Proc ICCDS-3, Annapolis, Maryland, May 1996, pp. 2-10.

Abstractions and Implementations for
Architectural Connections

Mary Shaw?l, Robert DeLine, Gregory Zelesnik

Computer Science Department
Carnegie Mellon University
Pittsburgh PA 15213

November 29, 1995

Abstract

The architecture of a software system shows how the system is realized by a collection
of components and the interactions among these components. Conventional design
focuses on defining the components, but the properties of the system depend critically
on the character of the interactions. Although software designers have good informal
abstractions for these interactions, the abstractions are poorly supported by the
available languages and tools. As a result, the choice of interaction is often defaulted
or implicit rather than deliberate choice; further, interactions may be defined in terms of
underlying mechanisms rather than the designers’ natural abstractions. UniCon
provides a rich selection of abstractions for the connectors that mediate interactions
among components. To create systems using these connector abstractions, you need to
produce and integrate not only the object code for components, but also a variety of
other run-time products. To extend the set of connectors supported by UniCon, you
need to identify and isolate many kinds of information in the compiler, graphical editor,
and associated tools. This paper describes the role of connector abstractions in
software design, the connector abstractions currently supported by UniCon, and
implementation issues associated with supporting an open-ended collection of
connectors.

Keywords: software architecture, connectors, software system organization,
architectural abstraction, architecture description language, system configuration

1For further information: Electronic mail contact address: mary.shaw@cs.cmu.edu; Web page for current
status: http://www.cs.cmu.edu/~Vit/

1. Introduction

Software developers frequently describe their designs as sets of interacting compo-
nents. For example, a designer may describe a system as a set of real-time processes
interacting via remote procedure calls; or as a set of independent experts interacting
through a shared blackboard; or as a dataflow architecture with information flowing
via pipes through a set of filters [GS93, PW92]. The designer typically focuses on the
components: decomposing system functionality into components, choosing
representations, defining interfaces. The choice of how the components should
interact—the connectors—is often made implicitly or by default. Moreover, even
when designers think about component interactions in terms of abstract relations,
the system description itself usually refers directly to low-level mechanisms for
communication or data sharing. Such design relegates architectural connections to
second-class status and leads to several problems [Sh93].

First, conventional design methods make it hard to localize information about
interactions among components. These methods make it easy to identify the parts
of the implementation that represent particular components, because components
are usually manifest in the source code. However, identifying the part of the code
that corresponds to a connection is much more difficult, as this code is often diffuse,
implicit, or mingled with code with different overt functions. In addition, the code
may not capture at all the designer’s abstraction, recording only the way the designer
realized the abstraction in terms of system calls or other low-level mechanisms.
= For remote procedure calls between real-time processes, details are split between the

source code and the inputs to a stub generator. The required sequencing of procedure
calls may not be recorded at all.

= In a blackboard system, the opportunistic control-flow interaction between experts and
the blackboard is emulated in tables, queues, and procedure calls that, in effect,
implement an interpreter for the blackboard abstraction.

< Pipe connections in a dataflow system are expressed with shell commands (for simple
topologies) or operating system calls (for complex topologies). In both cases the
format of the data flowing through the pipes is hidden in the parsing code of the filters.

When information about connections is scattered about this way, the system con-
nectivity is hard to discern and the connection mechanism is hard to reuse.
Components may also be difficult to reuse, as they are likely to contain embedded
connection information.

A second effect of implicit connector information is that it hides the intended
abstractions about relations between components. A labeled line between boxes in
an architectural diagram represents an abstraction about the system, such as a proto-
col or a shared representation. If this information is not a permanent, explicit part
of the system description, its integrity will suffer during maintenance.

A third problem is that components are packaged in expectation of certain kinds of
interactions. In Unix, for example, the filter version of sort is not interchangeable
with the system call for sort. When packaging and connection expectations are
hidden, systems may unintentionally use components with heterogeneous and

Shaw et al Architectural Connectiosn: Abstractions and Implementations 1

incompatible packaging, and serious integration problems may result. We believe
that this is a significant source of difficulties with software reuse [Sh95].

We are addressing these problems in UniCon, an architectural description language
that makes connectors—relations between components—first-class constructs in the
language. Section 2 summarizes the UniCon language and describes the connectors
currently supported in UniCon. Section 3 describes the requirements that first-class
connectors impose on the UniCon compiler and the range of implementation
strategies that result. Section 4 summarizes our experience.

2. Connector Abstractions in UniCon

2.1. Overview of UniCon

UniCon is an architecture description language organized around two symmetrical
constructs: A system is composed from identifiable components of various types
that interact via connectors in distinct, identifiable ways. Components are specified
by interfaces; they correspond roughly to compilation units of conventional pro-
gramming languages and other user-level objects (e.g., files). Connectors are speci-
fied by protocols; they mediate interactions among components. That is, they define
the rules governing component interaction and specify any auxiliary implementa-
tion mechanisms required. Connectors do not in general correspond directly to
compilation units; they are realized as table entries, linker instructions, dynamic
data structures, system calls, initialization parameters, utility servers, and so on. An
architectural style is based on selected types of components and connectors, together
with rules about other properties of the system, such as connection topology.

A component’s interface consists of: the component’s type; specific properties
(attributes with values) that specialize the type; and a list of points, called players,
through which the component can interact with the outside world. Each player is
typed and may list properties that further specify the player (such as the PortBinding
and Signature attributes above). A component’s implementation may either be
primitive or composite. A primitive implementation consists of some element
outside of UniCon’s domain, such as a source file in a given programming lan-
guage, an object file, a data file, or an executable. A composite implementation
consists of other components and connectors, composed as described below.

