolute position of the accelerator.

State
Machine

for Toggle

Active/lnactive
Toggle

Control Wheel Rotation

Unit

Event Table
for Set
Point

Desired
Speed

A\
U Clock

Figure 10: Complete cruise control system

3. Analysis and Discussion

3.1. Correspondence between architecture and problem

The selection of an architecture commits the designer to a particular view of a problem. Like any abstriaction,
emphasizes some aspects of the problem and suppresses others. Booch [Booch 86] characterizes the views inherent
in object-oriented and functional architectures:

Simply stated, object-oriented development is an approach to software design in whidtictmposition

of a system is based upon the concept of an object. An object is an entity whose behavior is characterized
by the actions that itsuffers andthat it requires of other objects. Object-oriented development is
fundamentally different from traditional functional methods, for which the primary criteria for
decomposition is that each module in the system represents a major step in the overall process.

The issue, of course, is decidimgnich abstractionsre most usefuffor any particulaproblem. Wehaveargued
that the control view is particularlgppropriate for a certain class moblems. In thiscase, the controliew
clarifies the design in several ways:

* The control view leads us to respecify the output as the actual speed of the vehicle.

e The separation of control from process makesntioelel of actualspeedexplicit and hence more
likely to be validated; similarly it raises the question of control authority.

e The explicit element for the control algorithm also sets ugesign decisiorabout the kind of
control to be exercised (see Section 3.4).

e By establishing special relations among components, the cgmaradigm discriminatesmong
different kinds of inputs and makes the feedback loop more obvious.

e The control paradigm clearly separates manual operation from automatic operation.
« Determination of the set point isasier to verify wherit's separatedrom control; for example,
Booch's design does not appear to reset the desired speed to undefined when the engine is turned off.

The idea ofusing software forcontrol is not newschedulingalgorithmsandreal-time operatingystemsare an
established area. However, the conttwdracter othe task israrely obvious from the systerarchitecture. For
example, the architecture of one commercial process control system [Shaw 91, Garlan and Shaw 93] is primarily a
layered architecture in whidime control elements at the control loop lesppear a®bjects;herethe separation
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between task and control is not obvious. The Chimera framewosefmor-basedontrol systems [Stewart et al
92, Setwart et al 93] provides reusabkxonfigurablebuilding blocks for control that interact viataflow, but
that framework doesiot make the expliciseparation betweetie controllerandthe processhat we makehere.
The ARPA domain-specific softwar&eommunity is exploringcanonical architectures for particular problem
domains[Tracz 93]. Early results from this workclude software architecturéisat quite appropriatelyinclude
contain control loops. A future task @nsideration othose designs itight of this formulation of thecontrol
loop idiom.

Contrast theseaseswith Booch'ssecondexample, theseabuoy. Thisrequirescontinuing operationand state
changes in response to external commands. Howewdoedinot have to compensate for external perturbations
and so is not a candidate for a control loop organization.

3.2. Language support

At some level tharchitecture of aystem isindependent ofthe programming language. Howevarchitectures

assume certain kinds of interactions among components, and these interactions often induce assumptions about the
way the components are packaged -- thabout someaspects of their interfaces. Unfortunately, programming
language do not provide comparable levels of direct support trchlitecturaidioms. Somearchitecturesmost

notably procedures, objects, and processes, have motivated features in programming larigndeesosupport

the structural needs of the architectures. Others, however are orphans

Booch remarks on the effect languages have on architectural design, simply because of the kinds of building blocks
they present.:

“Well-structured systems developed with olderfi.e., imperative -MS] languages tend toconsist of
collections of subprograms (or their equivalent), mainly because that is structurally the only bui¢jang

block available. Thus, these languages abest suited to functionabecomposition techniqueswhich

concentrate upon the algorithmibstractions. But as Guttagobserves, ‘unfortunately, theature of the
abstractions thatmay beconveniently achieved through theise of subroutines is limited. Subroutines,
while well suited to thedescription of abstract events (operationa)e not particularly well suited to the
description of abstract objects. This is a serious drawback’ [Guttag et al 78]”

Since almost no languages make provisions for providatgflow interfaces,ts small wonder that data flow
architectures don't leap immediately to mind. In order to achieve data flow, you hesetto achievedataflow.
For example, unix pipe and filter architectures assume communication via pipesndiViteial modulesachieve
this with conventions about how read and write procedures are used.