A connector’s protocol consists of: the connector’s type; specific properties that spe-
cialize the type; and a list of points, called roles, at which the connector can mediate
the interaction among components. Each role is typed and optionally lists attributes
that further specify the role. UniCon currently supports only built-in connectors, so
each connector’s implementation is specified as builtin. The experience with the
built-in connectors described in this paper will eventually allow us to create
constructs for user-defined connectors.

A composite component implementation has three parts. First, uses statements in-
stantiate the parts to be composed. Next, connect statements show how players of
the components satisfy roles of the connectors. This creates a configuration of com-
ponents and the connectors that join them. Finally, bind statements map the exter-
nal interface to the internal configuration. Given a complete description of the

Shaw et al Architectural Connectiosn: Abstractions and Implementations 2

software architecture, the UniCon compiler performs many checks: that a compo-
nent’s interface or connector’s protocol is consistent with its type; that a player is
connected to a role only when it is capable of fulfilling that role; and that a configu-
ration formed in a composite component fulfills that component’s interface. When
the checks are satisfied, UniCon creates the intermediate and final products (e.g.,
parts and scripts) required to construct and execute the system. The details of the
language and its compiler appear in a more complete description of UniCon
[SDKRYZ95]. Here we focus on the connector abstractions and their implemen-
tation issues.

A software system can be represented interchangeably as graphics or text in UniCon.
Figure 1 shows a real-time system involving a client and server that communicate
via RPC as well as competing for real-time response from the processor. Further
properties are provided as details associated with each component and connector;
these are inspected and edited dynamically. In the textual form, as shown in Figure
2, a flatter information representation exposes more at the top level.

Real-Time Scheduler

Remote Procedure Call

Schedulable Process

Figure 1. Real-time client-server system with two schedulable tasks sharing a
computing resource. The tasks also interact via remote procedure call.

In the example of Figure 1, the two processes interact both through remote
procedure calls and by competing for real-time response. The RPC interactions are
mediated by the RTM-remote-proc-call connector; the real-time interaction is
mediated by the RTM-realtime-sched connector. The full text of the example
includes one composite component to define the system, two schedulable process
components that convert simple procedures to processes, two modules that provide
the application code of the real-time tasks, two connectors, and two libraries. Figure
2 shows a representative sample.

Component type SchedProcess provides an abstraction for processes that must meet
real-time deadlines and must be scheduled accordingly by the real-time operating
system. These processes may be periodic or aperiodic. Real-time applications use
components of type SchedProcess to define computations based on multiple pro-
cesses that execute periodically, concurrently, and in competition for the CPU re-
source. Interactions among SchedProcess components are mediated by connectors of
type RTScheduler. This connector type recognizes an Algorithm attribute to choose

Shaw et al Architectural Connectiosn: Abstractions and Implementations 3

component Real_Time_System
interface is
type General
end interface

implementation is
uses client interface rtclient
PRIORITY (10)
ENTRYPOINT (client)
end client

uses server interface rtserver
PRIORITY (9)
RPCTYPEDEF (new_type; struct; 12)
RPCTYPESIN ("unicon.h")
end server

establish RTM-realtime-sched with
client.applicationl as load
client.application2 as load
server.services as load
ALGORITHM (rate_monotonic)
PROCESSOR ("TESTBED.XX.EDU")
TRACE (client.applicationl.
external_interruptl;
client.applicationl.work_blocki;
server.services.work_block1;
client.applicationl.work_block2;
server.services.work_block?2;
client.applicationl.work_block3)
TRACE (client.application2.
external_interrupt2;
client.application2.work_block1;
server.services.work_block1;
client.application2.work_block2;
server.services.work_block?2;
client.application2.work_block3)
end RTM-realtime-sched

establish RTM-remote-proc-call with
client.timeget as caller
server.timeget as definer
IDLTYPE(Mach)
end RTM-remote-proc-call

establish RTM-remote-proc-call with
client.timeshow as caller
server.timeshow as definer
IDLTYPE(Mach)
end RTM-remote-proc-call
end implementation
end Real_Time_System

component RTClient
interface is

type SchedProcess

PROCESSOR ("TESTBED.XX.EDU")

TRIGGERDEF (external_interruptl; 1.0)

TRIGGERDEF (external_interrupt2; 0.5)

SEGMENTDEF (work_block1; 0.02)

SEGMENTDEF (work_block2; 0.03)

SEGMENTDEF (work_block3; 0.05)

player applicationl is RTLoad
TRIGGER (external_interruptl)
SEGMENTSET (work_blockl,

work_block2, work_block3)

end applicationl

player application2 is RTLoad
TRIGGER (external_interrupt2)
SEGMENTSET (work_blockl,

work_block2, work_block3)

end application2

player timeget is RPCCall
SIGNATURE ("new_type *"; "void")
end timeget

player timeshow is RPCCall
SIGNATURE ("void"; "void")
end timeshow

end interface

connector RTM-realtime-sched
protocol is
type RTScheduler
role load is load
end protocol

implementation is
builtin
end implementation
end RTM-realtime-sched

connector RTM-remote-proc-call
protocol is
type RemoteProcCall
role definer is definer
role caller is caller
end protocol

implementation is
builtin
end implementation
end RTM-remote-proc-call

Figure 2: Textual form for two components and a connector of example of Figure 1.

Shaw et al

Architectural Connectiosn: Abstractions and Implementations

from among six scheduling algorithms. If the algorithm rate_monotonic is selected,
UniCon invokes an external analysis tool to determine whether all of the schedula-
ble processes will meet their deadlines. At this level of abstraction, the designer has
not indicated how the realtime scheduling connector is to be implemented.

2.2. Connector Abstractions Supported by UniCon

UniCon’s types are the most important carriers of abstractions. A connector’s type,
for example, indicates which roles must be satisfied for the connector to operate
properly, together with the types of players that are eligible to play the roles (and
which component types may define those players). Allen and Garlan have explored
formal specifications of the roles [AG94]. Property lists are used to refine the types to
subtypes or to specialize a type to a particular use.

Several broad classes of connectors are currently supported, and the set grows
steadily. Data flow connectors support systems in which the computation is paced
by availability of data (Pipe). Procedural connectors move the thread of control from
one procedure or process to another; they include local and remote procedure calls
(ProcedureCall, RemoteProcCall). Data sharing connectors allow data to be exported
by one component and imported by another (DataAccess). Resource contention
connectors abstract the system support required when interaction takes the form of
competition for resources rather than by exchange of information or control
(RTScheduler). Aggregate connectors begin introducing abstractions with larger
granularity than the discrete underlying mechanisms (PLBundler). All of these are
translated to the standard implementations provided by programming languages
and operating systems.

For concreteness, the remainder of this section describes UniCon's current connec-
tors. For each, we give informal descriptions of the intuition, the properties of the
connector, and the roles associated with the connector.

Pipe Connector
Informal Description: The Unix abstraction for pipe, i.e. a bounded queue of bytes that are produced
at a source and consumed at a sink. Also supports interactions between pipes and files, choosing
the correct Unix implementation.

Icon: pipe section D

Properties: PipeType, the kind of Unix pipe. Possible values Named, Unnamed

Roles: Source
Description: the source end of the pipe
Accepts player types: StreamOut of component Filter; ReadNext of component SeqgFile
Properties: MinConns, minimum number of connections. Integer values, default 1

MaxConns, maximum number of connections. Integer values, default 1
Sink

Description: the sink end of the pipe
Accepts player types: Streamln of component Filter; WriteNext of component SeqFile
Properties: MinConns, MaxConns, as for Source

ProcedureCall Connector

Informal Description: The architectural abstraction corresponding to the procedure call of standard
programming languages. Requires signatures (eventually pre/post conditions) in the RoutineDef
and RoutineCall players to match; if they don’t, requests remediation. Supports renaming.

Shaw et al Architectural Connectiosn: Abstractions and Implementations 5

Icon: blunt arrowhead D
Roles: Definer
Description: role played by the procedure definition
Accepts player types: RoutineDef of component Computation or Module
Properties: MinConns, minimum number of definitions allowed. Integer, must be 1
MaxConns, maximum number of definitions allowed. Integer, must be 1
Caller
Description: the role played by the procedure call
Accepts player types: RoutineCall of component Computation or Module
Properties: MinConns, minimum number of callers allowed. Integer, default 1
MaxConns, maximum number of callers allowed. Integer, default many

RemoteProcCall Connector
Informal Description: The abstraction for the remote procedure call facility supplied by the
operating system. Requires signatures and eventually pre/post conditions in the RPCDef and
RPCCall players to match. RemoteProcCall connectors require much more UniCon support than
ProcedureCall connectors, as they must establish communication paths between processes.

Icon: bordered blunt arrowhead D

Roles: Definer
Description: role played by the procedure definition
Accepts player types: RPCDef of component Process or SchedProcess
Properties: MinConns, MaxConns, as for ProcedureCall
Caller
Description: the role played by the procedure call
Accepts player types: RPCCall of component Process or SchedProcess
Properties: MinConns, MaxConns, as for ProcedureCall

DataAccess Connector
Informal Description: The architectural abstraction corresponding to imported and exported data of
conventional programming languages.
Icon: triangle =

Roles: Definer, essentially similar to Definer of ProcedureCall
User, essentially similar to Caller of ProcedureCall

RTScheduler Connector

Informal Description: Mediates competition for processor resources among a set of real-time
processes (requires an operating system with appropriate real-time capabilities).

Icon: stopwatch
Properties: Algorithm, the scheduling discipline. Possible values: RateMonotonic, TimeSharing,
EarliestDeadline, DeadlineMonotonic, RoundRobinFixPriority, FIFOFixPriority
Processor, the name of the processor on which this set of processes will run
Trace, a path through the real-time code and the trigger that invokes it
Roles: Load
Description: the role played by a real-time load on a processor
Accepts player types: RTLoad of component SchedProcess
Properties: MinConns, minimum number of competing processes. Integer, default 2
MaxConns, maximum number of competing processes. Integer, default many

Shaw et al Architectural Connectiosn: Abstractions and Implementations 6

PLBundler Connector

Informal Description: A composite abstraction for matching definitions and uses of a collection of
procedures and data. It allows multiple procedure and data definitions and uses to be matched
with a single abstraction. Supports renaming.

Icon: chain links %

Properties: Match, the correspondences between individual definitions in the bundles. Values are
sets of pairs of names.
Roles: Participant
Description: a set of definitions and uses to take part in the linkage
Accepts player types: PLBundle of component Computation, Module, or SharedData
Properties: MinConns, minimum number of bundles to match. Integer, default 2
MaxConns, maximum number of bundles to match. Integer, default many

3 Implementation Issues for Connectors

A conventional compiler generates a block of object code for each module of source
code. The compilation task for connectors is quite different, however, because most
connectors do not correspond directly to blocks of object code. Connectors are rather
translated into a variety of different intermediate and final products that serve to
realize the target system during system construction.