3.3. Methodological implications

Object-oriented architectures are supported by associated methodologies. What can we say about methodologies for
control-loop organizations and when they are useftifst, amethodology should help thdesignerdecidewhen

the architecture is appropriate. This is discussed in Sections 1.2 and 2.3. Second, a methodology should help the
designer identifythe elements of thdesignandtheir interactions. Such a list established irSection 1.2 and

exercised inSection 2.3; thiscorresponds tanstructions for "finding the objects" inbject-oriented method-

ologies. Third, a methodology should help thesigner identifycritical design decisions. lthe case ofcontrol,

these include potential safety problems as discussed in sections 2.3 and 3.5.

Astréom and Wittenmark give a collection of examples of common solutions for process control problems [Astrém
and Wittenmark 84]. Each identifies a typical control situation and gives advice for suitable strategies. They also
give a top-down methodology that also serves for the control paradigm for software:

e Choose the control principle

e Choose the control variables

e Choose the measured variables

« Create subsystems

A methodology should also provide for system modifications. Booch proposes two falsjdlceoriented design;
both would be simple changes in the control-loop design:
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« Add adigital speedometer:The wheelpulsesaredirectly available as aontrol signal; thiscan be
picked up byany other componerdand usedndependently othe controlparadigm. In addition,
Section 2.3 suggested creation of a object for current speed.

« Useseparatemicrocomputers focurrent/desired speeahdthrottle: The most likely assignment of
function to multiple processors woulghut the control on onend engine-relatedoperations on
another. This corresponds directly to the design.

3.4. Performance: system response to control

Process contrgbrovides powerfutools for selectingandanalyzing the responsharacteristics ofystems. For
example, the cruise controller can set the throttle in several ways [Perry 84]:

e On/Off Control: The simplest and most commarode ofcontrol simply turns therocess off and
on. This is more appropriate for thermostats ttranttles, but itcould be considered. lorder to
prevent the power frorfluttering rapidly onandoff, on/off control usuallyprovidessome form of
hysteresis (actual speed must deviate fronpseéit by some amourtieforecontrol is exercised, or
power setting can't be switched more often than a preset limit).

* Proportional Control: The output of a proportional controller isfiged multiple of the measured
error. The gain of a cruise controller is the amount by whiclspkeddeviation is multiplied to
determine the change in throttle setting. This is a parameter of control. Dependingoopémies
of the engine, this can lead to a steady-state value not quite equal to the set point or to oscillation of
the speed about the set point.

< Proportional plus Reset Control:The controller has two parts, the first proportional to the error and
the second to cause the controller output to change as long as an error is present. Thisffieas the
of forcing the error to zero. Adding a further correction based on the derivative efdhaspeeds up
the response but is probably overkill for the cruise control application.

For each of these alternatives, mathematical models of the system responses are well understood.

3.5. Correctness

When software controls a physical system, correctness and safety become particularly acute concerns. Sections 2.3
and 3.1 show how the contrgharadigm's methodologleadsthe designer to considethe accuracy of design
assumptions that have significant safety implications. For cruise control, the possibility of rifeesizack is a
significant safety concern, as the author's cruise control once vividly demonstrated.

4. Summary

Design methodologies get much of theower from focusingattention on significantlecisions at appropriate
times. Theygenerally dathis by decomposing the problem in such a wthgat development otthe software
structure proceeds hand-in-hand with the analysis for significant decisions. This |abadizensandlimits the
ripples caused bychanges. In thigxample we havexplored anexample in which the significant high-level
decisions are better elicited by a methodology based on process control than on the more algeutronented
methodology.

Software architecture studiéise wayssoftwarecomponentsare organizednto systems, theeasons for selecting
one architecture over another, and the analysis of the systems that result. Sedfigstrdb2s an architecture for
control paradigms and provides a rule of thumb for deciding when to select this software organization:

When the execution of a software system is affected by external disturbances—forces or eveats it
directly visible to or controllable by the software—this is indication that a conpadadigm should be
considered for the software architecture.

The controlparadigm separatébe operation of the maiprocess from compensation for exterd#turbances.
This separation ofoncerns yields appropriadstractionsand leads talesign questionthat mightotherwise be
neglected.

Cruise control exemplifies a class sfftwaresystemdesignproblems in which a real-time processciantrolled
by embedded software. Conceptually such processes update the contralstatususly. Thinking abouhese
designs explicitly as process control probldeexisthe designer to a softwam@rganization thaseparates process
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concerns from control concerns and requires explicit attention to the appropriaetessectness othe control
strategy. This leads to early consideration of performance and correctness questions that might not otherwise arise.
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