We begin in Section 3.1 with the variety of products required to realize a connector.
Some of these are used during system analysis, construction, and initialization;
others become part of the program executables in the target system. A major thread
of this research involves discovering the knowledge required to produce these
products correctly. Section 3.2 discusses our strategy, beginning with exploratory
implementation and continuing through successively more rigorous codification.
As we have codified the required knowledge, we have been able to localize the
expertise required for each type of connector. Section 3.3 describes the kinds of
expertise required and how it is used in the compilation and construction process.

3.1. Realization of connectors

Each connector type has a concrete, though diffuse, realization in the implementa-
tion of a UniCon-defined system. These realizations are of several different kinds,
including actual code, analysis, configuration of components, and directives to
system services. To this end, UniCon produces intermediate products that are used
during system construction and initialization as well as final products that persist
into execution. These products fall into four major categories:
= generated code:
- remote procedure call interfaces specified in an intermediate language (RPC)

- C source code to support process initialization at runtime (RPC, RTScheduler)
- C source code to perform system initialization at runtime (Pipe)

= system analysis:
- data for real-time schedulability analyzer (RTScheduler)

= system construction:

Shaw et al Architectural Connectiosn: Abstractions and Implementations 7

- 0din2 system construction instructions (all)
- macros for renaming, used in Odin scripts during compilation step (RPC,
ProcedureCall, DataAccess)
= system initialization:
- Unix shell script (RTScheduler)
- program executable for environment initialization at runtime (RTScheduler)

Each connector requires a different collection of these intermediate products.

The only products that persist into execution are essentially identical to things now
produced by hand. As a result, UniCon imposes no performance cost after runtime
initialization.

Pipe connectors are created at initialization time as Unix unnamed or named pipes
(Unix fifo files). To create a complex configuration of filters connected by pipes,
UniCon generates an initialization routine that creates all of the pipes, then per-
forms the correct collections of forks, port manipulations, and execs in the correct
order to establish the UniCon-defined topology in the initialized system. UniCon
generates Odin instructions to turn this routine into a program executable.

ProcedureCall, DataAccess, and PLBundler connectors are established at link time.
The UniCon compiler generates Odin instructions that invoke the linker with direc-
tives that resolve all procedure calls and global data accesses between components.
UniCon provides for renaming when procedures and data accesses are connected.
When this capability is used, UniCon transforms both names involved in a connec-
tion (e.g., the name used by a procedure call in one component and the name used
by a procedure definition in another component) to a third, internally generated,
unique identifier; these renamings are recorded as a set of C macro definitions used
by Odin during the compilation step of a component.

RemoteProcCall connectors require extensive library support that is complicated and
tedious to invoke. UniCon generates both the glue code?® and the process-initializa-
tion code to create remote procedure call (RPC) connectors between processes. For
the glue code, UniCon generates a specification of the procedure call interface for
each connector in an intermediate language. UniCon then generates Odin instruc-
tions that (a) invoke a glue-code generator to produce C source code from the speci-
fication of the procedure call interface, (b) compile the source code, and (c) link it
with the rest of the source modules. In addition to the glue code, UniCon generates
special initialization source code for each process making RPCs. This initialization

20din is a system construction utility similar to the “make™ utility in Unix [CI95]. System construction
instructions are specified in an Odinfile, similar to a Makefile, which Odin uses to compute complete
dependency information automatically. Odin’s scripts are shorter and simpler than make’s. Odin gains
efficiency by eliminating most of the filesystem status queries required by make, by parallel builds on
remote machines, and by sharing from a cache of previously computed derived files. For more
information on Odin, contact Geoff Clemm, geoff@bellcore.com.

3Remote procedure calls are implemented by message passing in the target environment. Glue code is
necessary for marshaling the arguments in a remote procedure call into a message, passing the message
between processes, unmarshaling the arguments in the destination process, and calling the specified
procedure (similar actions are required for passing the return value back to the calling procedure).

Shaw et al Architectural Connectiosn: Abstractions and Implementations 8

code registers a process’ services and obtains information on the processes that must
satisfy its service requests. UniCon also supports renaming for remote procedure
calls just as for procedure calls and global data accesses.

RTScheduler connectors are realized by the interaction of processes competing for
the processor’s computing resource via some scheduling algorithm implemented by
a real-time operating system. Real-time scheduling requires each schedulable pro-
cess to be initialized with certain properties, such as its period and priority. UniCon
generates C initialization code for each schedulable process involved in an
RTScheduler connector. At runtime, this code creates and initializes the process in
the real-time environment with the specified period and priority. In addition,
UniCon generates a program executable that initializes the real-time scheduler at
runtime. Finally, UniCon generates a Unix shell script that invokes the scheduler-
initialization program and starts the schedulable processes at runtime.

UniCon also supports schedulability analysis for real-time systems. When the
RTScheduler is invoked, UniCon extracts information from the property lists and
creates an input file for a rate monotonic analysis (RMA) tool [SDKRYZ95]. The
RMA tool analyzes the data and returns a result indicating whether or not the
schedule is achievable.

3.2. Development Strategy

The UniCon implementation is evolving in three stages. In an initial stage, we
used ad hoc techniques to support a diverse set of connectors (Pipe, ProcedureCall,
DataAccess, RemoteProcCall, and RTScheduler) in order to understand the imple-
mentation implications of first-class connectors. We discovered the kinds of tasks
the UniCon compiler must carry out and the kinds of intermediate and final
products UniCon must produce for each type of connector. The first prototype
achieved these goals and was frozen in May, 1994.

In the second stage, we are organizing and consolidating our understanding of the
knowledge required to handle connector abstractions. Our objective is to identify
types of knowledge, tasks, and intermediate products required to implement every
connector type. We recognize experts, or collections of connector-specific knowledge
required for compilation and construction. Each connector expert contains the
knowledge required to implement connectors of that type including:

= rules, icons, literals for enumerations, table entries, and source code fragments for
checking the syntax and semantics of the type

= source code fragments for building the attributed syntax tree,
= source code fragments for performing analyses
= source code fragments for making automatic connections

= generators and templates for products used in construction and analysis of the target
system; instructions for building the target system; and knowledge of how to initialize
connectors of the type in the target system at runtime.

Analysis of the first prototype revealed commonalities in this knowledge. In the
second stage, we are reorganizing the implementation to localize these commonal-
ities. This will make it easier to add new connectors and subsequently move on to
the third stage. The second prototype has been stable since October, 1994. It localizes

Shaw et al Architectural Connectiosn: Abstractions and Implementations 9

connector-specific expertise. Two new connectors (PLBundler and a complete re-
formulation of RTScheduler) have been added without incident. The compiler im-
plementation is in most respects conventional, with the usual lexical, syntax, and
semantic analysis phases, a tree-building phase, and a “code generation” phase,
where more than just source code is generated (see Section 3.1). The prototype also
has a system analysis phase in which portions of the design are analyzed and a com-
plex system construction phase that involves many kinds of intermediate products.

We expect analysis of the second prototype to provide the information necessary for
adding support for connectors with composite implementations and user-defined
connectors in the third-generation compiler.

3.3. What an Expert Knows

In order to generate the intermediate products required to realize connectors, the
UniCon compiler requires a considerable body of information about each connector
type. The UniCon compiler localizes this information into experts; each connector
type has its own expert. The body of information takes many forms, as enumerated
in Section 3.2.
The categories of knowledge in an expert correspond well to the compiler phases:

= syntax and semantics expertise

= syntax tree building expertise

e automatic connection expertise

= analysis expertise

= build expertise

We now describe an expert’s knowledge in terms of these categories.
3.3.1. Syntax and Semantics Expertise

Connector experts contain support for syntax checking not performed by the
language parser. Some syntactic checks are common across all connectors; others are
specific to the connector type. The information needed for the common checks is
well-understood and the same for each connector, so these checks are implemented
as pre-defined functions that expect connector-specific information in tables. Checks
supported in this way include:

= |s the given connector type one of known connector types?

= Is the given role type one of the known role types?

= Is the given attribute one of the known attributes?
Connector-specific syntactic checks are implemented as C source code fragments that
are collected in a common function.

= Is the value of the given connector attribute syntactically correct?

= Is the value of the given role attribute syntactically correct?
Like syntactic checks, some semantic checks are common to all connectors and
others are connector-specific. The common semantic checks include:

= Isarole of the given type allowed within a connector of the given type?

= |s the given connector attribute allowed within a connector of the given type?

Shaw et al Architectural Connectiosn: Abstractions and Implementations 10

< |Is the given role attribute allowed within a role of the given type?
= Is the given attribute-value pair specification a duplicate within the same list?

< Is the number of players connected to a role consistent with its MinConns and
MaxConns attribute values?

Like syntactic checks, some of the information for performing common semantic
checks is well-understood, and these checks are relegated to table look-ups in pre-
defined functions. Connector-specific semantic checks examine details about
connectors of the specified type, and determine the legality of values of connector
attributes. These are implemented as C source code fragments in common
functions. Connector-specific semantic checks for Pipe and RTScheduler connectors
are described in Section 3.4.

The graphical user interface tags the line for each connector with an icon
determined by the connector’s type. Currently, the expertise for each of these icons
is captured as a Scheme# routine that calls the appropriate drawing commands.

3.3.2. Syntax Tree Building Expertise

During the syntax tree building phase, the UniCon compiler populates attributed
syntax tree nodes with attributes synthesized from the parsed input. Each connector
expert requires its own set of attributes to be synthesized. This expertise takes the
form of C source code fragments added to the function that synthesizes protocol
attributes.

3.3.3. Automatic Connection Expertise

Connecting components with many players can be quite tedious, especially when
the correspondence is obvious (e.g., RoutineCall and RoutineDef players with the
same names and signatures). To simplify these cases, some experts support auto-
matic connection of unconnected players. The knowledge of how to perform auto-
matic connections is a connector-specific part of an expert and is embodied in the
form of C source code fragments. A specific example is provided in Section 3.4.1 for
the Pipe connector.

3.3.4. Analysis Expertise

Some parts of a design lend themselves to certain types of analyses. For example,
the execution time, priority, and period attributes of a set of schedulable processes
can be analyzed using rate monotonic analysis (RMA) to see if they will all meet
their deadlines [KRPOH93]. The knowledge of how to perform applicable analyses is
contained in the connector experts. The expertise includes which data to analyze,
how to format it, how to invoke the analysis tools (if any), and how to obtain,
formulate, and deliver the results (and possibly incorporate them into the current
UniCon compile session). This knowledge is implemented as C source code
fragments added to the analysis phase of the compiler. An example of analysis
expertise is discussed in Section 3.4.2 for the RTScheduler connector.

4The graphical user interface is implemented using STk, a Scheme interpreter that bundles
Ousterhout’s Tk toolkit (http://kaolin.unice.fr/html/STk.html).

Shaw et al Architectural Connectiosn: Abstractions and Implementations 11

3.3.5. Build Expertise

Each expert contains the knowledge of how to build systems that use connectors of
its type. This expertise has three parts: how to build the intermediate products nec-
essary to realize the connectors in the target system (e.g., how to create the pipeline
initializer), the knowledge contained in the products (e.g., how to create and initial-
ize a pipeline in the Unix environment), and how to incorporate the intermediate
products into the final system (e.g., how to compile and link “glue-code” for a
remote procedure call into a process). The build expertise comprises the bulk of the
expert; it is specific to each connector type and is implemented as C source code.
Section 3.4 elaborates the build expertise for Pipe and RTScheduler connectors.

3.4. Incorporating Connector Expertise in the UniCon Processor

Figure 3 depicts the architecture of the UniCon compilation system. Architectural
descriptions are stored in a common form. They can be edited (interchangeably) by
any of a variety of editors, currently in batch style by a simple ASCII editor and
interactively via a graphical box-and-line drawing editor. Syntactic and semantic
checks are performed by an analyzer. When a system construction is requested, the
parsed and analyzed UniCon is converted by a builder to a construction script that is
executed by Odin. This step may also involve the creation of new code or
components to support connector “glue”. Since UniCon’s role ends with the
configuration instructions, any initialization or reconfiguration directives must be
incorporated in the system that Odin builds.

User Procedure calls

interfaces \ \\

Analyzer

Builder \ oun /

Modules Constrution
spec

Fetch/store

Figure 3: Architecture of UniCon compiler

Connector expertise is used in all stages of the UniCon compiler. For example,
connector-specific icons are used in the graphical editor. Code fragments that
perform syntax and semantics checks are used by the analyzer to check for
correctness of UniCon definitions. The analyzer also uses connector-specific code
fragments to perform automatic connections of unconnected components and
analyses (e.g., rate monotonic analysis), where applicable. The builder contains
expertise to correctly generate any “glue” to complete a connection and the

Shaw et al Architectural Connectiosn: Abstractions and Implementations 12

construction specification that will eventually be used to realize the connection in
an executable version of a system.

The expertise for each connector must be created manually. However, once the
expertise for a particular connector is created, it is inserted into the UniCon compiler
automatically via a compiler generator. The compiler generator builds the UniCon
compiler from a specification of connectors, so it is possible to construct a version
with any combination of the available builtin connectors that the UniCon language
supports.

In the future, we hope to be able to codify the connector expertise such that semi-
formal specification of new connectors would be possible, making the expertise
automatically generatable as well.

3.5. Examples

To illustrate the requirements for connector-specific expertise, we discuss two
connectors in more detail, Unix pipes and real-time schedulers. The Pipe example
illustrates how UniCon produces run-time system initialization code for a pipe-and-
filter application as part of the system construction process. The RTScheduler
example illustrates the production of “glue” code necessary to realize a remote
procedure call at runtime; it also illustrates the creation of code to initialize the real-
time scheduler in the operating system at run-time prior to system invocation.
Lastly, the RTScheduler example illustrates the UniCon capability of performing an
analysis on the elements of a connection (in this case, a RMA).

3.5.1 The Pipe Expert
Syntax and Semantic Checking Expertise

In addition to the common syntactic checks discussed in Section 3.3, the Pipe expert
checks that the value of the PipeType attribute is a string value. The Pipe expert also
checks that the value of the PipeType attribute is either “named” or “unnamed”.
The Pipe expert also enforces a semantic rule: a Pipe connector may connect exactly
two filters or a filter and a file, but not two files.

Automatic Connection Expertise

If a filter in a component implementation is found to have an unconnected
StreamlIn or StreamOut player, the Pipe expert uses the following strategy to try to
make an automatic connection:

= The compiler searches for a Pipe connector whose appropriate role (the Sink role for an

unconnected Streamin player, the Source role for a StreamOut player) can still accept a
connection, and whose opposite role is already connected.

< |f the first step fails to yield a connection and the unconnected player is of type
StreamOut with a port-binding of 2 (i.e., Unix standard error), the compiler tries to
bind the player to a StreamOut player with port-binding 2 in the component’s interface.

< If neither step above applies or yields a binding, then the compiler connects the player
to the Unix file “/dev/null.”

Shaw et al Architectural Connectiosn: Abstractions and Implementations 13

Analysis Expertise

UniCon does not currently support any analyses related to pipes. If we had a tool to
analyze throughput in a pipeline, we make it available to the Pipe expert. This
might involve adding an attribute for specifying throughput information for a
given pipe, collecting the information for each pipe, invoking the tool, and
incorporating the results into the compilation.

Build Expertise

The Pipe expert contains two types of build knowledge. The first is how to create a
pipe--filter system in the Unix environment. This knowledge is incorporated in the
pipeline initialization code generated by the Pipe expert. During runtime
initialization, the initializer creates all of the pipes, then “forks” itself once for each
filter in the system. Each child process, using a unique index, performs look-ups in
topology tables (described below) to connect itself to the correct pipes on the correct
Unix file descriptors in the right order>. When each child has hooked itself up
properly, it “execs” the correct executable program.

The second type of knowledge consists of how to construct the pipeline initializer
program. UniCon extracts the pipe-filter topology from the attributed syntax tree
created during parsing, then maps the information to a set of tables used as input to
the pipeline initializer. UniCon then generates the C source code containing the
initialization code and the topology tables and transforms it into an executable
program using Odin.

3.5.2 The RTScheduler Expert
Syntax and Semantic Checking Expertise

The RTScheduler expert performs the following connector-specific syntactic checks:

= An Algorithm attribute must have a string value.
= A Processor attribute must have a string value.
< A Trace attribute must have as its value a comma-separated list of at least two
qualified identifiers of the form a.b.c.
The RTScheduler expert also performs the following connector-specific semantic
checks:
< An Algorithm attribute must have a value of “rate monotonic,” “time sharing,” “round

robin fixed priority,” “fifo fixed priority,” “deadline monotonic,” or “earliest deadline
first,” ignoring case.

= In the value of a Trace attribute, the first item must name a Trigger from a periodic
schedulable process, and each subsequent item must name a Segment. Each of these
items must be (a) in a component that has already been instantiated and (b) connected
to the Load role of the RTScheduler connector in which the Trace attribute appears.

= Each RTScheduler connector must be targeted for a distinct processor.

SOrder matters when named pipes are used. A process suspends after opening one half of a named pipe
until the other half is opened by another process. This opens the possibility of deadlock. The pipeline
initializer gurantees that child processes open named pipes in an order that prevents deadlock.

Shaw et al Architectural Connectiosn: Abstractions and Implementations 14

« The RTScheduler connector’s Processor attribute should match the Processor attribute
of each processes scheduled by the connector. (Warning only.)

= Each instantiated schedulable process must be connected to exactly one RTScheduler
connector.

Automatic Connection Expertise

No automatic connection of unconnected RTLoad players to RTScheduler
connectors is supported.

Analysis Expertise

In the system analysis phase, if the compiler encounters an RTScheduler connector
that has an associated “rate monotonic” scheduling algorithm, it performs a RMA of
the associated processes. This currently consists of generating a file containing the
period, priority, and execution time information for each schedulable process, as
well as the event trace information describing the route that remote procedure calls
take through the processes. This file is transmitted to an RMA tool that analyzes the
schedulability of the set of processes and returns a simple result indicating whether
or not each process will meet its deadline.

Build Expertise

The RTScheduler expert contains three types of build knowledge. The first is how to
initialize a system of schedulable processes in the Real-Time Mach environment.
Real-time scheduling connectors are realized by the interaction of schedulable pro-
cesses competing for a processor resource. This interaction is governed by the period
and priority attributes of each process and the scheduling algorithm of the processor.
Initialization of a system of schedulable processes requires first setting the schedul-
ing algorithm of the processor in the kernel, then starting the processes in the right
order. Each schedulable process must perform its own initialization step before per-
forming its main function. During this step, the process registers its period and pri-
ority information with the kernel. As each process is initialized, the kernel sched-
ules it to run according to the set of periods and priorities of all initialized processes.

The second type of knowledge is how to generate the products that perform system
initialization. For each RTScheduler connector, UniCon extracts the algorithm
information from the attributed syntax tree created during parsing and generates a C
source code module to initialize the scheduler in the kernel at runtime. UniCon
also produces a Unix shell script for each connector that invokes the scheduler
initialization program and starts the schedulable processes. For each schedulable
process in an RTScheduler connector, UniCon extracts the period and priority
information from the attributed syntax tree and creates a process initialization C
source code fragment that registers the period and priority of the process with the
scheduler in the kernel at runtime.

The third type of knowledge is of how to transform the C source code module that
performs scheduler initialization into a program executable, and how to incorporate
the C source code fragment that performs process initialization into the schedulable
process executable. This knowledge is realized as Odin instructions that are executed
to build the final system.

Shaw et al Architectural Connectiosn: Abstractions and Implementations 15

4 Related Work

Notations for describing the configuration of software systems has a long history. In
1975, DeRemer and Kron [DK76] created a notation for describing the structure
module-based programs, called a module interconnection language (MIL). In an
MIL notation, modules import and export resources, which are named elements
such as type definitions, constants, variables, and functions. Compilers for MILs
ensure system integrity with intermodule type checking: they check that if one
module uses a resource that another provides, the types of the resources match; that
if a module declares it provides a resource, it actually does; that if a module uses a
resource, it has access to that resource; and so on. Since DeRemer and Kron’s MIL,
MILs have been developed for specific languages, like Mesa [MMS79] and Ada
[CE78], and have provided a base from which to support software construction
[Th76], version control [Co79], system families [Ti79], and dynamic configuration
[MKS89]. Enough examples are available to develop models of the design space
[Pe87, PN86].

These early module interconnection languages require considerable prior agreement
between the developers of different modules. For example, they assume that simple
name matching can be used to infer inter-module interaction, that all modules are
written in the same language, that all modules are available during system construc-
tion, and that module interfaces describe the other modules with which they inter-
act. Newer work has begun to soften these restrictions. In the Darwin language,
modules can be dynamically instantiated and bound at runtime [MDK93]. Polygen
[CPI91] augments a module interconnection language with an inference engine that
deduces from a user-defined set of rules how (or whether) a system can be integrated
from set of modules. These modules can be implemented in multiple programming
languages, and the machinery needed to connect them can be richer than the usual
procedure linkage, for example, a software bus [Pu90]. This kind of system requires
expanding the notion of a MIL to include specifics about a module's imple-
mentation, such as its programming language, its hardware/operating system plat-
form, and the communication media needed to access it. These configuration
notations have recently matured enough to describe both statically and dynamically
structured distributed systems [MDK94]. More recently, languages such as UniCon
for describing system architectures have started to emerge [Gar95].

5 Conclusion

Our objective is to support the abstractions actually used by software designers to
describe the architectures of their software systems. These abstractions are at a con-
siderably higher level than the code. The connectors, or abstractions for interaction
mechanisms, present particular problems, as they are often encoded implicitly and
diffusely. As an initial step we are developing UniCon, an architecture description
language that provides a single set of abstractions and notations to support a wide
variety of the component interaction mechanisms commonly provided by
languages and operating systems. We are especially concerned with supporting
these mechanisms in a uniform way and with minimizing the amount and variety
of mechanism-specific information a developer needs to understand.

Shaw et al Architectural Connectiosn: Abstractions and Implementations 16

The implementation task for connectors is harder than conventional compilation,
because the connectors are realized not by discrete units of code, but by a variety of
actions at construction and initialization time as well as code that is mingled with
code devised for other purposes. We have shown how a conventional compiler
organization can be extended to address this need. In addition, we have organized
the connector-specific expertise to simplify extendibility.

Our strategy of progressive codification has allowed us to gain experience incremen-
tally. Initial explorations with a few connectors helped us understand how to han-
dle the diffuse representation and deal with aspects of connectors that have no con-
crete realization until execution time. This provided enough experience to begin
identifying the kinds of information that must be included in a connector “expert”;
this in turn guided reorganization of the compiler in preparation for fully isolating
the expertise and enabling easy addition of new connectors.

In the near future we expect to extend the set of supported connectors, provide for
configuring versions of UniCon that support selected sets of connectors, and move
toward the ability to define new connectors within UniCon.

Acknowledgments

Our collaborators at Carnegie Mellon, especially David Garlan, have provided critical and stimulat-
ing feedback. The RTScheduler connector arose from a collaboration with Ragunathan Rajkumar from
Carnegie Mellon’s Software Engineering Institute.

This research was supported by the Carnegie Mellon University School of Computer Science, by a grant
from Siemens Corporate Research, and by the Wright Laboratory, Aeronautical Systems Center, Air
Force Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant
F33615-93-1-1330. The US Government is authorized to reproduce and distribute reprints for
Government purposes. Views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of any of the
SpoNsors.

References

[AG94] Robert Allen and David Garlan. Formalizing Architectural Connection. In Proc Sixteenth
International Conference on Software Engineering, 1993.

[Co79] L. W. Cooprider. The Representation of Families of Software Systems. PhD Thesis, Carnegie
Mellon University. April 1979.

[CE78] SARA Aided Design of Software for Concurrent Systems. Proc. National Computer Conference,
1978.

[CI95] Goeffrey H. Clemm. The Odin System. Proc. 5th Software Configuration Management
Workshop (SCM5), April 1995.

[CP91] John R. Callahan and James M. Purtilo. "A Packaging System for Heterogeneous Execution
Environments.” IEEE Trans. on Software Engineering, 17(6): 626-635, June 1991.

[DK76] Frank DeRemer and Hans H. Kron. Programming-in-the-Large versus Programming-in-the-
Small. IEEE Trans. on Software Engineering, SE-2(2):80-86, June 1976.

[Gar95] David Garlan (ed) “First International Workshop on Architectures for Software Systems,
Workshop Summary”. ACM Software Engineering Notes, vol 20, no 3,July 1995, pp. 84-89.

[GS93] David Garlan and Mary Shaw. An Introduction to Software Architecture. In V. Ambriola and
G. Tortora (eds), Advances in Software Engineering and Knowledge Engineering, vol. 1, World
Scientific Publishing Company, 1993, pp.1-39.

Shaw et al Architectural Connectiosn: Abstractions and Implementations 17

[KRPOH93] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harobur. A Practitioner’s
Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems.
Kluwer Academic Publishers, 1993.

[MDKO93] J. Magee, N. Dulay, and J. Kramer. Structuring parallel and distributed programs. Software
Engineering Journal, 8(2):73-82, March 1993.

[MDK94] J. Magee, N. Dulay, and J. Kramer. A constructive development evironment for parallel and
distributed programs. Proc. Second International Workshop on Configurable Distributed Systems,
March 1994,

[MKS89] J. Magee, J. Kramer, and M. Sloman. Constructing distributed systems in CONIC. IEEE Tr. on
Software Engineering, SE-15(6):663-675, 1989.

[MMS79] J. G. Mitchell, W. Maybury, and R. E. Sweet, Mesa Language Manual. Tech. Report CSL-79-3,
Xerox Corporation, Palo Alto Research Center, April 1979.

[Pe87] Dewayne E. Perry. Software Interconnection Models. In Proc. Ninth International Conference on
Software Engineering, IEEE Computer Society Press, March 1987.

[PN86] R. Prieto-Diaz and J. M. Neighbors. Module Interconnection Languages. Journal of Systems and
Software, 6(4), November 1986, pp. 307-333.

[Pu90] James Purtilo. "The Polylith Software Bus." Dept. of Computer Science, Univ. Maryland, Tech.
Rep. 2469, 1990.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software Architecture.
ACM SIGSOFT Software Engineering Notes, 17(4):40-52, October 1992.

[SDKRYZ95] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young, Gregory
Zelesnik. Abstractions for Software Architectures and Tools to Support Them. IEEE Tr. on Software
Engineering, 21(4): 314-335, April 1995.

[Sh93] Mary Shaw. Procedure Calls are the Assembly Language of Software Interconnection:
Connectors Deserve First-Class Status. Proc Workshop on Studies of Software Design 1993, to be
published by Springer-Verlag 1995.

[Sh95] Mary Shaw. Architectural Issues in Software Reuse: It’s Not Just the Functionality, It’s the
Packaging. Proc SSR’95: Symposium on Software Reuse, April 1995.

[Th76] J. W. Thomas. Module Interconnection in Programming Systems Supporting Abstraction. PhD
Thesis, Brown University. June, 1976.

[Ti79] Walter F. Tichy. “Software Development Control Based on Module Interconnection”. Proc. 4th
International Conference on Software Engineering, Munich, 1979, pp. 29-41.

Shaw et al Architectural Connectiosn: Abstractions and Implementations 18

